1
|
Sharmeen S, Woolfork AG, Hage DS. Generation of affinity maps for thiazolidinediones with human serum albumin using affinity microcolumns. II. Effects of advanced glycation end products on multisite drug binding. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124333. [PMID: 39395238 DOI: 10.1016/j.jchromb.2024.124333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
Multisite protein interactions by the thiazolidinedione-class drugs pioglitazone and rosiglitazone were examined by using high-performance affinity microcolumns that contained normal human serum albumin (HSA) vs HSA that had been modified to form advanced glycation end products by glyoxal (Go) or methylglyoxal (MGo). The results were used to generate an affinity map for these drugs at several key regions on HSA. Strong binding (∼105 M-1) by these drugs was seen at both Sudlow sites I and II. About a 50 % decrease in the affinities at Sudlow site II was observed for pioglitazone for Go-modified HSA, while either a 47 % decrease or 1.6-fold increase in affinity was seen for MGo-modified HSA, depending on the extent of modification. The binding affinity for rosiglitazone at Sudlow site II had a 40-83 % decrease for Go-modified HSA and either a non-significant change or 1.4-fold increase for MGo-modified HSA. At Sudlow site I, pioglitazone gave a 41 % decrease in affinity for either Go or MGo-modified HSA, and for rosiglitazone up to a 55 % decrease or 1.3-fold increase in affinity was noted. Positive allosteric effects were seen by these drugs with the tamoxifen site of HSA, and neither drug had any notable binding at the digitoxin site for the normal or modified forms of HSA. Rosiglitazone also had weak interactions at a site in subdomain IB, which increased in affinity by up to 5.0-fold with the Go- or MGo-modified HSA. This study illustrated how affinity microcolumns can be used to provide a detailed analysis of solute-protein systems that involve complex interactions. The data obtained should also be valuable in providing a better understanding of how drug interactions with HSA and other proteins can be altered by modifications of these binding agents in diseases such as diabetes.
Collapse
Affiliation(s)
- Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, USA
| | | | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, USA.
| |
Collapse
|
2
|
Szkudlarek A. In Vitro Spectroscopic Investigation of Losartan and Glipizide Competitive Binding to Glycated Albumin: A Comparative Study. Int J Mol Sci 2024; 25:9698. [PMID: 39273644 PMCID: PMC11395140 DOI: 10.3390/ijms25179698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Understanding the interaction between pharmaceuticals and serum proteins is crucial for optimizing therapeutic strategies, especially in patients with coexisting chronic diseases. The primary goal of this study was to assess the potential changes in binding affinity and competition between glipizide (GLP, a second-generation sulfonylurea hypoglycemic drug) and losartan (LOS, a medication commonly prescribed for hypertension, particularly for patients with concurrent diabetes) with non-glycated (HSA) and glycated (gHSAGLC, gHSAFRC) human serum albumin using multiple spectroscopic techniques (fluorescence, UV-visible absorption, and circular dichroism spectroscopy). The results indicated that FRC is a more effective glycation agent for HSA than GLC, significantly altering the albumin structure and affecting the microenvironment around critical amino acid residues, Trp-214 and Tyr. These modifications reduce the binding affinity of LOS and GLP to gHSAGLC and gHSAFRC, compared to HSA, resulting in less stable drug-protein complexes. The study revealed that LOS and GLP interact nonspecifically with the hydrophobic regions of the albumin surface in both binary (ligand-albumin) and ternary systems (ligand-albumin-ligandconst) and specifically saturate the binding sites within the protein molecule. Furthermore, the presence of an additional drug (GLP in the LOS-albumin complex or LOS in the GLP-albumin complex) complicates the interactions, likely leading to competitive binding or displacement of the initially bound drug in both non-glycated and glycated albumins. Analysis of the CD spectra suggests mutual interactions between GLP and LOS, underscoring the importance of closely monitoring patients co-administered these drugs, to ensure optimal therapeutic efficacy and safety.
