1
|
Chen B, Jäkle F. Boron-Nitrogen Lewis Pairs in the Assembly of Supramolecular Macrocycles, Molecular Cages, Polymers, and 3D Materials. Angew Chem Int Ed Engl 2024; 63:e202313379. [PMID: 37815889 DOI: 10.1002/anie.202313379] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023]
Abstract
Covering an exceptionally wide range of bond strengths, the dynamic nature and facile tunability of dative B-N bonds is highly attractive when it comes to the assembly of supramolecular polymers and materials. This Minireview offers an overview of advances in the development of functional materials where Lewis pairs (LPs) play a key role in their assembly and critically influence their properties. Specifically, we describe the reversible assembly of linear polymers with interesting optical, electronic and catalytic properties, discrete macrocycles and molecular cages that take up diverse guest molecules and undergo structural changes triggered by external stimuli, covalent organic frameworks (COFs) with intriguing interlocked structures that can embed and separate gases such as CO2 and acetylene, and soft polymer networks that serve as recyclable, self-healing, and responsive thermosets, gels and elastomeric materials.
Collapse
Affiliation(s)
- Beijia Chen
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
2
|
He C, Dong J, Xu C, Pan X. N-Coordinated Organoboron in Polymer Synthesis and Material Science. ACS POLYMERS AU 2022. [DOI: 10.1021/acspolymersau.2c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Congze He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jin Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Chaoran Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
3
|
Mistry B, Murthy CN. Synthesis and properties of ABA type triblock copolymer from poly(dimethylsiloxane) macroinitiator: Development of novel attachable initiators for atom transfer radical polymerization. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2128817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Bhavita Mistry
- Macromolecular Materials Laboratory, Applied Chemistry Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - C. N. Murthy
- Macromolecular Materials Laboratory, Applied Chemistry Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
4
|
Krizhanovskiy I, Temnikov M, Kononevich Y, Anisimov A, Drozdov F, Muzafarov A. The Use of the Thiol-Ene Addition Click Reaction in the Chemistry of Organosilicon Compounds: An Alternative or a Supplement to the Classical Hydrosilylation? Polymers (Basel) 2022; 14:polym14153079. [PMID: 35956590 PMCID: PMC9370781 DOI: 10.3390/polym14153079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/18/2022] Open
Abstract
This review presents the main achievements in the use of the thiol-ene reaction in the chemistry of silicones. Works are considered, starting from monomers and ending with materials.The main advantages and disadvantages of this reaction are demonstrated using various examples. A critical analysis of the use of this reaction is made in comparison with the hydrosilylation reaction.
Collapse
Affiliation(s)
- Ilya Krizhanovskiy
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
| | - Maxim Temnikov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
| | - Yuriy Kononevich
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
| | - Anton Anisimov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
- Correspondence: (A.A.); (A.M.)
| | - Fedor Drozdov
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow 117393, Russia;
| | - Aziz Muzafarov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow 117393, Russia;
- Correspondence: (A.A.); (A.M.)
| |
Collapse
|
5
|
Sakai M, Mori M, Hirai M, Ando N, Yamaguchi S. Planarized Phenyldithienylboranes: Effects of the Bridging Moieties and π‐Extension on the Photophysical Properties and Lewis Acidity. Chemistry 2022; 28:e202200728. [DOI: 10.1002/chem.202200728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Mika Sakai
- Department of Chemistry Graduate School of Science Research Center for Materials Science (RCMS), and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
| | - Masayoshi Mori
- Department of Chemistry Graduate School of Science Research Center for Materials Science (RCMS), and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
| | - Masato Hirai
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University Furo, Chikusa Nagoya 464-8601 Japan
| | - Naoki Ando
- Department of Chemistry Graduate School of Science Research Center for Materials Science (RCMS), and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry Graduate School of Science Research Center for Materials Science (RCMS), and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University Furo, Chikusa Nagoya 464-8601 Japan
| |
Collapse
|
6
|
Harders P, Griebenow T, Businski A, Kaus AJ, Pietsch L, Näther C, McConnell A. The Dynamic Covalent Chemistry of Amidoboronates: Tuning the rac5/rac6 Ratio via the B‑N and B‐O Dynamic Covalent Bonds. Chempluschem 2022; 87:e202200022. [DOI: 10.1002/cplu.202200022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/07/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Patrick Harders
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Thomas Griebenow
- Christian Albrechts Universität zu Kiel: Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Artjom Businski
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Anton J. Kaus
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Lorenz Pietsch
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Christian Näther
- Christian-Albrechts-Universitat zu Kiel Institute of Inorganic Chemistry GERMANY
| | - Anna McConnell
- Kiel University Institute of Organic Chemistry Otto-Hahn-Platz 4 24098 Kiel GERMANY
| |
Collapse
|
7
|
Xiao H, Li T, Sun XL, Wan WM, Bao H, Qian Q, Chen Q. Unpredicted Concentration-Dependent Sensory Properties of Pyrene-Containing NBN-Doped Polycyclic Aromatic Hydrocarbons. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010327. [PMID: 35011557 PMCID: PMC8746585 DOI: 10.3390/molecules27010327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022]
Abstract
Pyrene molecules containing NBN-doped polycyclic aromatic hydrocarbons (PAHs) have been synthesized by a simple and efficient intermolecular dehydration reaction between 1-pyrenylboronic acid and aromatic diamine. Pyrene-B (o-phenylenediamine) with a five-membered NBN ring and pyrene-B (1,8-diaminonaphthalene) with a six-membered NBN ring show differing luminescence. Pyrene-B (o-phenylenediamine) shows concentration-dependent luminescence and enhanced emission after grinding at solid state. Pyrene-B (1,8-diaminonaphthalene) exhibits a turn-on type luminescence upon fluoride ion addition at lower concentration, as well as concentration-dependent stability. Further potential applications of Pyrene-B (o-phenylenediamine) on artificial light-harvesting film were demonstrated by using commercial NiR dye as acceptor.
