1
|
Sun H, Luo W, Huang X. Recent Advances in the Preparation of Protein/peptide Microspheres by Solvent Evaporation Method. Curr Pharm Biotechnol 2024; 25:1807-1817. [PMID: 38178679 DOI: 10.2174/0113892010261032231214115415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 01/06/2024]
Abstract
Protein/peptide drugs are extensively used to treat various chronic and serious diseases. The short half-life in vivo of protein and peptide as therapeutics drug limit the realization of complete effects. Encapsulating drugs in microspheres can slow the speed of drug release and prolong the efficacy of drugs. The solvent evaporation method is widely used to prepare protein/ peptide microspheres because of its facile operation and minimal equipment requirements. This method has several challenges in the lower encapsulation efficiency, fluctuant release profiles and the stabilization of protein/peptides, which researchers believe may be solved by adjusting the preparation parameter or formulation of microspheres. The article discusses the formulation parameters that govern the preparation of protein/peptide-loaded microspheres by the solvent evaporation method, which provides an overview of the current promising strategies for solvent evaporation for protein/peptide microspheres. The article takes parameter evaluation as the framework, facilitating subsequent researchers to quickly find possible solutions when encountering problems.
Collapse
Affiliation(s)
- Huayan Sun
- Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, 100853, China
| | - Weiwei Luo
- Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, 100853, China
| | - Xiaowu Huang
- Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
2
|
Li C, Xu X, Gao J, Zhang X, Chen Y, Li R, Shen J. 3D printed scaffold for repairing bone defects in apical periodontitis. BMC Oral Health 2022; 22:327. [PMID: 35941678 PMCID: PMC9358902 DOI: 10.1186/s12903-022-02362-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives To investigate the feasibility of the 3D printed scaffold for periapical bone defects. Methods In this study, antimicrobial peptide KSL-W-loaded PLGA sustainable-release microspheres (KSL-W@PLGA) were firstly prepared followed by assessing the drug release behavior and bacteriostatic ability against Enterococcus faecalis and Porphyromonas gingivalis. After that, we demonstrated that KSL-W@PLGA/collagen (COL)/silk fibroin (SF)/nano-hydroxyapatite (nHA) (COL/SF/nHA) scaffold via 3D-printing technique exhibited significantly good biocompatibility and osteoconductive property. The scaffold was characterized as to pore size, porosity, water absorption expansion rate and mechanical properties. Moreover, MC3T3-E1 cells were seeded into sterile scaffold materials and investigated by CCK-8, SEM and HE staining. In the animal experiment section, we constructed bone defect models of the mandible and evaluated its effect on bone formation. The Japanese white rabbits were killed at 1 and 2 months after surgery, the cone beam computerized tomography (CBCT) and micro-CT scanning, as well as HE and Masson staining analysis were performed on the samples of the operation area, respectively. Data analysis was done using ANOVA and LSD tests. (α = 0.05). Results We observed that the KSL-W@PLGA sustainable-release microspheres prepared in the experiment were uniform in morphology and could gradually release the antimicrobial peptide (KSL-W), which had a long-term antibacterial effect for at least up to 10 days. HE staining and SEM showed that the scaffold had good biocompatibility, which was conducive to the adhesion and proliferation of MC3T3-E1 cells. The porosity and water absorption of the scaffold were (81.96 ± 1.83)% and (458.29 ± 29.79)%, respectively. Histological and radiographic studies showed that the bone healing efficacy of the scaffold was satisfactory. Conclusions The KSL-W@PLGA/COL/SF/nHA scaffold possessed good biocompatibility and bone repairing ability, and had potential applications in repairing infected bone defects. Clinical significance The 3D printed scaffold not only has an antibacterial effect, but can also promote bone tissue formation, which provides an alternative therapy option in apical periodontitis. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02362-4.
