1
|
Fonseca-López D, Lozano JD, Macías MA, Muñoz-Castro Á, MacLeod-Carey D, Nagles E, Hurtado J. Biological Activity of Complexes Involving Nitro-Containing Ligands and Crystallographic-Theoretical Description of 3,5-DNB Complexes. Int J Mol Sci 2024; 25:6536. [PMID: 38928242 PMCID: PMC11203423 DOI: 10.3390/ijms25126536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Drug resistance in infectious diseases developed by bacteria and fungi is an important issue since it is necessary to further develop novel compounds with biological activity that counteract this problem. In addition, new pharmaceutical compounds with lower secondary effects to treat cancer are needed. Coordination compounds appear to be accessible and promising alternatives aiming to overcome these problems. In this review, we summarize the recent literature on coordination compounds based on nitrobenzoic acid (NBA) as a ligand, its derivatives, and other nitro-containing ligands, which are widely employed owing to their versatility. Additionally, an analysis of crystallographic data is presented, unraveling the coordination preferences and the most effective crystallization methods to grow crystals of good quality. This underscores the significance of elucidating crystalline structures and utilizing computational calculations to deepen the comprehension of the electronic properties of coordination complexes.
Collapse
Affiliation(s)
- Daniela Fonseca-López
- Grupo de Investigación en Química Inorgánica, Catálisis y Bioinorgánica, Departamento de Química, Universidad de los Andes, Bogotá 111711, Colombia;
| | - Johan D. Lozano
- Crystallography and Chemistry of Materials, Departamento de Química, Universidad de los Andes, Bogotá 111711, Colombia; (J.D.L.); (M.A.M.)
| | - Mario A. Macías
- Crystallography and Chemistry of Materials, Departamento de Química, Universidad de los Andes, Bogotá 111711, Colombia; (J.D.L.); (M.A.M.)
| | - Álvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago 8420524, Chile;
| | - Desmond MacLeod-Carey
- Inorganic Chemistry and Molecular Materials Laboratory, Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, Santiago 8910124, Chile;
| | - Edgar Nagles
- Facultad de Química e Ing. Química, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| | - John Hurtado
- Grupo de Investigación en Química Inorgánica, Catálisis y Bioinorgánica, Departamento de Química, Universidad de los Andes, Bogotá 111711, Colombia;
| |
Collapse
|
2
|
Usul SK, Lüleci HB, Ergüden B, Aslan A. Antimicrobial Properties of Azole Functional Silica Nanocomposites. ChemistrySelect 2023; 8. [DOI: 10.1002/slct.202303059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/30/2023] [Indexed: 07/26/2024]
Abstract
AbstractSilica nanoparticles have become more attractive due to their surface characteristics, versatility, biocompatibility, and morphological and physicochemical properties. For this reason, their use in biological applications has been expanding in recent years. In this study, after functionalizing silica nanoparticles with glycidyl methacrylate monomer, nanocomposites were formed by attaching 1,2,4‐Triazole, 3‐Amino‐1,2,4‐Triazole, and 5‐Aminotetrazole particles to the surface. Notably, the thermal degradation temperature of all nanocomposites was determined to surpass 200 °C. However, it is worth mentioning that despite the favorable water uptake rates observed for MT(7.64 %) and M3(5.98 %) nanocomposites, MT did not exhibit resistance against Fenton chemicals and experienced degradation. It is important to note that the material loss in M3 nanocomposites is minimal, measuring less than 1 %. In order to reveal the antifungal and antibacterial activity of the synthesized nanoparticles, Minimum inhibitory concentration(MIC), as well as Minimum Fungicidal Concentration(MFC) against the yeast strain Saccharomyces cerevisiae, and Minimum Bactericidal Concentration(MBC) values against bacteria strains, Staphylococcus aureus, Enterococcus faecalis and Escherichia coli were determined. The findings of the study indicated that MP, M3, and M5 nanocomposites displayed a moderate level of antibacterial activity. It is noteworthy, however, that the antibacterial activity diminished when triazole was combined with MP at concentrations exceeding 100 mg/mL.
