1
|
Drius G, Tarroni R, Birchmeier M, Parolin C, Boga C, Monari M, Bordoni S. Unpredictable Dynamic Behaviour of Ruthenium Chelate Pyrrole Derivatives. Molecules 2024; 29:3068. [PMID: 38999019 PMCID: PMC11242957 DOI: 10.3390/molecules29133068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Reaction of [Ru(H)2(CO)(PPh3)3] 1 with an equimolar amount of pyrrole-2-carboxylic acid (H2L1) leads to the homoleptic chelate derivative k2(O,O)-[RuH(CO)(HL1)(PPh3)2] 2. Prolonged acetonitrile refluxing promotes an unusual k2(O,O)- → k2(N,O)- dynamic chelate conversion, forming a neutral, stable, air- and moisture- insensitive, solvento-species k2(N,O)-[Ru(MeCN)(CO)(L1)(PPh3)2] 3. Analogously, reaction of 1 with the pyrrole-2-carboxyaldehyde (HL2) affords k2(N,O)-[RuH(CO)(HL2)(PPh3)2] 4, 5, as a couple of functional isomers. Optimized reaction conditions such as temperature and solvent polarity allow the isolation of dominant configurations. Structure 5 is a pyrrolide Ru-carbaldehyde, obtained from cyclization of the pendant CHO function, whereas species 4 can be viewed as an ethanoyl-conjugated Ru-pyrrole. Derivatives 3-5 were characterized by single crystal X-ray diffraction, ESI-Ms, IR, and NMR spectroscopy, indicating distinct features for the Ru-bonded pyrrolyl groups. DFT computational results, coplanarity, bond equalization, and electron delocalization along the fused five-membered rings support aromatic features. In accordance with the antisymbiotic trans-influence, both the isolated isomers 4 and 5 disclose CO ligands opposite to N- or O-anionic groups. The quantitative Mayer bond order evidences a stabilizing backbonding effect. Antibacterial and antifungal trials on Gram-positive (Staphylococcus aureus), Gram-negative (Escherichia coli), and Candida albicans were further carried out.
Collapse
Affiliation(s)
- Giacomo Drius
- Department of Industrial Chemistry 'Toso Montanari', Alma Mater Studiorum, Università di Bologna, Via Piero Gobetti, 85, 40129 Bologna, Italy
| | - Riccardo Tarroni
- Department of Industrial Chemistry 'Toso Montanari', Alma Mater Studiorum, Università di Bologna, Via Piero Gobetti, 85, 40129 Bologna, Italy
| | - Matteo Birchmeier
- Department of Industrial Chemistry 'Toso Montanari', Alma Mater Studiorum, Università di Bologna, Via Piero Gobetti, 85, 40129 Bologna, Italy
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Carla Boga
- Department of Industrial Chemistry 'Toso Montanari', Alma Mater Studiorum, Università di Bologna, Via Piero Gobetti, 85, 40129 Bologna, Italy
| | - Magda Monari
- Department of Chemistry 'Giacomo Ciamician', Alma Mater Studiorum, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Silvia Bordoni
- Department of Industrial Chemistry 'Toso Montanari', Alma Mater Studiorum, Università di Bologna, Via Piero Gobetti, 85, 40129 Bologna, Italy
- Health Sciences and Technologies Interdepartmental Centre for Industrial Research (CIRI SDV), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
2
|
Pachisia S, Kishan R, Yadav S, Gupta R. Half-Sandwich Ruthenium Complexes of Amide-Phosphine Based Ligands: H-Bonding Cavity Assisted Binding and Reduction of Nitro-substrates. Inorg Chem 2021; 60:2009-2022. [PMID: 33459009 DOI: 10.1021/acs.inorgchem.0c03505] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present synthesis and characterization of two half-sandwich Ru(II) complexes supported with amide-phosphine based ligands. These complexes presented a pyridine-2,6-dicarboxamide based pincer cavity, decorated with hydrogen bonds, that participated in the binding of nitro-substrates closer to the Ru(II) centers, which is further supported with binding and docking studies. These ruthenium complexes functioned as the noteworthy catalysts for the borohydride mediated reduction of assorted nitro-substrates. Mechanistic studies not only confirmed the intermediacy of [Ru-H] in the reduction but also asserted the involvement of several organic intermediates during the course of the catalysis. A similar Ru(II) complex that lacked pyridine-2,6-dicarboxamide based pincer cavity substantiated its unique role both in the substrate binding and the subsequent catalysis.
Collapse
Affiliation(s)
- Sanya Pachisia
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ram Kishan
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Samanta Yadav
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Rajeev Gupta
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
3
|
Khanvilkar P, Dash SR, Vohra A, Devkar R, Chakraborty D. Evaluation of biomolecular interactions and cytotoxic activity of organometallic binuclear Ru(II) complexes of ferrocenyl thiosemicarbazones. J Biomol Struct Dyn 2020; 39:6044-6055. [PMID: 32729376 DOI: 10.1080/07391102.2020.1798284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Four new ferrocenyl substituted thiosemicarbazone ligands (L1-L4) and their corresponding binuclear ruthenium(II) arene complexes of the general type [(η6-p cym)(L)Ru(μ-im)Ru(L)(η6-p-cym)]Cl (C1-C4) and [(η6-p cym)(L)Ru(μ-azpy)Ru(L)(η6-p-cym)]Cl2 (C5-C8) (cym = cymene, im = imidazole, azpy = 4,4'-azopyridine) have been synthesized and characterized. The structures of the complexes were established through DFT calculations and geometry optimization. The interactions of the binuclear complexes with DNA were investigated by absorption, emission and viscosity studies which indicated that the complexes bind to DNA via intercalation. Meanwhile, the interaction of complexes with the protein, bovine serum albumin (BSA), has also been studied using fluorescence emission spectroscopy. The experimental results show that the binuclear complexes exhibit good binding propensities to BSA. The complexes can quench the intrinsic fluorescence of BSA remarkably through a static or dynamic quenching process. In addition, the in vitro cytotoxicity of complexes C1-C8 against HeLa cell line was assayed which showed lower IC50 values indicating their higher cytotoxicity and potency in killing the cancer cells at low concentrations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priyanka Khanvilkar
- Department of Chemistry, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Soumya R Dash
- Physical and Material Chemistry Division, CSIR-NCL Pune, Pune, India
| | - Alisagar Vohra
- Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Ranjitsinh Devkar
- Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Debjani Chakraborty
- Department of Chemistry, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
4
|
Lai H, Chen K, Li Y, Wu C, Hu C, Lin C, Huang J. Thermal isomerization of ruthenium hydride compounds containing asymmetric bidentate pyrrole‐imine ligands. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201900156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hsuan‐Ting Lai
- Department of ChemistryNational Changhua University of Education Changhua Taiwan
| | - Kun‐Hao Chen
- Department of ChemistryNational Changhua University of Education Changhua Taiwan
| | - Yong‐Jie Li
- Department of ChemistryNational Changhua University of Education Changhua Taiwan
| | - Cheng‐Hsien Wu
- Department of ChemistryNational Changhua University of Education Changhua Taiwan
| | - Ching‐Han Hu
- Department of ChemistryNational Changhua University of Education Changhua Taiwan
| | - Chia‐Her Lin
- Department of ChemistryChung‐Yuan Christian University Chun‐Li Taiwan
| | - Jui‐Hsien Huang
- Department of ChemistryNational Changhua University of Education Changhua Taiwan
| |
Collapse
|