1
|
Szefczyk M, Szulc N, Gąsior-Głogowska M, Bystranowska D, Żak A, Sikora A, Polańska O, Ożyhar A, Berlicki Ł. The application of the hierarchical approach for the construction of foldameric peptide self-assembled nanostructures. SOFT MATTER 2023; 19:3828-3840. [PMID: 37191235 DOI: 10.1039/d3sm00005b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In this paper, we show that a hierarchical approach for the construction of nanofibrils based on α,β-peptide foldamers is a rational method for the design of novel self-assembled nanomaterials based on peptides. Incorporation of a trans-(1S,2S)-2-aminocyclopentanecarboxylic acid residue into the outer positions of the model coiled-coil peptide led to the formation of helical foldamers, which was determined by circular dichroism (CD) and vibrational spectroscopy. The oligomerization state of the obtained peptides in water was established by analytical ultracentrifugation (AUC). The thioflavin T assay and Congo red methods showed that the obtained α,β-peptides possess a strong tendency to aggregate, leading to the formation of self-assembled nanostructures, which were assessed by microscopic techniques. The location of the β-amino acid in the heptad repeat of the coiled-coil structure proved to have an influence on the secondary structure of the obtained peptides and on the morphology of the self-assembled nanostructures.
Collapse
Affiliation(s)
- Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Natalia Szulc
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Marlena Gąsior-Głogowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Dominika Bystranowska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Andrzej Żak
- Electron Microscopy Laboratory, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Andrzej Sikora
- Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Oliwia Polańska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
2
|
1,3,5-Triazine Nitrogen Mustards with Different Peptide Group as Innovative Candidates for AChE and BACE1 Inhibitors. Molecules 2021; 26:molecules26133942. [PMID: 34203347 PMCID: PMC8271926 DOI: 10.3390/molecules26133942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/03/2021] [Accepted: 06/24/2021] [Indexed: 11/26/2022] Open
Abstract
A series of new analogs of nitrogen mustards (4a–4h) containing the 1,3,5-triazine ring substituted with dipeptide residue were synthesized and evaluated for the inhibition of both acetylcholinesterase (AChE) and β-secretase (BACE1) enzymes. The AChE inhibitory activity studies were carried out using Ellman’s colorimetric method, and the BACE1 inhibitory activity studies were carried out using fluorescence resonance energy transfer (FRET). All compounds displayed considerable AChE and BACE1 inhibition. The most active against both AChE and BACE1 enzymes were compounds A and 4a, with an inhibitory concentration of AChE IC50 = 0.051 µM; 0.055 µM and BACE1 IC50 = 9.00 µM; 11.09 µM, respectively.
Collapse
|
3
|
Functionalized Peptide Fibrils as a Scaffold for Active Substances in Wound Healing. Int J Mol Sci 2021; 22:ijms22083818. [PMID: 33917000 PMCID: PMC8067766 DOI: 10.3390/ijms22083818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/03/2021] [Indexed: 12/21/2022] Open
Abstract
Technological developments in the field of biologically active peptide applications in medicine have increased the need for new methods for peptide delivery. The disadvantage of peptides as drugs is their low biological stability. Recently, great attention has been paid to self-assembling peptides that can form fibrils. Such a formulation makes bioactive peptides more resistant to enzymatic degradation and druggable. Peptide fibrils can be carriers for peptides with interesting biological activities. These features open up prospects for using the peptide fibrils as long-acting drugs and are a valid alternative to conventional peptidic therapies. In our study, we designed new peptide scaffolds that are a hybrid of three interconnected amino acid sequences and are: pro-regenerative, cleavable by neutrophilic elastase, and fibril-forming. We intended to obtain peptides that are stable in the wound environment and that, when applied, would release a biologically active sequence. Our studies showed that the designed hybrid peptides show a high tendency toward regular fibril formation and are able to release the pro-regenerative sequence. Cytotoxicity studies showed that all the designed peptides were safe, did not cause cytotoxic effects and revealed a pro-regenerative potential in human fibroblast and keratinocyte cell lines. In vivo experiments in a dorsal skin injury model in mice indicated that two tested peptides moderately promote tissue repair in their free form. Our research proves that peptide fibrils can be a druggable form and a scaffold for active peptides.
Collapse
|
4
|
Fraczyk A, Janczewski L, Wasko J, Rozniakowski K, Galecki K, Kaminski ZJ, Kolesinska B. Non-Aggregating Amylin Fragments as an Inhibitors of the Aggregation Process of Susceptible to Aggregation Fragments 18-22, 23-27, and 33-37 of Hormone. Chem Biodivers 2021; 18:e2100034. [PMID: 33687147 DOI: 10.1002/cbdv.202100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/18/2021] [Indexed: 11/10/2022]
Abstract
Amylin aggregation is one of the factors in the development of diabetes mellitus, which is classified as a civilization disease. The aim of this research was to find whether non-aggregating fragments 1-7, 8-12, 13-17 and 28-32 of amylin would inhibit the aggregation of the amyloidogenic cores 18-22, 23-27, 33-37 of hormone. In the study of the inhibitory potential of non-aggregating amylin fragments, a set of independent methods were used to study aggregation properties (spectroscopic and fluorescence studies with the use of indicators, microscopic studies, circular dichroism studies) and the method of prediction of aggregation properties. The performed research allowed to select the cyclic fragment (1-7) H-KCNTATC-OH with disulfide bond as an inhibitor capable of inhibiting the aggregation of all amyloidogenic cores 18-22, 23-27, 33-37 of the hormone. Additionally, it was found that this peptide inhibits insulin hot spot aggregation, which may indicate its universal utility in inhibiting the process of aggregation of hormones regulating carbohydrate metabolism directly related to the development of diabetes. Research on the possibility of the extensive use of the cyclic fragment (1-7) of H-KCNTATC-OH as a peptide inhibitor of the polypeptide/protein aggregation process is ongoing.
