1
|
Lang M, Walter S, Hatey D, Blanc A, Compain P, Kern N. Gold(I)-Catalyzed Reactions of exo-Glycals with Propargyl Esters toward C-1 Alkenyl Spirocyclopropyl Carbohydrates. Org Lett 2024; 26:8017-8022. [PMID: 39283904 DOI: 10.1021/acs.orglett.4c02754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
An atom-economic and diazo-free strategy for the construction of novel pseudo anomeric C-1 alkenyl spirocyclopropyl sugars is described. Leveraging the 1,2-migration pathway of propargyl esters under gold(I) catalysis, easily available exo-glycals undergo β-selective alkenylcarbenoid insertion in moderate to excellent yields. Preferential activation of propargyl moieties and concerted [2 + 1] insertion are both favored through ligand choice and electron enrichment of esters. Stereocontrol using conformational bias and rearrangement are also demonstrated.
Collapse
Affiliation(s)
- Mylène Lang
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Université de Strasbourg/Université de Haute-Alsace/CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Sophie Walter
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Université de Strasbourg/Université de Haute-Alsace/CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Delphine Hatey
- Institut de Chimie (UMR 7177), Université de Strasbourg, Laboratoire de Catalyse Organométallique, Synthèse organique et Santé (COSyS), 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Aurélien Blanc
- Institut de Chimie (UMR 7177), Université de Strasbourg, Laboratoire de Catalyse Organométallique, Synthèse organique et Santé (COSyS), 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Université de Strasbourg/Université de Haute-Alsace/CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Nicolas Kern
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Université de Strasbourg/Université de Haute-Alsace/CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| |
Collapse
|
2
|
Javahershenas R, Makarem A, Klika KD. Recent advances in microwave-assisted multicomponent synthesis of spiro heterocycles. RSC Adv 2024; 14:5547-5565. [PMID: 38357035 PMCID: PMC10866134 DOI: 10.1039/d4ra00056k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Spiro heterocycle frameworks are a class of organic compounds that possesses unique structural features making them highly sought-after targets in drug discovery due to their diverse biological and pharmacological activities. Microwave-assisted organic synthesis has emerged as a powerful tool for assembling complex molecular architectures. The use of microwave irradiation in synthetic chemistry is a promising method for accelerating reaction rates and improving yields. This review provides insights into the current state of the art and highlights the potential of microwave-assisted multicomponent reactions in the synthesis of novel spiro heterocyclic compounds that were reported between 2017 and 2023.
Collapse
Affiliation(s)
- Ramin Javahershenas
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Ata Makarem
- Institute of Pharmacy, University of Hamburg 20146 Hamburg Germany
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ) 69120 Heidelberg Germany
| |
Collapse
|
3
|
Javahershenas R, Nikzat S. Recent developments using malononitrile in ultrasound-assisted multicomponent synthesis of heterocycles. ULTRASONICS SONOCHEMISTRY 2024; 102:106741. [PMID: 38176128 PMCID: PMC10793181 DOI: 10.1016/j.ultsonch.2023.106741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Ultrasonic irradiation serves as a vigorous and environmentally sustainable approach for augmenting multicomponent reactions (MCRs), offering benefits such as thermal enhancement, agitation, and activation, among others. Malononitrile emerges as a versatile reagent in this context, participating in a myriad of MCRs to produce structurally diverse heterocyclic frameworks. This review encapsulates the critical role of malononitrile in the sonochemical multicomponent synthesis of these heterocyclic structures. The paper further delves into the biochemical and pharmacological implications of these heterocycles, elucidating their reaction mechanisms as well as delineating the method's scope and limitations. We furnish an overview of the merits and challenges inherent to this synthetic approach and offer insights for potential avenues in future research.
Collapse
Affiliation(s)
- Ramin Javahershenas
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| | - Sahand Nikzat
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.