Collapse
Affiliation(s)
- Sedef Kaptan Usul
- Department of Bioengineering Gebze Technical University Kocaeli Turkey
| | | | - Bengü Ergüden
- Department of Bioengineering Gebze Technical University Kocaeli Turkey
| | - Ayşe Aslan
- Department of Bioengineering Gebze Technical University Kocaeli Turkey
- Institute of Energy Technologies Gebze Technical University Kocaeli Turkey
| |
Collapse
|
3
|
Bertašiūtė M, Kavaliauskas P, Vaickelionienė R, Grybaitė B, Petraitis V, Petraitienė R, Naing E, Garcia A, Šiugždaitė J, Lelešius R, Mickevičius V. Synthesis of 1-(2-Hydroxyphenyl)- and (3,5-Dichloro-2-hydroxyphenyl)-5-oxopyrrolidine-3-carboxylic Acid Derivatives as Promising Scaffolds for the Development of Novel Antimicrobial and Anticancer Agents. Int J Mol Sci 2023; 24:ijms24097966. [PMID: 37175673 PMCID: PMC10178429 DOI: 10.3390/ijms24097966] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Increasing antimicrobial resistance among Gram-positive pathogens and pathogenic fungi remains one of the major public healthcare threats. Therefore, novel antimicrobial candidates and scaffolds are critically needed to overcome resistance in Gram-positive pathogens and drug-resistant fungal pathogens. In this study, we explored 1-(2-hydroxyphenyl)-5-oxopyrrolidine-3-carboxylic acid and its 3,5-dichloro-2-hydroxyphenyl analogue for their in vitro antimicrobial activity against multidrug-resistant pathogens. The compounds showed structure-dependent antimicrobial activity against Gram-positive pathogens (S. aureus, E. faecalis, C. difficile). Compounds 14 and 24b showed promising activity against vancomycin-intermediate S. aureus strains, and favorable cytotoxic profiles in HSAEC-1 cells, making them attractive scaffolds for further development. 5-Fluorobenzimidazole, having a 3,5-dichloro-2-hydroxyphenyl substituent, was found to be four-fold, and hydrazone, with a thien-2-yl fragment, was two-fold stronger than clindamycin against methicillin resistant S. aureus TCH 1516. Moreover, hydrazone, bearing a 5-nitrothien-2-yl moiety, showed promising activity against three tested multidrug-resistant C. auris isolates representing major genetic lineages (MIC 16 µg/mL) and azole-resistant A. fumigatus strains harboring TR34/L98H mutations in the CYP51A gene. The anticancer activity characterization demonstrated that the 5-fluorobenzimidazole derivative with a 3,5-dichloro-2-hydroxyphenyl substituent showed the highest anticancer activity in an A549 human pulmonary cancer cell culture model. Collectively these results demonstrate that 1-(2-hydroxyphenyl)-5-oxopyrrolidine-3-carboxylic acid derivatives could be further explored for the development of novel candidates targeting Gram-positive pathogens and drug-resistant fungi.
Collapse
Affiliation(s)
- Monika Bertašiūtė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, 50254 Kaunas, Lithuania
| | - Povilas Kavaliauskas
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, 50254 Kaunas, Lithuania
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
- Institute for Genome Sciences, School of Medicine, University of Maryland Baltimore School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birštono Str. 38A, 59116 Prienai, Lithuania
- Biological Research Center, Lithuanian University of Health Sciences, Tilžės St. 18, 47181 Kaunas, Lithuania
| | - Rita Vaickelionienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, 50254 Kaunas, Lithuania
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, 50254 Kaunas, Lithuania
| | - Vidmantas Petraitis
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birštono Str. 38A, 59116 Prienai, Lithuania
- Biological Research Center, Lithuanian University of Health Sciences, Tilžės St. 18, 47181 Kaunas, Lithuania
| | - Rūta Petraitienė
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birštono Str. 38A, 59116 Prienai, Lithuania
| | - Ethan Naing
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
| | - Andrew Garcia
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
| | - Jūratė Šiugždaitė
- Department of Pathobiology, Lithuanian University of Health Sciences, Tilžės St. 18, 47181 Kaunas, Lithuania
| | - Raimundas Lelešius
- Department of Pathobiology, Lithuanian University of Health Sciences, Tilžės St. 18, 47181 Kaunas, Lithuania
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, 50254 Kaunas, Lithuania
| |
Collapse
|
4
|
Preparation, Characterization of New Antimicrobial Antitumor Hybrid Semi-Organic Single Crystals of Proline Amino Acid Doped by Silver Nanoparticles. Biomedicines 2023; 11:biomedicines11020360. [PMID: 36830897 PMCID: PMC9952970 DOI: 10.3390/biomedicines11020360] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Proline is water soluble amino acid extensively used in drug delivery systems. Compounds of cobalt (Co) transition metal have potent antimicrobial and anticancer activities. However, a drug delivery system combining proline cobalt is not reported yet. For the first time, new hybrid semi-organic single crystals of proline cobalt chloride (PCC) are prepared. The novelty of the article is also that single crystal proline cobalt chloride showed potent antimicrobial and antitumor activity. Doping of PCC by Ag0NPs significantly increased these biological activities. The anisotropic magnetic properties of single crystals can mitigate the cytotoxicity of Ag0NPs on normal cells. Silver nanoparticles (Ag0NPs) improved the crystal habits and physicochemical properties. Ag0NPs showed the best performance, paramagnetic materials n-type semiconductors due to delocalized excess electrons of Ag0NPs incorporated in the crystal lattice interstitially. Crystals have high absorptivity for UV-radiation electromagnetic radiation. Ag0NPs enhanced AC electrical conductivity up to 2.3 × 104 Ω cm-1 due to high electron density. Proline doped crystals are obtained in good purity as triclinic unit cell with having anisotropic magnetism. PCCAg0NPs crystal exhibited: high antimicrobial activities to various bacterial and fungal species, inhibition zone (mm): 21, 25, 24, 26, 30, 28, 12, and 46 for S. aureus, E. faecalis, S. typhi, E. coli, P. aerugino, K. pneumoniae, A. braselienses, and C. albicans, respectively, in comparison to ciprofloxacin antibiotic (23, 0, 26, 26, 25, 0, 0, 0) for the same tested species, respectively; higher cytotoxicity against breast cancer cells (IC50 22.1 μM) than the reference drug cisplatin (IC50 11.7 μM); and lower cytotoxicity to normal healthy lung cells MRC-5, (IC50 145.5 μM) than cisplatin (IC50 30.2 μM). Hence, this crystal is a candidate for chemotherapy of breast cancer.