Collapse
Affiliation(s)
- Agnieszka Szkudlarek
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| |
Collapse
|
3
|
Kumari N, Vaishnav MS, Srikanta S, Krishnaswamy PR, Bhat N. Exploring glycated sites in human serum albumin: impact of sample processing techniques on detection and analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5239-5247. [PMID: 39007648 DOI: 10.1039/d4ay00503a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Glycation and the subsequent formation of advanced glycation end products (AGEs) disrupt and impair the physiological functions of proteins. This study presents a comprehensive glycation site mapping of human serum albumin (HSA) utilizing liquid chromatography-tandem mass spectrometry (LC-MS/MS). Both in vitro glycation experiments and patient samples were investigated, exploring various enzymes, processing techniques, and their impacts on glycation site detection. A pilot study was conducted, analyzing sixteen serum samples, which spanned from healthy individuals to severe diabetic patients (with HbA1c values ranging from 5.7% to 18.1%). The aim was to comprehend the progression of glycation on various sites of HSA with increasing levels of glycation. Their glycated albumin levels (GA) spanned from 19.7% to 62.3%. Trypsin-mediated proteolytic digestion unveiled 12 glycation sites through direct in-solution digestion of whole serum. However, isolating albumin from serum enabled the identification of a higher number of glycation sites in each sample compared to direct serum digestion. Boronate affinity chromatography facilitated the segregation of less glycated albumin (LGA) from the more glycated albumin (MGA) fraction. Subsequent proteolytic digestion of both LGA and MGA samples revealed similar glycation sites. The MGA fraction exhibited a greater number of identified glycation sites, thereby elucidating which sites are particularly prone to glycation in highly glycated albumin samples. Changes in relative glycation levels were noted in the tryptic digests of albumin samples following the sample enrichment steps, as opposed to direct in-solution digestion of whole serum. Two enzymes, trypsin and Glu-C, were evaluated for efficacy in sequence coverage and glycation site analysis of HSA, with trypsin demonstrating superior efficiency over Glu-C.
Collapse
Affiliation(s)
- Namita Kumari
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India.
| | - Madhumati S Vaishnav
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India.
- Samatvam Endocrinology Diabetes Center, Jnana Sanjeevini Diabetes Hospital and Medical Center, Bengaluru, India
| | - Sathyanarayana Srikanta
- Samatvam Endocrinology Diabetes Center, Jnana Sanjeevini Diabetes Hospital and Medical Center, Bengaluru, India
| | - P R Krishnaswamy
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India.
| | - Navakanta Bhat
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
4
|
Bangar NS, Ravindran S, Shaikh SA, Shah N, Tupe RS. Homeopathic Formulations of Syzygium jambolanum Alleviate Glycation-Mediated Structural and Functional Modifications of Albumin: Evaluation through Multi-Spectroscopic and Microscopic Approaches. HOMEOPATHY 2024; 113:98-111. [PMID: 37857331 DOI: 10.1055/s-0043-1771024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
BACKGROUND The growing interest in identifying the mode of action of traditional medicines has strengthened its research. Syzygium jambolanum (Syzyg) is commonly prescribed in homeopathy and is a rich source of phytochemicals. OBJECTIVE The present study aims to shed light on the anti-glycation molecular mechanism of Syzyg mother tincture (MT), 30c, and 200c on glycated human serum albumin (HSA) by multi-spectroscopic and microscopic approaches. METHODS The phytochemicals and antioxidant potential of the Syzyg formulations were estimated by the high-performance liquid chromatography and spectroscopic technique, respectively. Glycation was initiated by incubating HSA with methylglyoxal, three Syzyg formulations, and the known inhibitor aminoguanidine in separate tubes at 37°C for 48 hours. The formation of glycation adducts was assessed by spectrofluorometer and affinity chromatography. The structural modifications were analyzed through circular dichroism, Fourier transform infrared spectroscopy, turbidity, 8-anilinonapthalene-1-sulfonic acid fluorescence, and nuclear magnetic resonance. Further, the formation of the aggregates was examined by thioflavin T, native-polyacrylamide gel electrophoresis, and transmission electron microscopy. Additionally, the functional modifications of glycated HSA were determined by esterase-like activity and antioxidant capacity. The binding analysis of Syzyg formulations with glycated HSA was evaluated by surface plasmon resonance (SPR). RESULTS Syzyg formulations MT, 30c, and 200c contained gallic acid and ellagic acid as major phytochemicals, with concentrations of 16.02, 0.86, and 0.52 µg/mL, and 227.35, 1.35, and 0.84 µg/mL, respectively. Additionally, all three formulations had remarkable radical scavenging ability and could significantly inhibit glycation compared with aminoguanidine. Further, Syzyg formulations inhibited albumin's structural and functional modifications. SPR data showed that Syzyg formulations bind to glycated HSA with an equilibrium dissociation constant of 1.10 nM. CONCLUSION Syzyg formulations inhibited the glycation process while maintaining the structural and functional integrity of HSA.
