1
|
Ferreira-Baptista C, Ferreira R, Fernandes MH, Gomes PS, Colaço B. Influence of the Anatomical Site on Adipose Tissue-Derived Stromal Cells' Biological Profile and Osteogenic Potential in Companion Animals. Vet Sci 2023; 10:673. [PMID: 38133224 PMCID: PMC10747344 DOI: 10.3390/vetsci10120673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Adipose tissue-derived stromal cells (ADSCs) have generated considerable interest in the field of veterinary medicine, particularly for their potential in therapeutic strategies focused on bone regeneration. These cells possess unique biological characteristics, including their regenerative capacity and their ability to produce bioactive molecules. However, it is crucial to recognize that the characteristics of ADSCs can vary depending on the animal species and the site from which they are derived, such as the subcutaneous and visceral regions (SCAT and VAT, respectively). Thus, the present work aimed to comprehensively review the different traits of ADSCs isolated from diverse anatomical sites in companion animals, i.e., dogs, cats, and horses, in terms of immunophenotype, morphology, proliferation, and osteogenic differentiation potential. The findings indicate that the immunophenotype, proliferation, and osteogenic potential of ADSCs differ according to tissue origin and species. Generally, the proliferation rate is higher in VAT-derived ADSCs in dogs and horses, whereas in cats, the proliferation rate appears to be similar in both cells isolated from SCAT and VAT regions. In terms of osteogenic differentiation potential, VAT-derived ADSCs demonstrate the highest capability in cats, whereas SCAT-derived ADSCs exhibit superior potential in horses. Interestingly, in dogs, VAT-derived cells appear to have greater potential than those isolated from SCAT. Within the VAT, ADSCs derived from the falciform ligament and omentum show increased osteogenic potential, compared to cells isolated from other anatomical locations. Consequently, considering these disparities, optimizing isolation protocols becomes pivotal, tailoring them to the specific target species and therapeutic aims, and judiciously selecting the anatomical site for ADSC isolation. This approach holds promise to enhance the efficacy of ADSCs-based bone regenerative therapies.
Collapse
Affiliation(s)
- Carla Ferreira-Baptista
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (M.H.F.); (P.S.G.)
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
- REQUIMTE/LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Rita Ferreira
- REQUIMTE/LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Maria Helena Fernandes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (M.H.F.); (P.S.G.)
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
| | - Pedro Sousa Gomes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (M.H.F.); (P.S.G.)
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
| | - Bruno Colaço
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
- CECAV—Animal and Veterinary Research Centre UTAD, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
2
|
Ferreira‐Baptista C, Queirós A, Ferreira R, Fernandes MH, Gomes PS, Colaço B. Retinoic acid induces the osteogenic differentiation of cat adipose tissue-derived stromal cells from distinct anatomical sites. J Anat 2023; 242:277-288. [PMID: 36056547 PMCID: PMC9877480 DOI: 10.1111/joa.13758] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/07/2022] [Accepted: 08/16/2022] [Indexed: 02/01/2023] Open
Abstract
Mesenchymal stromal cells-based regenerative orthopedic therapies have been used in cats as a promising and innovative therapeutic approach to enhance the repair of bone defects. Adipose tissue-derived stromal cells (ADSCs) can be obtained from two main sites-subcutaneous and visceral-with established differences regarding structure, composition, cell content, and functionality. However, in cats, to the best of the authors' knowledge, no studies have been conducted to compare the functional activity of the ADSCs isolated from the two sites, and the impact of these differences on the induced osteogenic potential. Additionally, retinoic acid has been recently regarded as a new osteogenic inducer within cells of distinct species, with undisclosed functionality on cat-derived cell populations. Thus, the present study aimed to evaluate the functional activity of ADSCs isolated from the subcutaneous and visceral adipose sites (SCAT and VAT, respectively) of the cat, as well as the effects of two osteogenic-inducing conditions-the classic dexamethasone, β-glycerophosphate and ascorbic acid-supplemented media (Dex + β + AAM), and Retinoic Acid-supplemented media (RAM). The adipose tissue of subcutaneous and visceral origin was isolated, characterized, and ADSCs were isolated and grown in the presence of the two osteogenic-inducing conditions, and characterized in terms of proliferation, metabolic activity, morphology, and osteogenic activity. Our results demonstrated a distinct biological profile of the two adipose tissue sites regarding cell size, vascularization, and morphology. Further, osteogenic-induced ADSCs from both sites presented an increased expression of alkaline phosphatase activity (ALP) and cytochemical staining, as compared with control. Overall, RAM induced higher levels of ALP activity than Dex + β + AAM, supporting an increased osteogenic activation. Additionally, VAT was the tissue with the best osteogenic potential, showing higher levels of ALP expression, particularly with RAM. In conclusion, different characteristics were found between the two adipose tissue sites-SCAT and VAT, which probably reflect the differences found in the functionality of isolated ADSCs from both tissues. Furthermore, for cat, VAT shows a greater osteogenic-inductive capacity than SCAT, particularly with RAM, which can be of therapeutic relevance for regenerative medicine applications.