Collapse
|
5
|
Koshenskova KA, Lutsenko IA, Nelyubina YV, Primakov PV, Aliev TM, Bekker OB, Khoroshilov AV, Mantrov SN, Kiskin MA, Eremenko IL. Copper(II) Complexes with 5-Nitro-2-furoic Acid: Synthesis, Structure, Thermal Properties, and Biological Activity. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s003602362270005x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
S S, Chandran H, G R, S N, Kumar M, Krishnan MA, Kulkarni NV, Senthurpandi D, Contractor SS, Arakera SB. First row transition metal complexes of bis(3,5-dimethyl pyrazolyl)methane: Synthesis, molecular structure and antibacterial properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Synthesis and molecular structure of half-sandwich ruthenium(II) complexes containing pyrazolyl ligands: Solvent induced geometrical change in κ2-scorpionate supported complex. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Lutsenko IA, Baravikov DE, Koshenskova KA, Kiskin MA, Nelyubina YV, Primakov PV, Voronina YK, Garaeva VV, Aleshin DA, Aliev TM, Danilenko VN, Bekker OB, Eremenko IL. What are the prospects for using complexes of copper(ii) and zinc(ii) to suppress the vital activity of Mycolicibacterium smegmatis? RSC Adv 2022; 12:5173-5183. [PMID: 35425585 PMCID: PMC8981969 DOI: 10.1039/d1ra08555g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
New complexes of zinc(ii) and copper(ii) with 2-furoic acid (Hfur), acetic acids and N-donor ligands with the compositions [Zn2(fur)4] n (1), [Zn2(fur)4(NH2py)2] (2, NH2py = 3-aminopyridine), [Zn(fur)2(neoc)] (3, neoc = 2,9-dimethyl-1,10-phenantroline), [Zn(OAc)2(neoc)] (4, OAc = acetat-anion), and [Cu(fur)2(neoc)(H2O)] (5) were synthesized. The structures of the compounds were established by single crystal X-ray diffraction analysis. Complexes 1 and 2 are binuclear; whereas 3-5 are mononuclear. The stabilization of supramolecular architectures in crystals for compounds 1-5 occurs due to π-π-bonding between heterocycles and hydrogen interactions that provide good solubility in aqueous solutions. The stability of the complexes upon dissolution in 5% dextrose and 0.9% NaCl was confirmed by UV-vis spectroscopic and NMR (1H) data. The study of in vitro biological activity was carried out against the non-pathogenic strain of Mycolicibacterium smegmatis that is a model for M. tuberculosis. The synergistic effect of ligands is observed for complexes 3-5 and is characterized by an increase in the biological activity values. On passage from Zn2+ to Cu2+ complexes, the biological activity increases and the maximum effect is observed for compound [Cu(fur)2(phen)]. Analysis of the transcriptomic profiles of the M. smegmatis mc 2 155 strain under the pressure of the copper complex [Cu(fur)2(phen)] made it possible to isolate 185 genes, one quarter of which are associated with the compensation of iron deficiency in the bacterial strain. Genes associated with the transport and metabolism of heavy metals, biosynthesis of fatty and amino acids, biodegradation and transport of urea were also isolated.
Collapse
Affiliation(s)
- Irina A Lutsenko
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31, 119991 GSP-1 Moscow Russian Federation +7-495-952-1279
| | - Dmitry E Baravikov
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31, 119991 GSP-1 Moscow Russian Federation +7-495-952-1279
- D.I. Mendeleev University of Chemical Technology of Russia M. Pirogovskaya str. 1a 119435 Moscow Russian Federation
| | - Kseniya A Koshenskova
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31, 119991 GSP-1 Moscow Russian Federation +7-495-952-1279
- D.I. Mendeleev University of Chemical Technology of Russia M. Pirogovskaya str. 1a 119435 Moscow Russian Federation
| | - Mikhail A Kiskin
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31, 119991 GSP-1 Moscow Russian Federation +7-495-952-1279
| | - Yulia V Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences Vavilova str. 28 119991 Moscow Russian Federation
| | - Petr V Primakov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences Vavilova str. 28 119991 Moscow Russian Federation
| | - Yulia K Voronina
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31, 119991 GSP-1 Moscow Russian Federation +7-495-952-1279
| | - Veronika V Garaeva
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences Vavilova str. 28 119991 Moscow Russian Federation
- Moscow Institute of Physics and Technology 9 Institutskiy per, Dolgoprudny Moscow Region 141701 Russian Federation
| | - Dmytry A Aleshin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences Vavilova str. 28 119991 Moscow Russian Federation
| | - Teimur M Aliev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences Vavilova str. 28 119991 Moscow Russian Federation
| | - Valery N Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences Gubkina 3119333 Moscow Russian Federation
| | - Olga B Bekker
- Vavilov Institute of General Genetics, Russian Academy of Sciences Gubkina 3119333 Moscow Russian Federation
| | - Igor L Eremenko
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31, 119991 GSP-1 Moscow Russian Federation +7-495-952-1279
| |
Collapse
|
9
|
Malūkaitė D, Grybaitė B, Vaickelionienė R, Vaickelionis G, Sapijanskaitė-Banevič B, Kavaliauskas P, Mickevičius V. Synthesis of Novel Thiazole Derivatives Bearing β-Amino Acid and Aromatic Moieties as Promising Scaffolds for the Development of New Antibacterial and Antifungal Candidates Targeting Multidrug-Resistant Pathogens. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010074. [PMID: 35011308 PMCID: PMC8746625 DOI: 10.3390/molecules27010074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022]
Abstract
Rapidly growing antimicrobial resistance among clinically important bacterial and fungal pathogens accounts for high morbidity and mortality worldwide. Therefore, it is critical to look for new small molecules targeting multidrug-resistant pathogens. Herein, in this paper we report a synthesis, ADME properties, and in vitro antimicrobial activity characterization of novel thiazole derivatives bearing β-amino acid, azole, and aromatic moieties. The in silico ADME characterization revealed that compounds 1-9 meet at least 2 Lipinski drug-like properties while cytotoxicity studies demonstrated low cytotoxicity to Vero cells. Further in vitro antimicrobial activity characterization showed the selective and potent bactericidal activity of 2a-c against Gram-positive pathogens (MIC 1-64 µg/mL) with profound activity against S. aureus (MIC 1-2 µg/mL) harboring genetically defined resistance mechanisms. Furthermore, the compounds 2a-c exhibited antifungal activity against azole resistant A. fumigatus, while only 2b and 5a showed antifungal activity against multidrug resistant yeasts including Candida auris. Collectively, these results demonstrate that thiazole derivatives 2a-c and 5a could be further explored as a promising scaffold for future development of antifungal and antibacterial agents targeting highly resistant pathogenic microorganisms.