Collapse
Affiliation(s)
- Nilima S Bangar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, Maharashtra, India
| | - Selvan Ravindran
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, Maharashtra, India
| | - Shamim A Shaikh
- Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Katraj, Pune, Maharashtra, India
| | - Nilesh Shah
- Department of Surgery and Homeopathic Therapeutics, Bharati Vidyapeeth (Deemed to be University), Homoeopathic Medical College, Katraj, Pune, Maharashtra, India
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, Maharashtra, India
| |
Collapse
|
5
|
Thakur MR, Tupe RS. Protective effect of colchicine on albumin glycation and cellular oxidative stress: Insights into diabetic cardiomyopathy. J Biochem Mol Toxicol 2024; 38:e23664. [PMID: 38372178 DOI: 10.1002/jbt.23664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 02/01/2024] [Indexed: 02/20/2024]
Abstract
The present work elucidates the role of colchicine (COL) on albumin glycation and cellular oxidative stress in diabetic cardiomyopathy (DCM). Human serum albumin (HSA) was glycated with methylglyoxal in the presence of COL (2.5, 3.75, and 5 µM), whereas positive and negative control samples were maintained separately. The effects of COL on HSA glycation, structural and functional modifications in glycated HSA were analyzed using different spectroscopical and fluorescence techniques. Increased fructosamine, carbonyl, and pentosidine formation in glycated HSA samples were inhibited in the presence of COL. Structural conformation of HSA and glycated HSA samples was examined by field emission scanning electron microscopy, circular dichroism, Fourier transform infrared, and proton nuclear magnetic resonance analyses, where COL maintained both secondary and tertiary structures of HSA against glycation. Functional marker assays included ABTS•+ radical scavenging and total antioxidant activities, advanced oxidative protein product formation, and turbidimetry, which showed preserved functional properties of glycated HSA in COL-containing samples. Afterward, rat cardiomyoblast (H9c2 cell line) was treated with glycated HSA-COL complex (400 μg/mL) for examining various cellular antioxidants (nitric oxide, catalase, superoxide dismutase, and glutathione) and detoxification enzymes (aldose reductase, glyoxalase I, and II) levels. All three concentrations of COL exhibited effective anti-glycation properties, enhanced cellular antioxidant levels, and detoxification enzyme activities. The report comprehensively analyzes the potential anti-glycation and properties of COL during its initial assessment.