| |
Collapse
|
4
|
[4+2]-Cycloaddition to 5-Methylidene-Hydantoins and 5-Methylidene-2-Thiohydantoins in the Synthesis of Spiro-2-Chalcogenimidazolones. Int J Mol Sci 2023; 24:ijms24055037. [PMID: 36902468 PMCID: PMC10002963 DOI: 10.3390/ijms24055037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
Novel hydantion and thiohydantoin-based spiro-compounds were prepared via theDiels-Alder reactions between 5-methylidene-hydantoins or 5-methylidene-2-thiohydantoins and 1,3-dienes (cyclopentadiene, cyclohexadiene, 2,3-dimethylbutadiene, isoprene). It was shown that the cycloaddition reactions proceed regioselectively and stereoselectively with the formation of exo-isomers in the reactions with cyclic dienes andthe less sterically hindered products in the reactions with isoprene. Reactions of methylideneimidazolones with cyclopentadiene proceed viaco-heating the reactants; reactions with cyclohexadiene, 2,3-dimethylbutadiene, and isoprene require catalysis by Lewis acids. It was demonstrated that ZnI2 is an effective catalyst in the Diels-Alder reactions of methylidenethiohydantoins with non-activated dienes. The possibility of alkylation and acylation of the obtained spiro-hydantoinsat the N(1)nitrogen atoms with PhCH2Cl or Boc2O and the alkylation of the spiro-thiohydantoinsat the S atoms with MeI or PhCH2Cl in high yields have been demonstrated. The preparativetransformation of spiro-thiohydantoins into corresponding spiro-hydantoinsin mild conditions by treating with 35% aqueous H2O2 or nitrile oxide has been carried out. The obtained compounds show moderate cytotoxicity in the MTT test on MCF7, A549, HEK293T, and VA13 cell lines. Some of the tested compounds demonstrated some antibacterial effect against Escherichia coli (E. coli) BW25113 DTC-pDualrep2 but were almost inactive against E. coli BW25113 LPTD-pDualrep2.
Collapse
|
5
|
Yu L, Dai A, Zhang W, Liao A, Guo S, Wu J. Spiro Derivatives in the Discovery of New Pesticides: A Research Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10693-10707. [PMID: 35998302 DOI: 10.1021/acs.jafc.2c02301] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spiro compounds are biologically active organic compounds with unique structures, found in a wide variety of natural products and drugs. They do not readily lead to drug resistance due to their unique mechanisms of action and have, therefore, attracted considerable attention regarding pesticide development. Analyzing structure-activity relationships (SARs) and summarizing the characteristics of spiro compounds with high activity are crucial steps in the design and development of new pesticides. This review mainly summarizes spiro compounds with insecticidal, bactericidal, fungicidal, herbicidal, antiviral, and plant growth regulating functions to provide insight for the creation of new spiro compound pesticides.
Collapse
Affiliation(s)
- Lijiao Yu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ali Dai
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Anjing Liao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shengxin Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jian Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
6
|
Cao J, Vincent SP. Synthesis of Spirocyclic Cyclopropyl Glycosyl-1-phosphate Analogues. Org Lett 2022; 24:4165-4169. [PMID: 35666228 DOI: 10.1021/acs.orglett.2c01422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A general methodology allowing the preparation of phosphonylated 1-spirocyclopropyl analogues of glycosyl-1-phosphates is reported. The scope of this reaction has been assessed using various exo-glycals easily obtained from the corresponding pyranoses and furanoses. The cyclopropanation was found to be stereospecific, and the cis/trans selectivity only depends on the E/Z configuration of the starting exo-glycal. The four possible isomers of spirocyclopropyl ribose-1-phosphonate could thus be prepared in a controlled manner, protected and deprotected.
Collapse
Affiliation(s)
- Jun Cao
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Stéphane P Vincent
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| |
Collapse
|
7
|
Jouffroy L, Verhoeven J, Brambilla M, Verniest G, Kong H, Zhao Y, Wang W, Meerpoel L, Thuring JW, Winne JM. Regio- and Stereoselective Synthesis of C-4' Spirocyclobutyl Ribofuranose Scaffolds and Their Use as Biologically Active Nucleoside Analogues. Org Lett 2021; 23:8828-8833. [PMID: 34730365 DOI: 10.1021/acs.orglett.1c03334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Novel C-4',C-5' cyclobutane-fused spirocyclic ribonucleoside analogues were prepared. Thermal [2 + 2] cycloaddition between dichloroketene and readily derived 4'-exo-methylene furanoses afforded a first entry to the required constrained ribofuranoses, relying on a carbonyl transposition sequence. Alternatively, an unusual stereoselective ionic [2 + 2] cycloaddition using methyl propiolate promoted by methylaluminoxane gave a complementary, more direct approach to such ribofuranoses. Further conversion to the constrained adenosine analogues revealed promising structure-dependent inhibition of the protein methyltransferase PRMT5:MEP50 complex in the (sub)micromolar range.