Collapse
Affiliation(s)
- Dovilė Malūkaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (D.M.); (B.G.); (G.V.); (B.S.-B.); (P.K.); (V.M.)
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (D.M.); (B.G.); (G.V.); (B.S.-B.); (P.K.); (V.M.)
| | - Rita Vaickelionienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (D.M.); (B.G.); (G.V.); (B.S.-B.); (P.K.); (V.M.)
- Correspondence: ; Tel.: +370-6001-6958
| | - Giedrius Vaickelionis
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (D.M.); (B.G.); (G.V.); (B.S.-B.); (P.K.); (V.M.)
| | - Birutė Sapijanskaitė-Banevič
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (D.M.); (B.G.); (G.V.); (B.S.-B.); (P.K.); (V.M.)
| | - Povilas Kavaliauskas
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (D.M.); (B.G.); (G.V.); (B.S.-B.); (P.K.); (V.M.)
- Weill Cornell Medicine of Cornell University, 527 East 68th Street, New York, NY 10065, USA
- Institute for Genome Sciences, School of Medicine, University of Maryland, 655 W. Baltimore Street, Baltimore, MD 21201, USA
- Biological Research Center, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
- Institute of Infectious Diseases and Pathogenic Microbiology, Birštono Str. 38A, LT-59116 Prienai, Lithuania
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (D.M.); (B.G.); (G.V.); (B.S.-B.); (P.K.); (V.M.)
| |
Collapse
|
10
|
Abd El-Hameed RH, Sayed AI, Mahmoud Ali S, Mosa MA, Khoder ZM, Fatahala SS. Synthesis of novel pyrroles and fused pyrroles as antifungal and antibacterial agents. J Enzyme Inhib Med Chem 2021; 36:2183-2198. [PMID: 34602000 PMCID: PMC8491725 DOI: 10.1080/14756366.2021.1984904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
Pyrroles and its fused forms possess antimicrobial activities, they can easily interact with biomolecules of living systems. A series of substituted pyrroles, and its fused pyrimidines and triazines forms have been synthesised, all newly synthesised compound structures were confirmed by spectroscopic analysis. Generally, the compounds inhibited growth of some important human pathogens, the best effect was given by: 2a, 3c, 4d on Gram-positive bacteria and was higher on yeast (C. albicans), by 5c on Gram-negative bacteria and by 5a then 3c on filamentous fungi (A. fumigatus and F. oxysporum). Such results present good antibacterial and antifungal potential candidates to help overcome the global problem of antibiotic resistance and opportunistic infections outbreak. Compound 3c gave the best anti-phytopathogenic effect at a 50-fold lower concentration than Kocide 2000, introducing a safe commercial candidate for agricultural use. The effect of the compounds on DNA was monitored to detect the mode of action.
Collapse
Affiliation(s)
- Rania Helmy Abd El-Hameed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo, Egypt
| | - Amira Ibrahim Sayed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo, Egypt
| | - Shima Mahmoud Ali
- Department of Chemistry, The state University of New York at Buffalo, New York, NY, USA
| | - Mohamed A. Mosa
- Microbiology and Immunology Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo, Egypt
| | - Zainab M. Khoder
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo, Egypt
- Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Samar Said Fatahala
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo, Egypt
| |
Collapse
|
11
|
Kotrange H, Najda A, Bains A, Gruszecki R, Chawla P, Tosif MM. Metal and Metal Oxide Nanoparticle as a Novel Antibiotic Carrier for the Direct Delivery of Antibiotics. Int J Mol Sci 2021; 22:ijms22179596. [PMID: 34502504 PMCID: PMC8431128 DOI: 10.3390/ijms22179596] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/23/2022] Open
Abstract
In addition to the benefits, increasing the constant need for antibiotics has resulted in the development of antibiotic bacterial resistance over time. Antibiotic tolerance mainly evolves in these bacteria through efflux pumps and biofilms. Leading to its modern and profitable uses, emerging nanotechnology is a significant field of research that is considered as the most important scientific breakthrough in recent years. Metal nanoparticles as nanocarriers are currently attracting a lot of interest from scientists, because of their wide range of applications and higher compatibility with bioactive components. As a consequence of their ability to inhibit the growth of bacteria, nanoparticles have been shown to have significant antibacterial, antifungal, antiviral, and antiparasitic efficacy in the battle against antibiotic resistance in microorganisms. As a result, this study covers bacterial tolerance to antibiotics, the antibacterial properties of various metal nanoparticles, their mechanisms, and the use of various metal and metal oxide nanoparticles as novel antibiotic carriers for direct antibiotic delivery.