Collapse
Affiliation(s)
- Muskan Rajkumar Thakur
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune, Maharashtra, India
| | - Rashmi Santosh Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune, Maharashtra, India
| |
Collapse
|
6
|
Li X, Yan X, Yang D, Chen S, Yuan H. Probing the Interaction between Isoflucypram Fungicides and Human Serum Albumin: Multiple Spectroscopic and Molecular Modeling Investigations. Int J Mol Sci 2023; 24:12521. [PMID: 37569896 PMCID: PMC10420152 DOI: 10.3390/ijms241512521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
To better understand the potential toxicity risks of isoflucypram in humans, The interaction between isoflucypram and HSA (human serum albumin) was studied through molecular docking, molecular dynamics simulations, ultraviolet-visible absorption, fluorescence, synchronous fluorescence, three-dimensional fluorescence, Fourier transform infrared spectroscopies, and circular dichroism spectroscopies. The interaction details were studied using the molecular docking method and molecular dynamics simulation method. The results revealed that the effect of isoflucypram on human serum albumin was mixed (static and dynamic) quenching. Additionally, we were able to obtain important information on the number of binding sites, binding constants, and binding distance. The interaction between isoflucypram and human serum albumin occurred mainly through hydrogen bonds and van der Waals forces. Spectroscopic results showed that isoflucypram caused conformational changes in HSA (human serum albumin), in which the α-helix was transformed into a β-turn, β-sheet, and random coil, causing the HSA structure to loosen. By providing new insights into the mechanism of binding between isoflucypram and human serum albumin, our study has important implications for assessing the potential toxicity risks associated with isoflucypram exposure.
Collapse
Affiliation(s)
| | - Xiaojing Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (S.C.)
| | | | | | - Huizhu Yuan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (S.C.)
| |
Collapse
|
7
|
Spectroscopic Analysis of an Antimalarial Drug’s (Quinine) Influence on Human Serum Albumin Reduction and Antioxidant Potential. Molecules 2022; 27:molecules27186027. [PMID: 36144764 PMCID: PMC9505252 DOI: 10.3390/molecules27186027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Quinine (Qi) is a well-known drug used in malaria therapy; it is also a potential anti-arrhythmic drug used in the treatment of calf cramps, rheumatoid arthritis, colds, and photodermatitis. Moreover, it is used in the food industry for the production of tonics. This study aimed to analyze the interaction between quinine and a transporting protein—human serum albumin (HSA)—as well as the influence of Qi on both protein reduction and antioxidant potential. It was found that Qi (via spectrofluorometric measurements and circular dichroism spectroscopy) binds to HSA with a low affinity and slightly affects the secondary structure of albumin. As demonstrated by the use of ABTS and FRAP assays, HSA has a higher antioxidant and reduction potential than Qi, while their mutual interaction results in a synergistic effect in antioxidant activity and reduction potential.
Collapse
|
8
|
Mlčochová H, Michalcová L, Glatz Z. Extending the application potential of capillary electrophoresis/frontal analysis for drug‐plasma protein studies by combining it with mass spectrometry detection. Electrophoresis 2022; 43:955-963. [DOI: 10.1002/elps.202100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Hana Mlčochová
- Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
| | - Lenka Michalcová
- Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
| |
Collapse
|
9
|
Rogóż W, Pożycka J, Owczarzy A, Kulig K, Maciążek-Jurczyk M. Comparison of Losartan and Furosemide Interaction with HSA and Their Influence on HSA Antioxidant Potential. Pharmaceuticals (Basel) 2022; 15:499. [PMID: 35631326 PMCID: PMC9144853 DOI: 10.3390/ph15050499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 12/04/2022] Open
Abstract
Serum albumin (HSA) is the most important protein in human body. Due to the antioxidant activity, HSA influences homeostasis maintenance and transport of drugs as well as other substances. It is noteworthy that ligands, such as popular drugs, modulate the antioxidant activity of HSA. The aim of this study was to analyze the influence of losartan (LOS) and furosemide (FUR) on HSA antioxidant properties as well as the interaction between these drugs and protein using calorimetric and spectroscopic methods. LOS and FUR showed the high affinity for human serum albumin, and the binding reactions between them were spontaneous and exothermic. LOS and FUR, separately and together in the system, have no significant impact on the secondary HSA structure; however they have significant impact on the tertiary HSA structure. LOS and FUR mixed with HSA have the ability to scavenge free radicals, and the ligand(s)-HSA interactions were synergistic.