Collapse
Affiliation(s)
- Lucile Jouffroy
- Department of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S4, 9000 Gent, Belgium
| | - Jonas Verhoeven
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
- Research Group of Organic Chemistry (ORGC), Department of Chemistry and Department of Bio-engineering Sciences, Faculty of Science and Bio-engineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Marta Brambilla
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Guido Verniest
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
- Research Group of Organic Chemistry (ORGC), Department of Chemistry and Department of Bio-engineering Sciences, Faculty of Science and Bio-engineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Hanchu Kong
- Department of Synthetic Chemistry, Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, People's Republic of China
| | - Yongbin Zhao
- Department of Synthetic Chemistry, Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, People's Republic of China
| | - Wenbin Wang
- Department of Synthetic Chemistry, Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, People's Republic of China
| | - Lieven Meerpoel
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S4, 9000 Gent, Belgium
| |
Collapse
|
8
|
Mittersteiner M, Farias FFS, Bonacorso HG, Martins MAP, Zanatta N. Ultrasound-assisted synthesis of pyrimidines and their fused derivatives: A review. ULTRASONICS SONOCHEMISTRY 2021; 79:105683. [PMID: 34562732 PMCID: PMC8473776 DOI: 10.1016/j.ultsonch.2021.105683] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 06/09/2023]
Abstract
The pyrimidine scaffold is present in many bioactive drugs; therefore, efficient synthetic routes that provide shorter reaction times, higher yields, and site-selective reactions are constantly being sought. Ultrasound (US) irradiation has emerged as an alternative energy source in the synthesis of these heterocyclic scaffolds, and over the last ten years there has been a significant increase in the number of publications mentioning US in either the construction or derivatization of the pyrimidine core. This review presents a detailed summary (with 140 references) of the effects of US (synergic or not) on the construction and derivatization of the pyrimidine core through classical reactions (e.g., multicomponent, cyclocondensation, cycloaddition, and alkylation reactions). The main points that were taken into consideration are as follows: chemo- and regioselectivity issues, and the results of conventional heating methods compared to US and mechanistic insights that are also presented and discussed for key reactions.
Collapse
Affiliation(s)
- Mateus Mittersteiner
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil.
| | - Fellipe F S Farias
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Helio G Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Marcos A P Martins
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil.
| |
Collapse
|
9
|
Rungta P, Kumar M, Mangla P, Kumar S, Prasad AK. Chemo-enzymatic access to C-4′-hydroxyl-tetrahydrofurano-spironucleosides. NEW J CHEM 2021. [DOI: 10.1039/d0nj03253k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The biocatalytic synthesis of C-4′-hydroxyl-tetrahydrofurano-spironucleosides where the tetrahydrofuranospirocyclic ring at C-4′ position locks the furanose ring of nucleosides in the NE-conformation (C4′-exo).
Collapse
Affiliation(s)
- Pallavi Rungta
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi
- India
| | - Manish Kumar
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi
- India
| | - Priyanka Mangla
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi
- India
| | - Sandeep Kumar
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi
- India
| | - Ashok K. Prasad
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi
- India
| |
Collapse
|
10
|
Kumar R, Kumar M, Kumar V, Kumar A, Haque N, Kumar R, Prasad AK. Recent progress in the synthesis of C-4′-spironucleosides and its future perspectives. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1803914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Rajesh Kumar
- Department of Chemistry, R.D.S. College, B. R. A. Bihar University, Muzaffarpur, India
| | - Manish Kumar
- Department of Chemistry, Motilal Nehru College, University of Delhi, Delhi, India
| | - Vijay Kumar
- Department of Chemistry, L. S. College, B. R. A. Bihar University, Muzaffarpur, India
| | - Arbind Kumar
- Department of Chemistry, L. S. College, B. R. A. Bihar University, Muzaffarpur, India
| | - Navedul Haque
- University Department of Chemistry, B. R. A. Bihar University, Muzaffarpur, India
| | - Ram Kumar
- Department of Chemistry, R.D.S. College, B. R. A. Bihar University, Muzaffarpur, India
| | - Ashok K. Prasad
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
11
|