Collapse
Affiliation(s)
- Harshada Kotrange
- Department of Food Technology and Nutrition, Lovely Professional University, Jalandhar 144411, Punjab, India; (H.K.); (M.M.T.)
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, Doświadczalna Street, 20-280 Lublin, Poland;
- Correspondence: (A.N.); (P.C.)
| | - Aarti Bains
- Department of Biotechnology, CT Institute of Pharmaceutical Sciences, South Campus, Jalandhar 144020, Punjab, India;
| | - Robert Gruszecki
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, Doświadczalna Street, 20-280 Lublin, Poland;
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Jalandhar 144411, Punjab, India; (H.K.); (M.M.T.)
- Correspondence: (A.N.); (P.C.)
| | - Mansuri M. Tosif
- Department of Food Technology and Nutrition, Lovely Professional University, Jalandhar 144411, Punjab, India; (H.K.); (M.M.T.)
| |
Collapse
|
12
|
Synthetic strategies, crystal structures and biological activities of metal complexes with the members of azole family: A review. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
Lutsenko IA, Kiskin MA, Koshenskova KA, Primakov PV, Khoroshilov AV, Bekker OB, Eremenko IL. Synthesis, structure, and in vitro evaluation of biological activity of CuII furancarboxylates against the non-pathogenic M. smegmatis strain. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3109-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
14
|
Lutsenko IA, Yambulatov DS, Kiskin MA, Nelyubina YV, Primakov PV, Bekker OB, Sidorov AA, Eremenko IL. Mononuclear Cu(II), Zn(II), and Co(II) Complexes with 2-Furoate Anions and 2,2'-Bpy: Synthesis, Structure, and Biological Activity. RUSS J COORD CHEM+ 2020. [DOI: 10.1134/s1070328420120040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Preparation of a Hybrid Membrane from Whey Protein Fibrils and Activated Carbon to Remove Mercury and Chromium from Water. MEMBRANES 2020; 10:membranes10120386. [PMID: 33266234 PMCID: PMC7760280 DOI: 10.3390/membranes10120386] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Accepted: 11/25/2020] [Indexed: 12/07/2022]
Abstract
Water contamination by mercury and chromium has a direct effect in human health. A promising technology to remove heavy metals by membrane filtration is the use of hybrid membranes produced with whey protein fibrils (WPF) and activated carbon (AC). In this study, the best conditions to produce WPF by heat treatment were determined to maximize the removal of mercury and chromium from water using a central composed design. The results indicated that the best conditions to prepare WPF were 74 °C, 7 h and 3.8% of whey protein with adsorption capacities of 25 and 18 mg/g and removal efficiencies of 81 and 57% for mercury and chromium, respectively. WPF and AC were used to prepare a hybrid membrane that was characterized using transmission electron microscopy, atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller surface area measurements. Batch filtration experiments were performed with the hybrid membrane for chromium and mercury removal at 25, 50 and 100 mg/L to determine its adsorption capacities. A high performance of the hybrid membrane was demonstrated removing efficiently mercury and chromium from water, thus supporting more than ten filtration cycles.
Collapse
|
16
|
Lutsenko IA, Yambulatov DS, Kiskin MA, Nelyubina YV, Primakov PV, Bekker OB, Levitskiy OA, Magdesieva TV, Imshennik VK, Maksimov YV, Sidorov AA, Danilenko VN, Eremenko IL. Improved In Vitro Antimycobacterial Activity of Trinuclear Complexes Cobalt(II,III) and Iron(III) with 2‐Furoic Acid against
Mycolicibacterium smegmatis. ChemistrySelect 2020. [DOI: 10.1002/slct.202003101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Irina A. Lutsenko
- N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| | - Dmitriy S. Yambulatov
- N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| | - Mikhail A. Kiskin
- N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| | - Yulia V. Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilova Str. 28 119991 Moscow Russian Federation
| | - Petr V. Primakov
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilova Str. 28 119991 Moscow Russian Federation
| | - Olga B. Bekker
- Vavilov Institute of General Genetics of the Russian Academy of Sciences Gubkina Str. 3 119991 Moscow Russian Federation
| | - Oleg A. Levitskiy
- Lomonosov Moscow State University Leninskie Gory 1/3 119991 Moscow Russian Federation
| | - Tatiana V. Magdesieva
- Lomonosov Moscow State University Leninskie Gory 1/3 119991 Moscow Russian Federation
| | - Vladimir K. Imshennik
- N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences Kosygina Str. 4 119991 Moscow Russian Federation
| | - Yurii V. Maksimov
- N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences Kosygina Str. 4 119991 Moscow Russian Federation
| | - Aleksey A. Sidorov
- N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| | - Valery N. Danilenko
- Vavilov Institute of General Genetics of the Russian Academy of Sciences Gubkina Str. 3 119991 Moscow Russian Federation
| | - Igor L. Eremenko
- N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilova Str. 28 119991 Moscow Russian Federation
| |
Collapse
|
17
|