Collapse
Affiliation(s)
- Cong Li
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China
| | - Xiaoyin Xu
- The Affiliated Stomatological Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Jing Gao
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China
| | - Xiaoyan Zhang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China
| | - Yao Chen
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China
| | - Ruixin Li
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China.
| | - Jing Shen
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China.
| |
Collapse
|
3
|
Shen Y, Liu C, Chi K, Gao Q, Bai X, Xu Y, Guo N. Development of a machine learning-based predictor for identifying and discovering antioxidant peptides based on a new strategy. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Liang JY, Li Q, Feng LB, Hu SX, Zhang SQ, Li CX, Zhang XB. Injectable antimicrobial hydrogels with antimicrobial peptide and sanguinarine controlled release ability for preventing bacterial infections. Am J Transl Res 2021; 13:12614-12625. [PMID: 34956477 PMCID: PMC8661223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/16/2021] [Indexed: 06/14/2023]
Abstract
The emergence of antibiotic resistant bacteria represents a significant and common clinical problem worldwide as infections are becoming increasingly common. It is urgent to broaden the sources of biomaterials that can prevent both bacterial infection and antibiotic resistance. In this work, oxidized sodium alginate/aminated hyaluronic acid (OSA/AHA) hydrogel with various proportions was developed based on Schiff base reaction. Herein, polydopamine (PDA)-Bmkn2 nanoparticle and sanguinarine were incorporated into hydrogels to enhance antibacterial properties. The prepared PDA-Bmkn2 nanoparticles, with uniform particle size and good dispersion, could serve as a delivery system for Bmkn2. The prepared hydrogels showed appropriate swelling ratio, extremely good mechanical strengths and improved biodegradability. Meanwhile, the Bmkn2 and sanguinarine were released from the hydrogels in a sustainable manner. Furthermore, OSA/AHA/sanguinarine/PDA-Bmkn2 hydrogel (less than 10 μg/mL BmKn2 and 0.2 μg/mL sanguinarine) had excellent biocompatibility. Antibacterial experiments confirmed that OSA/AHA/sanguinarine/PDA-Bmkn2 hydrogel had effective antimicrobial activity on Escherichia coli and Staphylococcus aureus. Therefore, the prepared injectable hydrogels with good biocompatibility and excellent synergistic antibacterial activity promise great potential for preventing localized bacterial infections.
Collapse
Affiliation(s)
- Jing-Yao Liang
- Institute of Dermatology, Guangzhou Medical UniversityGuangzhou 510095, Guangdong, China
- Department of Dermatology, Guangzhou Institute of DermatologyGuangzhou 510095, Guangdong, China
| | - Qian Li
- Institute of Dermatology, Guangzhou Medical UniversityGuangzhou 510095, Guangdong, China
- Department of Dermatology, Guangzhou Institute of DermatologyGuangzhou 510095, Guangdong, China
| | - Long-Bao Feng
- Beogene Biotech (Guangzhou) Co., LTDGuangzhou 510663, Guangdong, China
| | - Sheng-Xue Hu
- Beogene Biotech (Guangzhou) Co., LTDGuangzhou 510663, Guangdong, China
| | - San-Quan Zhang
- Institute of Dermatology, Guangzhou Medical UniversityGuangzhou 510095, Guangdong, China
- Department of Dermatology, Guangzhou Institute of DermatologyGuangzhou 510095, Guangdong, China
| | - Chang-Xing Li
- Department of Dermatology, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| | - Xi-Bao Zhang
- Institute of Dermatology, Guangzhou Medical UniversityGuangzhou 510095, Guangdong, China
- Department of Dermatology, Guangzhou Institute of DermatologyGuangzhou 510095, Guangdong, China
| |
Collapse
|
5
|
Gao B, Zhao D, Li L, Cheng Z, Guo Y. Antiviral Peptides with in vivo Activity: Development and Modes of Action. Chempluschem 2021; 86:1547-1558. [PMID: 34755499 DOI: 10.1002/cplu.202100351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/28/2021] [Indexed: 12/25/2022]
Abstract
The viral pandemic has resulted in a growing demand for antiviral drugs. The existing small-molecule antiviral drugs are limited, due to their incidence of drug resistance and adverse side effects. As potential drugs, antiviral peptides have the benefits of high activity, high stability, and few side effects. Furthermore, the diversity of acquisition methods allows antiviral peptides to be quickly designed and yielded. The drug properties (such as high bioavailability and in vivo stability) of antiviral peptides can be improved by the developed modifications. Currently, two peptide antiviral drugs have been approved for the treatment of acquired immunodeficiency syndrome (AIDS). Many antiviral peptides have entered clinical trials for the treatment of diseases caused by viruses. In addition, new antiviral peptides are continuously being identified and validated against virus infections. Given the benefits of antiviral peptides, they will become major antiviral drugs to combat new outbreaks caused by unknown viruses in the future. This review provides an overview of recent developments in antiviral peptides with in vivo activity.