Tardieu D, Desnoyers M, Laye C, Hazelard D, Kern N, Compain P. Stereoselective Synthesis of C,C-Glycosides from exo-Glycals Enabled by Iron-Mediated Hydrogen Atom Transfer. Org Lett 2019; 21:7262-7267. [DOI: 10.1021/acs.orglett.9b02496] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Damien Tardieu
- Laboratoire d’Innovation Moléculaire et Applications (LIMA), Université de Strasbourg/Université de Haute-Alsace/CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Marine Desnoyers
- Laboratoire d’Innovation Moléculaire et Applications (LIMA), Université de Strasbourg/Université de Haute-Alsace/CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Claire Laye
- Laboratoire d’Innovation Moléculaire et Applications (LIMA), Université de Strasbourg/Université de Haute-Alsace/CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Damien Hazelard
- Laboratoire d’Innovation Moléculaire et Applications (LIMA), Université de Strasbourg/Université de Haute-Alsace/CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Nicolas Kern
- Laboratoire d’Innovation Moléculaire et Applications (LIMA), Université de Strasbourg/Université de Haute-Alsace/CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Philippe Compain
- Laboratoire d’Innovation Moléculaire et Applications (LIMA), Université de Strasbourg/Université de Haute-Alsace/CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| |
Collapse
|
12
|
Kun S, Kánya N, Galó N, Páhi A, Mándi A, Kurtán T, Makleit P, Veres S, Sipos Á, Docsa T, Somsák L. Glucopyranosylidene-spiro-benzo[ b][1,4]oxazinones and -benzo[ b][1,4]thiazinones: Synthesis and Investigation of Their Effects on Glycogen Phosphorylase and Plant Growth Inhibition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6884-6891. [PMID: 31135156 DOI: 10.1021/acs.jafc.9b00443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Glucopyranosylidene-spiro-benzo[ b][1,4]oxazinones were obtained via the corresponding 2-nitrophenyl glycosides obtained by two methods: (a) AgOTf-promoted glycosylation of 2-nitrophenol derivatives by O-perbenzoylated methyl (α-d-gluculopyranosyl bromide)heptonate or (b) Mitsunobu-type reactions of O-perbenzoylated methyl (α-d-gluculopyranose)heptonate with bulky 2-nitrophenols in the presence of diethyl azodicarboxylate (DEAD) and PPh3. Catalytic hydrogenation (H2-Pd/C) or partial reduction (e.g., H2-Pd/C, pyridine) of the 2-nitro groups led to spiro-benzo[ b][1,4]oxazinones and spiro-benzo[ b][1,4]-4-hydroxyoxazinones by spontaneous ring closure of the intermediate 2-aminophenyl or 2-hydroxylamino glycosides, respectively. The analogous 2-aminophenyl thioglycosides, prepared by reactions of O-perbenzoylated methyl (α-d-gluculopyranosyl bromide)heptonate with 2-aminothiophenols, were cyclized in m-xylene at reflux temperature to the corresponding spiro-benzo[ b][1,4]thiazinones. O-Debenzoylation was effected by Zemplén transesterification in both series. Spiro-configurations were determined by NMR and electronic circular dichroism time-dependent density functional theory (ECD-TDDFT) methods. Inhibition assays with rabbit muscle glycogen phosphorylase b showed (1' R)-spiro{1',5'-anhydro-d-glucitol-1',2-benzo[ b][1,4]oxazin-3(4 H)-one} and (1' R)-spiro{1',5'-anhydro-d-glucitol-1',2-benzo[ b][1,4]thiazin-3(4 H)-one} to be the most efficient inhibitors (27 and 28% inhibition at 625 μM, respectively). Plant growth tests with white mustard and garden cress indicated no effect except for (1' R)-4-hydroxyspiro{1',5'-anhydro-d-glucitol-1',2-benzo[ b][1,4]oxazin-3(4 H)-one} with the latter plant to show modest inhibition of germination (95% relative to control).
Collapse
Affiliation(s)
- Sándor Kun
- Department of Organic Chemistry , University of Debrecen , POB 400 , H-4002 Debrecen , Hungary
| | - Nándor Kánya
- Department of Organic Chemistry , University of Debrecen , POB 400 , H-4002 Debrecen , Hungary
| | - Norbert Galó
- Department of Organic Chemistry , University of Debrecen , POB 400 , H-4002 Debrecen , Hungary
| | - András Páhi
- Department of Organic Chemistry , University of Debrecen , POB 400 , H-4002 Debrecen , Hungary
| | - Attila Mándi
- Department of Organic Chemistry , University of Debrecen , POB 400 , H-4002 Debrecen , Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry , University of Debrecen , POB 400 , H-4002 Debrecen , Hungary
| | - Péter Makleit
- Department of Agricultural Botany, Crop Physiology and Biotechnology , University of Debrecen , Böszörményi út 138 , H-4032 Debrecen , Hungary
| | - Szilvia Veres
- Department of Agricultural Botany, Crop Physiology and Biotechnology , University of Debrecen , Böszörményi út 138 , H-4032 Debrecen , Hungary
| | - Ádám Sipos
- Department of Medical Chemistry, Faculty of Medicine , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary
| | - Tibor Docsa
- Department of Medical Chemistry, Faculty of Medicine , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary
| | - László Somsák
- Department of Organic Chemistry , University of Debrecen , POB 400 , H-4002 Debrecen , Hungary
| |
Collapse
|