Rehman S, Gunday ST, Alsalem ZH, Bozkurt A. Synthesis and Characterization of Novel Azole Functionalized Poly(glycidyl methacrylate)s for Antibacterial and Anticandidal Activity. Curr Org Synth 2020; 16:1002-1009. [PMID: 31984881 DOI: 10.2174/1385272823666190828112113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Presently, rise in the infectious diseases and subsequent development of drug resistance, is a global threat to human health. However, much efforts are being made by scientists, to develop novel antimicrobials, and also to improve the efficacy of available drugs, in order to combat the lifethreatening infections. OBJECTIVE Synthesis and characterization of azole functional polymer systems for antimicrobial applications. MATERIALS AND METHODS Poly(glycidyl methacrylate) (PGMA), was produced by free radical polymerization of the monomer, glycidyl methacrylate (GMA). Different azole functional PGMAs were produced, through chemical modification with imidazole (Im), 1H-1,2,4-triazole (Tri) and 3-amino-1,2,4-triazole (ATri), to get PGMA-Imi, PGMA-Tri and PGMA-ATri, respectively. The structure was confirmed by Fourier transform infrared spectroscopy (FT-IR), thermal properties were investigated by Thermogravimetric Analysis (TGA), and surface morphology was studied by scanning electron microscopy (SEM). Newly synthesized derivatives were further explored, for their antibacterial and anticandidal activities. RESULTS All the three synthesized and characterized derivatives, displayed a significant activity against the tested microorganisms. The minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC), recorded against Staphylococcus aureus (S. aureus), was 0.5 &1mg/ml for PGMA-Imi, followed by PGMA-ATri & PGMA-Tri, respectively, followed by E. coli with, 1 & 2 mg/ml, 4 & 8 mg/ml, 4& 8 mg/ml, respectively, whereas the maximum MIC & MFC was recorded against C. albicans i.e., 8 & 16 mg/ml, 4 & 8 mg/ml ,4 & 8 mg/ml for PGMA-ATri, PGMA-Tri, PGMA-Imi, respectively. CONCLUSION In the present work, we report on the state-of-the-art, azole functional polymer systems for antimicrobial applications. These findings suggest that the synthesized azole functional polymer films have antimicrobial properties, which could be potential candidates for coating applications in the biomedical and wastewater treatment field.
Collapse
Affiliation(s)
- Suriya Rehman
- Epidemic Disease Research Department, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Seyda T Gunday
- Department of Biophysics, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Zainab H Alsalem
- Epidemic Disease Research Department, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ayhan Bozkurt
- Department of Biophysics, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
18
|
Dorababu A. Pharmacology Profile of Recently Developed Multi‐Functional Azoles; SAR‐Based Predictive Structural Modification. ChemistrySelect 2020. [DOI: 10.1002/slct.202000294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Atukuri Dorababu
- Department of Studies in ChemistrySRMPP Govt. First Grade College Huvinahadagali 583219, Karnataka India
| |
Collapse
|
19
|
Lutsenko IA, Baravikov DE, Kiskin MA, Nelyubina YV, Primakov PV, Bekker OB, Khoroshilov AV, Sidorov AA, Eremenko IL. Bioisostere Modifications of Cu2+ and Zn2+ with Pyromucic Acid Anions and N-Donors: Synthesis, Structures, Thermal Properties, and Biological Activity. RUSS J COORD CHEM+ 2020. [DOI: 10.1134/s1070328420060056] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Anwar A, Yi YP, Fatima I, Khan KM, Siddiqui R, Khan NA, Anwar A. Antiamoebic activity of synthetic tetrazoles against Acanthamoeba castellanii belonging to T4 genotype and effects of conjugation with silver nanoparticles. Parasitol Res 2020; 119:1943-1954. [PMID: 32385711 DOI: 10.1007/s00436-020-06694-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/15/2020] [Indexed: 01/16/2023]
Abstract
Acanthamoeba causes diseases such as Acanthamoeba keratitis (AK) which leads to permanent blindness and granulomatous Acanthamoeba encephalitis (GAE) where there is formation of granulomas in the brain. Current treatments such as chlorhexidine, diamidines, and azoles either exhibit undesirable side effects or require immediate and prolonged treatment for the drug to be effective or prevent relapse. Previously, antifungal drugs amphotericin B, nystatin, and fluconazole-conjugated silver with nanoparticles have shown significantly increased activity against Acanthamoeba castellanii. In this study, two functionally diverse tetrazoles were synthesized, namely 5-(3-4-dimethoxyphenyl)-1H-tetrazole and 1-(3-methoxyphenyl)-5-phenoxy-1H-tetrazole, denoted by T1 and T2 respectively. These compounds were evaluated for anti-Acanthamoeba effects at different concentrations ranging from 5 to 50 μM. Furthermore, these compounds were conjugated with silver nanoparticles (AgNPs) to enhance their efficacy. Particle size analysis showed that T1-AgNPs and T2-AgNPs had an average size of 52 and 70 nm respectively. After the successful synthesis and characterization of tetrazoles and tetrazole-conjugated AgNPs, they were subjected to anti-Acanthamoeba studies. Amoebicidal assay showed that at concentration 10 μM and above, T2 showed promising antiamoebic activities between the two compounds while encystation and excystation assays reveal that both T1 and T2 have inhibited differentiation activity against Acanthamoeba castellanii. Conjugation of T1 and T2 to AgNP also increased efficacy of tetrazoles as anti-Acanthamoeba agents. This may be due to the increased bioavailability as AgNP allows better delivery of treatment compounds to A. castellanii. Human cell cytotoxicity assay revealed that tetrazoles and AgNPs are significantly less toxic towards human cells compared with chlorhexidine which is known to cause undesirable side effects. Cytopathogenicity assay also revealed that T2 conjugated with AgNPs significantly reduced cytopathogenicity of A. castellanii compared with T2 alone, suggesting that T2-conjugated AgNP is an effective and safe anti-Acanthamoeba agent. The use of a synthetic azole compound conjugated with AgNPs can be an alternative strategy for drug development against A. castellanii. However, mechanistic and in vivo studies are needed to explore further translational values.