Collapse
Affiliation(s)
- Bing Gao
- School of Public Health, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
| | - Dongdong Zhao
- School of Pharmacy, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
| | - Lingmu Li
- School of Pharmacy, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
| | - Zhigang Cheng
- School of Pharmacy, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
| | - Ye Guo
- School of Pharmacy, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
| |
Collapse
|
6
|
Kubisa P, Lapienis G, Biela T. Star‐shaped copolymers with
PLA
–
PEG
arms and their potential applications as biomedical materials. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Przemyslaw Kubisa
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Lodz Poland
| | - Grzegorz Lapienis
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Lodz Poland
| | - Tadeusz Biela
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Lodz Poland
| |
Collapse
|
7
|
Liu Y, Kou D, Chu N, Ding G. Cathelicidin-BF attenuate kidney injury through inhibiting oxidative stress, inflammation and fibrosis in streptozotocin-induced diabetic rats. Life Sci 2020; 257:117918. [PMID: 32525002 DOI: 10.1016/j.lfs.2020.117918] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate protective efficacies and mechanisms of Cathelicidin-BF (BF-30) peptide on streptozotocin (STZ)-induced diabetic kidney injury. METHODS Effects of BF-30 on hydrogen peroxide induced oxidative damage in HK-2 renal cells were assessed by CCK-8 method. Forty STZ-induced diabetic rats with kidney injury were randomly divided into model control group, BF-30 group at different doses (0.1, 0.3 and 0.9 mg/kg). Blood biochemical and kidney related indexes as well adrenal morphological changes, inflammation related markers of diabetic rats were measured. RESULTS Cell viability of HK-2 cells with oxidative damage induced by hydrogen peroxide were significantly improved by BF-30 with 0.8 μg/mL for 56.5% and 1.6 μg/mL for 82.3% compared with control. Moreover, the decreased reactive oxygen species (ROS), and increased intracellular antioxidant enzymes GPX1, SOD2 and GSH were showed in BF-30 treated groups. In addition, co-incubation of BF-30 in HK-2 cells promoted the increase of p-AMPK and LC3, decreased activation of p-mTOR, BAX and Caspase 3. Chronic treatment of BF-30 improved the STZ-induced diabetic characteristics of diabetic kidney disease (DKD) model rats. Further renal histopathological examination revealed 12-week treatment of BF-30 effectively improved the morphology of nephropathy in DKD rats. Moreover, BF-30 also could ameliorate excessive oxidative stress, renal cell apoptosis and fibrosis, thereby protects renal tissues. CONCLUSION BF-30 exerted protective effects on STZ-induced kidney injury mainly through the inhibiting oxidative stress in kidney tissue, reducing renal fibrosis, increasing autophagy, and reducing the renal cell apoptosis related proteins to decrease the cell damage and protect nephrocytes.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Pharmacy, The First People's Hospital of Shangqiu, 476100, PR China
| | - Danhua Kou
- Quality Assurance Room, Xuchang Institutes For Food and Drug Control, Xuchang 461099, PR China
| | - Naying Chu
- Department of Pharmacy, The First People's Hospital of Shangqiu, 476100, PR China
| | - Guangjun Ding
- Department of Pharmacy, The First People's Hospital of Shangqiu, 476100, PR China.