Collapse
Affiliation(s)
- Carla Ferreira‐Baptista
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB)University of Trás‐os‐Montes e Alto Douro (UTAD)Vila RealPortugal
- BoneLab ‐ Laboratory for Bone Metabolism and Regeneration, Faculty of Dental MedicineUniversity of PortoPortoPortugal
- REQUIMTE/LAQVUniversity of PortoPortoPortugal
- REQUIMTE/LAQVDepartment of Chemistry University of AveiroAveiroPortugal
| | | | - Rita Ferreira
- REQUIMTE/LAQVDepartment of Chemistry University of AveiroAveiroPortugal
| | - Maria Helena Fernandes
- BoneLab ‐ Laboratory for Bone Metabolism and Regeneration, Faculty of Dental MedicineUniversity of PortoPortoPortugal
- REQUIMTE/LAQVUniversity of PortoPortoPortugal
| | - Pedro Sousa Gomes
- BoneLab ‐ Laboratory for Bone Metabolism and Regeneration, Faculty of Dental MedicineUniversity of PortoPortoPortugal
- REQUIMTE/LAQVUniversity of PortoPortoPortugal
| | - Bruno Colaço
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB)University of Trás‐os‐Montes e Alto Douro (UTAD)Vila RealPortugal
- REQUIMTE/LAQVUniversity of PortoPortoPortugal
- CECAV—Animal and Veterinary Research Centre UTADUniversity of Trás‐os‐Montes and Alto DouroVila RealPortugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS)Vila RealPortugal
| |
Collapse
|
3
|
The Osteogenic Potential of Falciform Ligament-Derived Stromal Cells-A Comparative Analysis between Two Osteogenic Induction Programs. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120810. [PMID: 36551016 PMCID: PMC9774535 DOI: 10.3390/bioengineering9120810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Mesenchymal stromal cells (MSCs) have gained special relevance in bone tissue regenerative applications. MSCs have been isolated from different depots, with adipose tissue being acknowledged as one of the most convenient sources, given the wide availability, high cellular yield, and obtainability. Recently, the falciform ligament (FL) has been regarded as a potential depot for adipose tissue-derived stromal cells (FL-ADSCs) isolation. Nonetheless, the osteogenic capability of FL-ADSCs has not been previously characterized. Thus, the present study aimed the detailed characterization of FL-ADSCs' functionality upon osteogenic induction through a classic (dexamethasone-based-DEX) or an innovative strategy with retinoic acid (RA) in a comparative approach with ADSCs from a control visceral region. Cultures were characterized for cell proliferation, metabolic activity, cellular morphology, fluorescent cytoskeletal and mitochondrial organization, and osteogenic activity-gene expression analysis and cytochemical staining. FL-derived populations expressed significantly higher levels of osteogenic genes and cytochemical markers, particularly with DEX induction, as compared to control ADSCs that were more responsive to RA. FL-ADSCs were identified as a potential source for bone regenerative applications, given the heightened osteogenic functionality. Furthermore, data highlighted the importance of the selection of the most adequate osteogenic-inducing program concerning the specificities of the basal cell population.
Collapse
|
4
|
Danylovych HV, Danylovych YV, Bohach TV, Hurska VT, Kosterin SO. Sources and regulation of nitric oxide synthesis in uterus smooth muscle cells. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.04.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|