Collapse
Affiliation(s)
- Areeba Anwar
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Yim Pei Yi
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Itrat Fatima
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.,Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Ruqaiyyah Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, 26666, United Arab Emirates
| | - Naveed Ahmed Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, 26666, United Arab Emirates
| | - Ayaz Anwar
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
21
|
Nandanwar SK, Borkar SB, Wijaya BN, Cho JH, Tarte NH, Jun Kim H. Cobalt(II) Benzazole Derivative Complexes: Synthesis, Characterization, Antibacterial and Synergistic Activity. ChemistrySelect 2020. [DOI: 10.1002/slct.202000222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sondavid K. Nandanwar
- Department of Marine Convergence DesignPukyong National University 48513 45 Yongso-ro Nam-gu Busan Korea
| | - Shweta B. Borkar
- Department of ChemistryPukyong National University 48513 45 Yongso-ro Nam-gu Busan Korea
| | - Bryan Nathanael Wijaya
- Department of Chemistry and BiologyKorea Science Academy of KASIT 105-47, Baegyanggwanmun-ro, Busanjin-gu Busan 614-100 Rep.of Korea
| | - Joung Hyung Cho
- Department of Marine Convergence DesignPukyong National University 48513 45 Yongso-ro Nam-gu Busan Korea
| | - Naresh H. Tarte
- Department of Chemistry and BiologyKorea Science Academy of KASIT 105-47, Baegyanggwanmun-ro, Busanjin-gu Busan 614-100 Rep.of Korea
| | - Hak Jun Kim
- Department of ChemistryPukyong National University 48513 45 Yongso-ro Nam-gu Busan Korea
| |
Collapse
|
22
|
Chkirate K, Karrouchi K, Dege N, Kheira Sebbar N, Ejjoummany A, Radi S, Adarsh NN, Talbaoui A, Ferbinteanu M, Essassi EM, Garcia Y. Co(ii) and Zn(ii) pyrazolyl-benzimidazole complexes with remarkable antibacterial activity. NEW J CHEM 2020. [DOI: 10.1039/c9nj05913j] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Three pseudopolymorphs based on a coordination complex of a pyrazolyl-benzimidazole ligand have been synthesized and characterized by single crystal X-diffraction, and showed remarkable antibacterial properties.
Collapse
|
23
|
Simultaneous determination of tartrazine, sunset yellow and allura red in foods using a new cobalt-decorated carbon paste electrode. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113517] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Tamayo LV, Torres JF, Llanos‐Penagos J, Calderón JA, Nagles E, García‐Beltrán O, Hurtado JJ. Sensitive and Profitable Electrochemical Detection of Uric Acid in the Presence of Dopamine with a Novel Carbon Paste Electrode Decorated with a Copper(II) Complex. ELECTROANAL 2019. [DOI: 10.1002/elan.201900348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Lenka V. Tamayo
- Departament of ChemistryUniversidad de los Andes Carrera 1 No. 18A-12 111711 Bogotá Colombia
| | - Juan F. Torres
- Departament of ChemistryUniversidad de los Andes Carrera 1 No. 18A-12 111711 Bogotá Colombia
| | - Johisner Llanos‐Penagos
- Facultad de Ciencias Naturales y MatemáticasUniversidad de Ibagué Carrera 22 Calle 67 730001
| | - Jorge A. Calderón
- Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMATUniversidad de Antioquia – UdeA Calle 70 No. 52–21 Medellín Colombia
| | - Edgar Nagles
- Departamento de Química Analítica, Facultad de Química e Ingeniería QuímicaUniversidad Nacional Mayor de San Marcos Lima Perú
| | - Olimpo García‐Beltrán
- Facultad de Ciencias Naturales y MatemáticasUniversidad de Ibagué Carrera 22 Calle 67 730001
| | - John J. Hurtado
- Departament of ChemistryUniversidad de los Andes Carrera 1 No. 18A-12 111711 Bogotá Colombia
| |
Collapse
|
25
|
Fonseca D, Leal-Pinto SM, Roa-Cordero MV, Vargas JD, Moreno-Moreno EM, Macías MA, Suescun L, Muñoz-Castro Á, Hurtado JJ. Inhibition of C. albicans Dimorphic Switch by Cobalt(II) Complexes with Ligands Derived from Pyrazoles and Dinitrobenzoate: Synthesis, Characterization and Biological Activity. Int J Mol Sci 2019; 20:E3237. [PMID: 31266213 PMCID: PMC6651002 DOI: 10.3390/ijms20133237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 01/27/2023] Open
Abstract
Seven cobalt(II) complexes of pyrazole derivatives and dinitrobenzoate ligands were synthesized and characterized. The single-crystal X-ray diffraction structure was determined for one of the ligands and one of the complexes. The analysis and spectral data showed that all the cobalt complexes had octahedral geometries, which was supported by DFT calculations. The complexes and their free ligands were evaluated against fungal strains of Candida albicans and emerging non-albicans species and epimastigotes of Trypanosoma cruzi. We obtained antifungal activity with a minimum inhibitory concentration (MIC) ranging from 31.3 to 250 µg mL-1. The complexes were more active against C. krusei, showing MIC values between 31.25 and 62.5 µg mL-1. In addition, some ligands (L1-L6) and complexes (5 and Co(OAc)2 · 4H2O) significantly reduced the yeast to hypha transition of C. albicans at 500 µg mL-1 (inhibition ranging from 30 to 54%). Finally, the complexes and ligands did not present trypanocidal activity and were not toxic to Vero cells. Our results suggest that complexes of cobalt(II) with ligands derived from pyrazoles and dinitrobenzoate may be an attractive alternative for the treatment of diseases caused by fungi, especially because they target one of the most important virulence factors of C. albicans.