| |
Collapse
|
8
|
Alford MA, Baquir B, Santana FL, Haney EF, Hancock REW. Cathelicidin Host Defense Peptides and Inflammatory Signaling: Striking a Balance. Front Microbiol 2020; 11:1902. [PMID: 32982998 PMCID: PMC7481365 DOI: 10.3389/fmicb.2020.01902] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/20/2020] [Indexed: 12/28/2022] Open
Abstract
Host-defense peptides (HDPs) are vital components of innate immunity in all vertebrates. While their antibacterial activity toward bacterial cells was the original focus for research, their ability to modulate immune and inflammatory processes has emerged as one of their major functions in the host and as a promising approach from which to develop novel therapeutics targeting inflammation and innate immunity. In this review, with particular emphasis on the cathelicidin family of peptides, the roles of natural HDPs are examined in managing immune activation, cellular recruitment, cytokine responses, and inflammation in response to infection, as well as their contribution(s) to various inflammatory disorders and autoimmune diseases. Furthermore, we discuss current efforts to develop synthetic HDPs as therapeutics aimed at restoring balance to immune responses that are dysregulated and contribute to disease pathologies.
Collapse
Affiliation(s)
- Morgan A. Alford
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Beverlie Baquir
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Felix L. Santana
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Evan F. Haney
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Jin Z, Chen Q, Tan L, Jia B, Liu Y. WITHDRAWN: Novel long-acting BF-30 conjugate corrects pancreatic carcinoma via cytoplasmic membrane permeabilization and DNA-binding in tumor-bearing mice. Life Sci 2020:118278. [PMID: 32798555 DOI: 10.1016/j.lfs.2020.118278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
Abstract
This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Zhe Jin
- The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Qingmin Chen
- The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Ludong Tan
- The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Baoxing Jia
- The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yahui Liu
- The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
10
|
Hitchhiking with Nature: Snake Venom Peptides to Fight Cancer and Superbugs. Toxins (Basel) 2020; 12:toxins12040255. [PMID: 32326531 PMCID: PMC7232197 DOI: 10.3390/toxins12040255] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/25/2020] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
Abstract For decades, natural products in general and snake venoms (SV) in particular have been a rich source of bioactive compounds for drug discovery, and they remain a promising substrate for therapeutic development. Currently, a handful of SV-based drugs for diagnosis and treatment of various cardiovascular disorders and blood abnormalities are on the market. Likewise, far more SV compounds and their mimetics are under investigation today for diverse therapeutic applications, including antibiotic-resistant bacteria and cancer. In this review, we analyze the state of the art regarding SV-derived compounds with therapeutic potential, focusing on the development of antimicrobial and anticancer drugs. Specifically, information about SV peptides experimentally validated or predicted to act as antimicrobial and anticancer peptides (AMPs and ACPs, respectively) has been collected and analyzed. Their principal activities both in vitro and in vivo, structures, mechanisms of action, and attempts at sequence optimization are discussed in order to highlight their potential as drug leads. Key Contribution This review describes the state of the art in snake venom-derived peptides and their therapeutic applications. This work reinforces the potential of snake venom components as therapeutic agents, particularly in the quest for new antimicrobial and anticancer drugs.