Collapse
Affiliation(s)
| | | | | | | | - Małgorzata Maciążek-Jurczyk
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (W.R.); (J.P.); (A.O.); (K.K.)
| |
Collapse
|
10
|
Szkudlarek A, Pożycka J, Kulig K, Owczarzy A, Rogóż W, Maciążek-Jurczyk M. Changes in Glycated Human Serum Albumin Binding Affinity for Losartan in the Presence of Fatty Acids In Vitro Spectroscopic Analysis. Molecules 2022; 27:401. [PMID: 35056715 PMCID: PMC8778988 DOI: 10.3390/molecules27020401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 01/11/2023] Open
Abstract
Conformational changes in human serum albumin due to numerous modifications that affect its stability and biological activity should be constantly monitored, especially in elderly patients and those suffering from chronic diseases (which include diabetes, obesity, and hypertension). The main goal of this study was to evaluate the effect of a mixture of fatty acids (FA) on the affinity of losartan (LOS, an angiotensin II receptor (AT1) blocker used in hypertension, a first-line treatment with coexisting diabetes) for glycated albumin-simulating the state of diabetes in the body. Individual fatty acid mixtures corresponded to the FA content in the physiological state and in various clinical states proceeding with increased concentrations of saturated (FAS) and unsaturated (FAUS) acids. Based on fluorescence studies, we conclude that LOS interacts with glycated human serum albumin (af)gHSA in the absence and in the presence of fatty acids ((af)gHSAphys, (af)gHSA4S, (af)gHSA8S, (af)gHSA4US, and (af)gHSA8US) and quenches the albumin fluorescence intensity via a static quenching mechanism. LOS not only binds to its specific binding sites in albumins but also non-specifically interacts with the hydrophobic fragments of its surface. Incorrect contents of fatty acids in the body affect the drug pharmacokinetics. A higher concentration of both FAS and FAUS acids in glycated albumin reduces the stability of the complex formed with losartan. The systematic study of FA and albumin interactions using an experimental model mimicking pathological conditions in the body may result in new tools for personalized pharmacotherapy.
Collapse
Affiliation(s)
- Agnieszka Szkudlarek
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (J.P.); (K.K.); (A.O.); (W.R.); (M.M.-J.)
| | | | | | | | | | | |
Collapse
|
11
|
Wiglusz K, Żurawska-Płaksej E, Rorbach-Dolata A, Piwowar A. How Does Glycation Affect Binding Parameters of the Albumin-Gliclazide System in the Presence of Drugs Commonly Used in Diabetes? In Vitro Spectroscopic Study. Molecules 2021; 26:molecules26133869. [PMID: 34202801 PMCID: PMC8270297 DOI: 10.3390/molecules26133869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
In this research, the selected drugs commonly used in diabetes and its comorbidities (gliclazide, cilazapril, atorvastatin, and acetylsalicylic acid) were studied for their interactions with bovine serum albumin-native and glycated. Two different spectroscopic methods, fluorescence quenching and circular dichroism, were utilized to elucidate the binding interactions of the investigational drugs. The glycation process was induced in BSA by glucose and was confirmed by the presence of advanced glycosylation end products (AGEs). The interaction between albumin and gliclazide, with the presence of another drug, was confirmed by calculation of association constants (0.11-1.07 × 104 M-1). The nature of changes in the secondary structure of a protein depends on the drug used and the degree of glycation. Therefore, these interactions may have an influence on pharmacokinetic parameters.
Collapse
Affiliation(s)
- Katarzyna Wiglusz
- Department of Analytical Chemistry, Wroclaw Medical University, Borowska 211, PL-50556 Wrocław, Poland;
| | - Ewa Żurawska-Płaksej
- Department of Toxicology, Wroclaw Medical University, Borowska 211, PL-50556 Wrocław, Poland; (A.R.-D.); (A.P.)