Collapse
Affiliation(s)
- Hang Xiao
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (H.X.); (T.L.); (Q.Q.); (Q.C.)
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its ReLated Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, China;
| | - Tao Li
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (H.X.); (T.L.); (Q.Q.); (Q.C.)
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its ReLated Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, China;
| | - Xiao-Li Sun
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (H.X.); (T.L.); (Q.Q.); (Q.C.)
- Correspondence: (X.-L.S.); (W.-M.W.)
| | - Wen-Ming Wan
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its ReLated Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, China;
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
- Correspondence: (X.-L.S.); (W.-M.W.)
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its ReLated Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, China;
| | - Qingrong Qian
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (H.X.); (T.L.); (Q.Q.); (Q.C.)
| | - Qinghua Chen
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (H.X.); (T.L.); (Q.Q.); (Q.C.)
| |
Collapse
|
8
|
|
9
|
Strategic conceptualization and potential of self-healing polymers in biomedical field. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 125:112099. [PMID: 33965109 DOI: 10.1016/j.msec.2021.112099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
Smart polymeric materials and hydrogels derived from acrylate, epoxy resins, etc. mimic the healing ability of natural organisms and biological cells by showing shape memory and tissue regenerative properties wherein, the healing ability in some of the materials is triggered by external stimuli like temperature, pH and light. This article provides an overview of various conceptual strategies and chemical and mechanical interactions involved in the different types of biomimetic self-healing materials to regain the deformed structure by repairing the cracked shape which play important role in contributing to the structural properties and functional recovery. Also, different chemical bonding like π-π interaction, ligand-metal, hydrogen bonding, etc. takes place at the molecular level for replenishing the damaged structure with greater bond strength. The regeneration ability of artificial self-healing polymeric materials not only shows use in material sciences, engineering but also exhibits a wide range of applications in site-specific drug delivery, skin grafting, implantation, dentistry and bone and tissue regeneration to restore injured surfaces with better biocompatibility, healing efficiency and higher tensile strength to serve as a next-generation material for amplifying the use in biomedical field.
Collapse
|
10
|
Kasza G, Stumphauser T, Bisztrán M, Szarka G, Hegedüs I, Nagy E, Iván B. Thermoresponsive Poly( N, N-diethylacrylamide- co-glycidyl methacrylate) Copolymers and Its Catalytically Active α-Chymotrypsin Bioconjugate with Enhanced Enzyme Stability. Polymers (Basel) 2021; 13:987. [PMID: 33806995 PMCID: PMC8004754 DOI: 10.3390/polym13060987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/11/2022] Open
Abstract
Responsive (smart, intelligent, adaptive) polymers have been widely explored for a variety of advanced applications in recent years. The thermoresponsive poly(N,N-diethylacrylamide) (PDEAAm), which has a better biocompatibility than the widely investigated poly(N,N-isopropylacrylamide), has gained increased interest in recent years. In this paper, the successful synthesis, characterization, and bioconjugation of a novel thermoresponsive copolymer, poly(N,N-diethylacrylamide-co-glycidyl methacrylate) (P(DEAAm-co-GMA)), obtained by free radical copolymerization with various comonomer contents and monomer/initiator ratios are reported. It was found that all the investigated copolymers possess LCST-type thermoresponsive behavior with small extent of hysteresis, and the critical solution temperatures (CST), i.e., the cloud and clearing points, decrease linearly with increasing GMA content of these copolymers. The P(DEAAm-co-GMA) copolymer with pendant epoxy groups was found to conjugate efficiently with α-chymotrypsin in a direct, one-step reaction, leading to enzyme-polymer nanoparticle (EPNP) with average size of 56.9 nm. This EPNP also shows reversible thermoresponsive behavior with somewhat higher critical solution temperature than that of the unreacted P(DEAAm-co-GMA). Although the catalytic activity of the enzyme-polymer nanoconjugate is lower than that of the native enzyme, the results of the enzyme activity investigations prove that the pH and thermal stability of the enzyme is significantly enhanced by conjugation the with P(DEAAm-co-GMA) copolymer.