Collapse
|
11
|
Chen Y, Li N, Xu B, Wu M, Yan X, Zhong L, Cai H, Wang T, Wang Q, Long F, Jiang G, Xiao H. Polymer-based nanoparticles for chemo/gene-therapy: Evaluation its therapeutic efficacy and toxicity against colorectal carcinoma. Biomed Pharmacother 2019; 118:109257. [PMID: 31377472 DOI: 10.1016/j.biopha.2019.109257] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023] Open
Abstract
Combination treatment through simultaneous delivery of anticancer drugs and gene with nano-formulation has been demonstrated to be an elegant and efficient approach for colorectal cancer therapy. Recently, sorafenib being studied in combination therapy in colorectal cancer (CRC) attracted attention of researchers. On the basis of our previous study, pigment epithelium-derived factor (PEDF) loaded nanoparticles showed good effect on CRC in vitro and in vivo. Herein, we designed a combination therapy for sorafenib (Sora), a multi-kinase inhibitor and PEDF, a powerful antiangiogenic gene, in a nano-formulation aimed to increase anti-tumor effect on CRC for the first time. Sora and PEDF were simultaneously encapsulated in PEG-PLGA based nanoparticles by a modified double-emulsion solvent evaporation method. The obtained co-encapsulated nanoparticles (Sora@PEDF-NPs) showed high entrapment efficiency of both Sora and PEDF - and exhibited a uniform spherical morphology. The release profiles of Sora and PEDF were in a sustained manner. The most effective tumor growth inhibition in the C26 cells and C26-bearing mice was observed in the Sora@PEDF-NPs in comparison with none-drug nanoparticles, free Sora, mono-drug nanoparticles (Sora-NPs and PEDF-NPs) and the mixture of Sora-NPs and equivalent PEDF-NPs (Mix-NPs). More importantly, Sora@PEDF-NPs showed lower toxicity than free Sora in mice according to the acute toxicity test. The serologic biochemical analysis and mice body weight during therapeutic period revealed that Sora@PEDF-NPs had no obvious toxicity. All the data demonstrated that the simultaneously loaded nanoparticles with multi-kinase inhibitor and anti-angiogenic gene might be one of the most potential formulations in the treatment of colorectal carcinoma in clinic and worthy of further investigation.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pharmacy, Sichuan Cancer Hospital&Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - NingXi Li
- Department of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Bei Xu
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, China
| | - Min Wu
- Department of Pharmacy, Chengdu Medical College, Chengdu, China
| | - XiaoYan Yan
- Department of Pharmacy, Chengdu Medical College, Chengdu, China
| | - LiJun Zhong
- Department of Pharmacy, Sichuan Cancer Hospital&Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Cai
- Department of Pharmacy, Sichuan Cancer Hospital&Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Wang
- Department of Pharmacy, Sichuan Cancer Hospital&Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - QiuJu Wang
- Department of Pharmacy, Sichuan Cancer Hospital&Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - FangYi Long
- Department of Pharmacy, Key Laboratory of Reproductive Medicine, Sichuan Provincial Hospital for Women and Children, Women and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Gang Jiang
- Department of Pharmacy, Sichuan Cancer Hospital&Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - HongTao Xiao
- Department of Pharmacy, Sichuan Cancer Hospital&Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|
12
|
He Y, Li H, Zheng X, Yuan M, Yang R, Yuan M, Yang C. Preparation, In Vivo and In Vitro Release of Polyethylene Glycol Monomethyl Ether-Polymandelic Acid Microspheres Loaded Panax Notoginseng Saponins. Molecules 2019; 24:E2024. [PMID: 31137874 PMCID: PMC6572365 DOI: 10.3390/molecules24102024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 11/16/2022] Open
Abstract
In order to enrich the types of Panax notoginseng saponins (PNS) sustained-release preparations and provide a new research idea for the research and development of traditional Chinese medicine sustained-release formulations, a series of Panax notoginseng saponins microspheres was prepared by a double emulsion method using a series of degradable amphiphilic macromolecule materials polyethylene glycol monomethyl ether-polymandelic acid (mPEG-PMA) as carrier. The structure and molecular weight of the series of mPEG-PMA were determined by nuclear magnetic resonance spectroscopy (1 HNMR) and gel chromatography (GPC). The results of the appearance, particle size, drug loading and encapsulation efficiency of the drug-loaded microspheres show that the mPEG10000-PMA (1:9) material is more suitable as a carrier for loading the total saponins of Panax notoginseng. The particle size was 2.51 ± 0.21 μm, the drug loading and encapsulation efficiency were 8.54 ± 0.16% and 47.25 ± 1.64%, respectively. The drug-loaded microspheres were used for in vitro release and degradation experiments to investigate the degradation and sustained release behaviour of the drug-loaded microspheres. The biocompatibility of the microspheres was studied by haemolytic, anticoagulant and cytotoxicity experiments. The pharmacological activity of the microspheres was studied by anti-inflammatory and anti-tumour experiments. The results showed that the drug-loaded microspheres could be released stably for about 12 days and degraded within 60 days. At the same time, the microspheres had good biocompatibility, anti-inflammatory and anti-tumour activities.