Collapse
Affiliation(s)
- Daniela Fonseca
- Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia
| | - Sandra M Leal-Pinto
- Grupo de Investigación en Manejo Clínico-CLINIUDES, Facultad de Ciencias de la Salud, Universidad de Santander, 680002 Bucaramanga, Colombia
| | - Martha V Roa-Cordero
- Grupo de Investigación en Manejo Clínico-CLINIUDES, Facultad de Ciencias de la Salud, Universidad de Santander, 680002 Bucaramanga, Colombia
| | - José D Vargas
- Grupo de Investigación en Manejo Clínico-CLINIUDES, Facultad de Ciencias de la Salud, Universidad de Santander, 680002 Bucaramanga, Colombia
| | - Erika M Moreno-Moreno
- Grupo de Investigación en Biotecnología Agroambiente y Salud-MICROBIOTA, Facultad de Ciencias de la Salud, Universidad de Santander, 680002 Bucaramanga, Colombia
| | - Mario A Macías
- Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia
| | - Leopoldo Suescun
- Cryssmat-Lab, DETEMA, Facultad de Química, Universidad de la República, Av. 18 de Julio 1824-1850, 11200 Montevideo, Uruguay
| | - Álvaro Muñoz-Castro
- Grupo de Química Inorgánica y Materiales Moleculares, Universidad Autónoma de Chile, El Llano Subercaseaux, Santiago 2801, Chile
| | - John J Hurtado
- Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia.
| |
Collapse
|
26
|
Fonseca D, Páez C, Ibarra L, García-Huertas P, Macías MA, Triana-Chávez O, Hurtado JJ. Metal complex derivatives of bis(pyrazol-1-yl)methane ligands: synthesis, characterization and anti-Trypanosoma cruzi activity. TRANSIT METAL CHEM 2018. [DOI: 10.1007/s11243-018-0277-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Torres JF, Bello‐Vieda NJ, Macías MA, Muñoz‐Castro A, Rojas‐Dotti C, Martínez‐Lillo J, Hurtado J. Water Dissociation of a Dinuclear Bis(3,5‐dimethylpyrazolyl)methane Copper(II) Complex: X‐ray Diffraction Structure, Magnetic Properties, and Characteristic Absorption of the (CuN
2
Cl
2
)
2
Core. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Juan F. Torres
- Department of Chemistry Universidad de los Andes Carrera 1 No. 18A‐12 111711 Bogotá Colombia
| | - Nestor J. Bello‐Vieda
- Department of Chemistry Universidad de los Andes Carrera 1 No. 18A‐12 111711 Bogotá Colombia
| | - Mario A. Macías
- Department of Chemistry Universidad de los Andes Carrera 1 No. 18A‐12 111711 Bogotá Colombia
| | - Alvaro Muñoz‐Castro
- Laboratorio de Química Inorgánica y Materiales Moleculares Universidad Autonoma de Chile Llano Subercaceaux 2801 San Miguel, Santiago Chile
| | - Carlos Rojas‐Dotti
- Instituto de Ciencia Molecular (ICMol) Universitat de València c/ Catedrático José Beltrán 2 46980 Paterna, Valencia Spain
| | - José Martínez‐Lillo
- Instituto de Ciencia Molecular (ICMol) Universitat de València c/ Catedrático José Beltrán 2 46980 Paterna, Valencia Spain
| | - John Hurtado
- Department of Chemistry Universidad de los Andes Carrera 1 No. 18A‐12 111711 Bogotá Colombia
| |
Collapse
|
28
|
Development of Antibacterial and Antifungal Triazole Chromium(III) and Cobalt(II) Complexes: Synthesis and Biological Activity Evaluations. Molecules 2018; 23:molecules23082013. [PMID: 30104466 PMCID: PMC6222626 DOI: 10.3390/molecules23082013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 07/31/2018] [Accepted: 08/04/2018] [Indexed: 11/16/2022] Open
Abstract
In this work, six complexes (2⁻7) of Cr(III) and Co(II) transition metals with triazole ligands were synthesized and characterized. In addition, a new ligand, 3,5-bis(1,2,4-triazol-1-ylmethyl)toluene (1), was synthesized and full characterized. The complexes were obtained as air-stable solids and characterized by melting point, electrical conductivity, thermogravimetric analysis, and Raman, infrared and ultraviolet/visible spectroscopy. The analyses and spectral data showed that complexes 3⁻7 had 1:1 (M:L) stoichiometries and octahedral geometries, while 2 had a 1:2 (M:L) ratio, which was supported by DFT calculations. The complexes and their respective ligands were evaluated against bacterial and fungal strains with clinical relevance. All the complexes showed higher antibacterial and antifungal activities than the free ligands. The complexes were more active against fungi than against bacteria. The activities of the chromium complexes against Candida tropicalis are of great interest, as they showed minimum inhibitory concentration 50 (MIC50) values between 7.8 and 15.6 μg mL-1. Complexes 5 and 6 showed little effect on Vero cells, indicating that they are not cytotoxic. These results can provide an important platform for the design of new compounds with antibacterial and antifungal activities.
Collapse
|