- Department of Pharmaceutical Biochemistry, Wroclaw Medical University, Borowska 211, PL-50556 Wrocław, Poland
- Correspondence: ; Tel.: +48-71-784-0453
| | - Anna Rorbach-Dolata
- Department of Toxicology, Wroclaw Medical University, Borowska 211, PL-50556 Wrocław, Poland; (A.R.-D.); (A.P.)
| | - Agnieszka Piwowar
- Department of Toxicology, Wroclaw Medical University, Borowska 211, PL-50556 Wrocław, Poland; (A.R.-D.); (A.P.)
| |
Collapse
|
12
|
Stojanović SD, Nićiforović JM, Živanović SM, Odović JV, Jelić RM. Spectroscopic studies on the drug–drug interaction: the influence of fluoroquinolones on the affinity of tigecycline to human serum albumin and identification of the binding site. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02627-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Novel 2,4-Disubstituted-1,3-Thiazole Derivatives: Synthesis, Anti- Candida Activity Evaluation and Interaction with Bovine Serum Albumine. Molecules 2020; 25:molecules25051079. [PMID: 32121062 PMCID: PMC7179180 DOI: 10.3390/molecules25051079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/29/2022] Open
Abstract
Herein we report the synthesis of two novel series of 1,3-thiazole derivatives having a lipophilic C4-substituent on account of the increasing need for novel and versatile antifungal drugs for the treatment of resistant Candida sp.-based infections. Following their structural characterization, the anti-Candida activity was evaluated in vitro while using the broth microdilution method. Three compounds exhibited lower Minimum Inhibitory Concentration (MIC) values when compared to fluconazole, being used as the reference antifungal drug. An in silico molecular docking study was subsequently carried out in order to gain more insight into the antifungal mechanism of action, while using lanosterol-C14α-demethylase as the target enzyme. Fluorescence microscopy was employed to further investigate the cellular target of the most promising molecule, with the obtained results confirming its damaging effect towards the fungal cell membrane integrity. Finally, the distribution and the pharmacological potential in vivo of the novel thiazole derivatives was investigated through the study of their binding interaction with bovine serum albumin, while using fluorescence spectroscopy.
Collapse
|
14
|
Szkudlarek A, Pożycka J, Maciążek-Jurczyk M. Influence of Piracetam on Gliclazide-Glycated Human Serum Albumin Interaction. A Spectrofluorometric Study. Molecules 2018; 24:molecules24010111. [PMID: 30597970 PMCID: PMC6337564 DOI: 10.3390/molecules24010111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/18/2018] [Accepted: 12/25/2018] [Indexed: 12/24/2022] Open
Abstract
Advanced Glycation End-Products (AGEs) are created in the last step of protein glycation and can be a factor in aging and in the development or worsening of many degenerative diseases (diabetes, chronic kidney disease, atherosclerosis, Alzheimer’s disease, etc.). Albumin is the most susceptible to glycation plasma protein. Modified albumin by AGEs may be more resistant to enzymatic degradation, which further increases the local accumulation of AGEs in tissues. The aim of the present study was to analyze in vitro glycation of serum albumin in the presence of piracetam (PIR) and the gliclazide (GLZ)-glycated albumin interaction. The analysis of PIR as an inhibitor and GLZ interaction with nonglycated human albumin (HSA) and glycated by fructose human albumin (gHSAFRC), in the absence and presence of piracetam (gHSAFRC-PIR), was performed by fluorescence quenching of macromolecules. On the basis of obtained data we concluded that under the influence of glycation, association constant (Ka) of gliclazide to human serum albumin decreases and GLZ binds to HSA with less strength than under physiological conditions. PIR strongly inhibited the formation of AGEs in the system where the efficiency of HSA glycation was the largest. The analysis of piracetam influence on the GLZ-glycated albumin interaction has shown that piracetam increases the binding strength of GLZ to glycated albumin and weakens its therapeutic effect. Based on the obtained data we concluded that monitoring therapy and precautions are required in the treatment when the combinations of gliclazide and piracetam are used at the same time.