Collapse
Affiliation(s)
- Yi He
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China.
| | - Hongli Li
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China.
| | - Xiangyu Zheng
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China.
| | - Mingwei Yuan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China.
| | - Renyu Yang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China.
| | - Minglong Yuan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China.
| | - Cui Yang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China.
| |
Collapse
|
13
|
Xu J, Chen S, Jin J, Ma L, Guo M, Zhou C, Dou J. Inhibition of peptide BF-30 on influenza A virus infection in vitro/vivo by causing virion membrane fusion. Peptides 2019; 112:14-22. [PMID: 30447229 DOI: 10.1016/j.peptides.2018.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 12/14/2022]
Abstract
Influenza A virus is a leading cause of mortality in humans and poses a global health emergency due to its newly adapted and resistant strains. Thus, there is an urgency to develop novel anti-influenza drugs. Peptides are a type of biological molecule having a wide range of inhibitory effects against bacteria, fungi, viruses and cancer cells. The prospects of several peptides and their mechanisms of action have received significant attention. BF-30, a 30 amino acid residue peptide isolated from the venom of the snake, Bungarus fasciatus, is reported to have antibacterial and antitumor activities. Here, we demonstrated that the 50% cytotoxic concentration (CC50) of the peptide to MDCK cells is 67.7 μM. While BF-30 could inhibit the influenza virus strains H1N1, H3N2 and the oseltamivir-resistant strain H1N1, in vitro, with 50% effective concentration (EC50) of 5.2, 7.4 and 18.9 μM, respectively. In animal experiments, mice treated with BF-30 showed 50% survival at a dosage of 4 μM, with an approximately 2 log viral titer decrease in the lung. However, further studies showed that BF-30 worked on only the virus invasion stage, and inhibited the influenza virus infection by causing virion membrane fusion rather than interacting with hemagglutinin or neuraminidase. These results demonstrated that the peptide BF-30 exhibited an effective inhibitory activity against the influenza A virus and could be a promising candidate for influenza virus therapy.
Collapse
Affiliation(s)
- Jun Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China.
| | - Shuo Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China.
| | - Jing Jin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China.
| | - Lingman Ma
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China.
| | - Min Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China.
| | - Changlin Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China.
| | - Jie Dou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China.