Collapse
Affiliation(s)
- György Kasza
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Tímea Stumphauser
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Márk Bisztrán
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Györgyi Szarka
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Imre Hegedüs
- Chemical and Biochemical Procedures Laboratory, Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary; (I.H.); (E.N.)
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37–47, H-1094 Budapest, Hungary
| | - Endre Nagy
- Chemical and Biochemical Procedures Laboratory, Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary; (I.H.); (E.N.)
| | - Béla Iván
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| |
Collapse
|
11
|
Liu R, Wang Y, Yan Q. CO
2
‐Strengthened Double‐Cross‐Linked Polymer Gels from Frustrated Lewis Pair Networks. Macromol Rapid Commun 2021; 42:e2000699. [DOI: 10.1002/marc.202000699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/01/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Renjie Liu
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science Fudan University Shanghai 200433 China
| | - Yixin Wang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science Fudan University Shanghai 200433 China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science Fudan University Shanghai 200433 China
| |
Collapse
|
12
|
Zhou Y, Jiang S, Xu X. Isospecific Polymerization of Methyl Methacrylate by Intramolecular
Rare‐Earth
Metal Based Lewis Pairs†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yiqun Zhou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou Jiangsu 215123 China
| | - Shengjie Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou Jiangsu 215123 China
| | - Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
13
|
Yolsal U, Horton TA, Wang M, Shaver MP. Polymer-supported Lewis acids and bases: Synthesis and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101313] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Lin H, Patel S, Jäkle F. Tailored Triarylborane Polymers as Supported Catalysts and Luminescent Materials. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huina Lin
- Department of Chemistry, Rutgers University–Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Shivani Patel
- Department of Chemistry, Rutgers University–Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University–Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
15
|
Suriano R, Boumezgane O, Tonelli C, Turri S. Viscoelastic properties and self‐healing behavior in a family of supramolecular ionic blends from silicone functional oligomers. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Raffaella Suriano
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” Politecnico di Milano Milan Italy
| | - Oussama Boumezgane
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” Politecnico di Milano Milan Italy
| | | | - Stefano Turri
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” Politecnico di Milano Milan Italy
| |
Collapse
|
16
|
Szostak M. Editorial for “Organometallic Chemistry” Section, in Journal Molecules. Molecules 2020; 25:molecules25133038. [PMID: 32635184 PMCID: PMC7411824 DOI: 10.3390/molecules25133038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- Michal Szostak
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
17
|
Tsuruoka A, Takahashi A, Aoki D, Otsuka H. Fusion of Different Crosslinked Polymers Based on Dynamic Disulfide Exchange. Angew Chem Int Ed Engl 2020; 59:4294-4298. [DOI: 10.1002/anie.201913430] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/21/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Ayuko Tsuruoka
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Akira Takahashi
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
18
|
Tsuruoka A, Takahashi A, Aoki D, Otsuka H. Fusion of Different Crosslinked Polymers Based on Dynamic Disulfide Exchange. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ayuko Tsuruoka
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Akira Takahashi
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
19
|
Vidal F, Gomezcoello J, Lalancette RA, Jäkle F. Lewis Pairs as Highly Tunable Dynamic Cross-Links in Transient Polymer Networks. J Am Chem Soc 2019; 141:15963-15971. [DOI: 10.1021/jacs.9b07452] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Fernando Vidal
- Department of Chemistry, Rutgers University—Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - John Gomezcoello
- Department of Chemistry, Rutgers University—Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Roger A. Lalancette
- Department of Chemistry, Rutgers University—Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University—Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
20
|
|
21
|
Anisimov AA, Visochinskaya YS, Buzin MI, Vasil’ev VG, Nikiforova GG, Peregudov AS, Dubovik AS, Orlov VN, Shchegolikhina OI, Muzafarov AM. New polydimethylsiloxanes with bulky end groups: synthesis and properties. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2553-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Yolsal U, Wang M, Royer JR, Shaver MP. Rheological Characterization of Polymeric Frustrated Lewis Pair Networks. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Utku Yolsal
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
- School of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Meng Wang
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - John R. Royer