Collapse
Affiliation(s)
- Agnieszka Szkudlarek
- Department of Physical Pharmacy, Medical University; School of Pharmacy with the Division of Laboratory Medicine, 4, 41-200 Sosnowiec, Poland.
| | - Jadwiga Pożycka
- Department of Physical Pharmacy, Medical University; School of Pharmacy with the Division of Laboratory Medicine, 4, 41-200 Sosnowiec, Poland.
| | - Małgorzata Maciążek-Jurczyk
- Department of Physical Pharmacy, Medical University; School of Pharmacy with the Division of Laboratory Medicine, 4, 41-200 Sosnowiec, Poland.
| |
Collapse
|
15
|
Synthesis and biological evaluation of N-aryl-2-phenyl-hydrazinecarbothioamides: Experimental and theoretical analysis on tyrosinase inhibition and interaction with HSA. Bioorg Chem 2018; 81:79-87. [DOI: 10.1016/j.bioorg.2018.07.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/20/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
|
16
|
Interactions of Bromocarbazoles with Human Serum Albumin Using Spectroscopic Methods. Molecules 2018; 23:molecules23123120. [PMID: 30487451 PMCID: PMC6321538 DOI: 10.3390/molecules23123120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/01/2023] Open
Abstract
The 1,3,6,8-tetrabromocarbazole and 3-bromocarbazole have attracted great attention in the ecotoxicology field recently as hazardous environmental contaminants. In this study, the quenching mechanism of these two substances binding with human serum albumin (HSA) has been investigated with spectroscopic methods. Through fluorescence quenching and binding site experiments with steady-state fluorescence and UV-Vis spectra, the intrinsic fluorescence of HSA quenched by 1,3,6,8-tetrabromocarbazole and 3-bromocarbazole both in static process, are activated by binding to site II (subdomain IIIA) of the HSA. In addition, it was not only found that the conformation and secondary structure of the proteins changes, but also that their spontaneous binding processes were driven by electrostatic interactions as well as hydrophobic forces for HSA-1,3,6,8-tetrabromocarbazole, and by typical hydrophobic forces for HSA-3-bromocarbazole. The above studies are beneficial to enhance our understanding of the ecotoxicology and environmental behaviors of halogenated carbazoles.
Collapse
|
17
|
Abstract
Hypertension and depression, as 2 major public health issues, are closely related. For patients having hypertension, in particular, depression is a risk factor for mortality and jeopardizes their wellbeing. The aim of the study is to apply support vector machine (SVM) learning to blood tests and vital signs to classify patients having hypertension complicated by depression and patients having hypertension alone for the identification of novel markers.Data on patients having both hypertension and depression (n = 147) and patients having hypertension alone (n = 147) were obtained from electronic medical records of admissions containing the records on blood tests and vital signs. Using SVM, we distinguished patients having both hypertension and depression from gender- and age-matched patients having hypertension alone.SVM-based classification achieved 73.5% accuracy by 10-fold cross-validation between patients having both hypertension and depression and those having hypertension alone. Twelve features were selected to compose the optimal feature sets, including body temperature (T), glucose (GLU), creatine kinase (CK), albumin (ALB), hydroxybutyrate dehydrogenase (HBDH), blood urea nitrogen (BUN), uric Acid (UA), creatinine (Crea), cholesterol (TC), total protein (TP), pulse (P), and respiration (R).SVM can be used to distinguish patients having both hypertension and depression from those having hypertension alone. A significant association was identified between depression and blood tests and vital signs. This approach can be helpful for clinical diagnosis of depression, but further studies are needed to verify the role of these candidate markers for depression diagnosis.
Collapse
Affiliation(s)
- Xiuli Song
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University Web Sciences Center Big Data Research Center, University of Electronic Science and Technology of China Information Center, West China Hospital, Sichuan University College of Foreign Languages and Cultures, Sichuan University, Chengdu, PR China
| | | | | | | | | | | | | | | |
Collapse
|