| |
Collapse
|
14
|
Sharma A, Vaghasiya K, Ray E, Verma RK. Nano-encapsulated HHC10 host defense peptide (HDP) reduces the growth of Escherichia coli via multimodal mechanisms. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S156-S165. [PMID: 30032649 DOI: 10.1080/21691401.2018.1489823] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The eradication of several pathogenic drug resistant "Superbug" such as Escherichia coli became difficult especially in chronic infections using existing antibiotics due to the emergence of antibiotic resistance. Owing to their unique antibacterial properties, host defense peptides (HDP) have gained significant attention to combat colonization of bacteria. This study aims designing delivery systems for HHC10 peptide to target bacteria inside the cells might be a promising approach by protecting from degradation, controlling the release, enhancing the susceptibility of target microbes and improving bioavailability. Nano-formulated HHC10 was evaluated for its efficacy (CFU assay) and possible mechanism of action (membrane interaction and apoptosis) against E. coli. Dose-dependent inhibition of E. coli growth is observed for nano-encapsulated and bare HHC10 and encapsulated form remain non-toxic to macrophage mouse cells (RAW264.6) up to 20 μM. Mechanistic analyses using transmission electron microscopy and flow cytometry techniques revealed that bactericidal activity of HHC10-NP progresses via a multimodal mechanism of bacterial cell death by cell-membrane lysis on direct interaction with bacteria while through induction of the apoptotic death pathway inside the host cells. These results offer an insight on future strategies for the development and application of antimicrobial peptides as antibacterial alternatives. Controlled delivery of HHC10 peptide from PLGA-NP kills bacteria by two different mechanism: (i) direct killing: HHC10 disintegrate the cell membrane of bacteria by electrostatic interactions and (ii) indirect killing: induction of apoptosis in bacteria infect cells.
Collapse
Affiliation(s)
- Ankur Sharma
- a Institute of Nano Science and Technology (INST) , Mohali , Punjab , India
| | - Kalpesh Vaghasiya
- a Institute of Nano Science and Technology (INST) , Mohali , Punjab , India
| | - Eupa Ray
- a Institute of Nano Science and Technology (INST) , Mohali , Punjab , India
| | - Rahul Kumar Verma
- a Institute of Nano Science and Technology (INST) , Mohali , Punjab , India
| |
Collapse
|
15
|
Piotrowska U, Oledzka E, Kamysz W, Białek S, Sobczak M. The Effect of Polymer Microstructure on Encapsulation Efficiency and Release Kinetics of Citropin 1.1 from the Poly(ε-caprolactone) Microparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E482. [PMID: 29966346 PMCID: PMC6071209 DOI: 10.3390/nano8070482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 06/22/2018] [Accepted: 06/28/2018] [Indexed: 01/22/2023]
Abstract
Cationic antimicrobial peptides represent a promising therapeutic option against multidrug-resistant bacteria for the treatment of local infections. However, due to their low stability and potential toxicity, there are limited possibilities for their application in clinical practice. In this study, different poly(ε-caprolactone) (PCL) microparticles (MPs) loaded with citropin 1.1 (CIT) were investigated in order to demonstrate the effect of the polymer microstructure on the encapsulation efficiency (EE) and kinetics of the peptide release from the newly developed devices. The characteristics of the new systems in terms of surface morphology, particle size, EE and zeta potential analysis, as well as the haemolytic activities of the peptide were investigated. The in vitro release kinetics of CIT from the MPs was also investigated. CIT loading was favoured by a high content of negative charged linear polymer chains in the PCL structure. The presence of non-charged, amorphous macrocycle domains results in faster degradation of the PCL matrix. Depending on the crystallinity of the PCL, the peptide release exhibited a near-zero-order or near-first-order profile with no “burst release”. The results indicated that CIT-loaded PCL MPs could potentially be a promising drug delivery system (DDS) for the treatment of local infections.
Collapse
Affiliation(s)
- Urszula Piotrowska
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland.
- Department of Organic Chemistry and Biochemistry, Faculty of Materials Science and Design, Kazimierz Pulaski University of Technology and Humanities in Radom, 27 Chrobrego St., 26-600 Radom, Poland.
| | - Ewa Oledzka
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland.
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Gdansk, Al. Gen. J. Hallera 107 St., 80-416 Gdansk, Poland.
| | - Sławomir Białek
- Department of Biochemistry and Clinical Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland.
| | - Marcin Sobczak
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland.
- Department of Organic Chemistry and Biochemistry, Faculty of Materials Science and Design, Kazimierz Pulaski University of Technology and Humanities in Radom, 27 Chrobrego St., 26-600 Radom, Poland.
| |
Collapse
|