- School of Physics and Astronomy, University of Edinburgh, King’s Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, U.K
| | - Michael P. Shaver
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
- School of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
23
|
Vidal F, Jäkle F. Functional Polymeric Materials Based on Main‐Group Elements. Angew Chem Int Ed Engl 2019; 58:5846-5870. [DOI: 10.1002/anie.201810611] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Fernando Vidal
- Department of Chemistry Rutgers University—Newark 73 Warren Street Newark NJ 07102 USA
| | - Frieder Jäkle
- Department of Chemistry Rutgers University—Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
24
|
Vidal F, Jäkle F. Funktionelle polymere Materialien auf der Basis von Hauptgruppen‐Elementen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201810611] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Fernando Vidal
- Department of Chemistry Rutgers University—Newark 73 Warren Street Newark NJ 07102 USA
| | - Frieder Jäkle
- Department of Chemistry Rutgers University—Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
25
|
Bouchard N, Fontaine FG. Alkylammoniotrifluoroborate functionalized polystyrenes: polymeric pre-catalysts for the metal-free borylation of heteroarenes. Dalton Trans 2019; 48:4846-4856. [PMID: 30869102 DOI: 10.1039/c9dt00484j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Three polymeric versions of ansa-N,N-dialkylammoniumtrifluoroborate ambiphilic molecules based on the styrene motif (poly(1-NMe2H+-2-BF3--4-styrene) (P-Me), poly(1-NEt2H+-2-BF3--4-styrene) (P-Et) and poly(1-piperidinyl-H+-2-BF3--4-styrene) (P-Pip)) were synthesized, characterized and tested as heterogeneous pre-catalysts for the borylation of electron-rich heteroarenes. These heterogeneous versions of previously reported pre-catalysts show similar reactivity patterns and represent the first examples of solid-supported FLP metal-free catalysts for the C-H borylation of heteroarenes.
Collapse
Affiliation(s)
- Nicolas Bouchard
- Département de Chimie, Centre de de Catalyse et Chimie Verte (C3V), Université Laval, 1045 Avenue de la Médecine, Québec, CanadaG1V 0A6. frederic.fontaine.@chm.ulaval.ca
| | | |
Collapse
|
26
|
Abstract
Representative types of boron-based molecular systems that respond to external stimuli such as temperature, pressure, light, or chemicals (oxygen, acid, base etc.) are described in this review article. The boron molecules are classified according to their operating mechanisms, with emphasis on systems, which are based on switchable boron-donor bonds and switchable excited states.
Collapse
Affiliation(s)
- Soren K. Mellerup
- Department of Chemistry
- Queen's University
- Kingston
- Canada
- Institut für Anorganische Chemie
| | - Suning Wang
- Department of Chemistry
- Queen's University
- Kingston
- Canada
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
| |
Collapse
|
27
|
Hong M, Chen J, Chen EYX. Polymerization of Polar Monomers Mediated by Main-Group Lewis Acid-Base Pairs. Chem Rev 2018; 118:10551-10616. [PMID: 30350583 DOI: 10.1021/acs.chemrev.8b00352] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of new or more sustainable, active, efficient, controlled, and selective polymerization reactions or processes continues to be crucial for the synthesis of important polymers or materials with specific structures or functions. In this context, the newly emerged polymerization technique enabled by main-group Lewis pairs (LPs), termed as Lewis pair polymerization (LPP), exploits the synergy and cooperativity between the Lewis acid (LA) and Lewis base (LB) sites of LPs, which can be employed as frustrated Lewis pairs (FLPs), interacting LPs (ILPs), or classical Lewis adducts (CLAs), to effect cooperative monomer activation as well as chain initiation, propagation, termination, and transfer events. Through balancing the Lewis acidity, Lewis basicity, and steric effects of LPs, LPP has shown several unique advantages or intriguing opportunities compared to other polymerization techniques and demonstrated its broad polar monomer scope, high activity, control or livingness, and complete chemo- or regioselectivity, as well as its unique application in materials chemistry. These advances made in LPP are comprehensively reviewed, with the scope of monomers focusing on heteroatom-containing polar monomers, while the polymerizations mediated by main-group LAs and LBs separately that are most relevant to the LPP are also highlighted or updated. Examples of applying the principles of the LPP and LP chemistry as a new platform for advancing materials chemistry are highlighted, and currently unmet challenges in the field of the LPP, and thus the suggested corresponding future research directions, are also presented.
Collapse
Affiliation(s)
- Miao Hong
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Jiawei Chen
- Department of Chemistry , Columbia University , 3000 Broadway , New York , New York 10027 , United States
| | - Eugene Y-X Chen
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| |
Collapse
|
28
|
Chen J, Hong M, Chen EYX. Lewis Pair Polymerization for New Reactivity and Structure in Polymer Synthesis. MOLECULES (BASEL, SWITZERLAND) 2018; 23:molecules23040915. [PMID: 29659483 PMCID: PMC6017600 DOI: 10.3390/molecules23040915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 04/09/2018] [Accepted: 04/12/2018] [Indexed: 11/18/2022]
Affiliation(s)
- Jiawei Chen
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA.
| | - Miao Hong
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|