Collapse
Affiliation(s)
- Andrzej Fraczyk
- Institute of Applied Computer Science, Lodz University of Technology, Stefanowskiego Łódź, 18/22, 90-537, Lodz, Poland
| | - Lukasz Janczewski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Joanna Wasko
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Kamil Rozniakowski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Krystian Galecki
- Institute of General Food Chemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924, Lodz, Poland
| | - Zbigniew J Kaminski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| |
Collapse
|
5
|
Xie X, Zheng T, Li W. Recent Progress in Ionic Coassembly of Cationic Peptides and Anionic Species. Macromol Rapid Commun 2020; 41:e2000534. [PMID: 33225490 DOI: 10.1002/marc.202000534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/10/2020] [Indexed: 12/25/2022]
Abstract
Peptide assembly has been extensively exploited as a promising platform for the creation of hierarchical nanostructures and tailor-made bioactive materials. Ionic coassembly of cationic peptides and anionic species is paving the way to provide particularly important contribution to this topic. In this review, the recent progress of ionic coassembly soft materials derived from the electrostatic coupling between cationic peptides and anionic species in aqueous solution is systematically summarized. The presentation of this review starts from a brief background on the general importance and advantages of peptide-based ionic coassembly. After that, diverse combinations of cationic peptides with small anions, macro- and/or oligo-anions, anionic polymers, and inorganic polyoxometalates are described. Emphasis is placed on the hierarchical structures, value-added properties, and applications. The molecular design of cationic peptides and the general principles behind the ionic coassembled structures are discussed. It is summarized that the combination of interesting and unique characteristics that arise both from the chemical diversity of peptides and the wide range of anionic species may contribute in a variety of output, including drug delivery, tissue engineering, gene transfection, and antibacterial activity. The emergent new phenomena and findings are illustrated. Finally, the outlook for the peptide-based ionic coassembly systems is also presented.
Collapse
Affiliation(s)
- Xiaoming Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjing Avenue 2699, Changchun, 130012, China.,Department of Chemistry, Xinzhou Teachers' University, Xinzhou, Shanxi, 034000, China
| | - Tingting Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjing Avenue 2699, Changchun, 130012, China
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjing Avenue 2699, Changchun, 130012, China
| |
Collapse
|
6
|
Development and application of a 3D periodontal in vitro model for the evaluation of fibrillar biomaterials. BMC Oral Health 2020; 20:148. [PMID: 32429904 PMCID: PMC7238548 DOI: 10.1186/s12903-020-01124-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Background Periodontitis is a chronic inflammation of the tooth supporting structures that finally can lead to tooth loss. As chronic periodontitis is associated with systemic diseases multiple approaches have been followed to support regeneration of the destructed tissue. But very few materials are actually used in the clinic. A new and promising group of biomaterials with advantageous biomechanical properties that have the ability to support periodontal regeneration are self-assembling peptides (SAP). However, there is still a lack of 3D periodontal models that can evaluate the migration potential of such novel materials. Methods All experiments were performed with primary human periodontal ligament fibroblasts (HPLF). Migration capacity was assessed in a three-dimensional model of the human periodontal ligament by measuring the migration distance of viable cells on coated (Enamel Matrix Protein (EMP), P11–4, collagen I) or uncoated human dentin. Cellular metabolic activity on P11–4 hydrogels was assessed by a metabolic activity assay. Deposition of ECM molecules in a P11–4 hydrogel was visualized by immunostaining of collagen I and III and fibrillin I. Results The 3D periodontal model was feasible to show the positive effect of EMP for periodontal regeneration. Subsequently, self-assembling peptide P11–4 was used to evaluate its capacity to support regenerative processes in the 3D periodontal model. HPLF coverage of the dentin surface coated with P11–4 increased significantly over time, even though delayed compared to EMP. Cell viability increased and inclusion of ECM proteins into the biomaterial was shown. Conclusion The presented results indicate that the 3D periodontal model is feasible to assess periodontal defect coverage and that P11–4 serves as an efficient supporter of regenerative processes in the periodontal ligament. Clinical relevance The establishment of building-block synthetic polymers offers new opportunities for clinical application in dentistry. Self-assembling peptides represent a new generation of biomaterials as they are able to respond dynamically to the changing environment of the biological surrounding. Especially in the context of peri-implant disease prevention and treatment they enable the implementation of new concepts.
Collapse
|
7
|
Lipinski W, Wasko J, Walczak M, Fraczyk J, Kaminski ZJ, Galecki K, Draczynski Z, Krucinska I, Kaminska M, Kolesinska B. Fibrous Aggregates of Short Peptides Containing Two Distinct Aromatic Amino Acid Residues. Chem Biodivers 2019; 16:e1900339. [PMID: 31557397 DOI: 10.1002/cbdv.201900339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022]
Abstract
The aim of the study was the assessment of the ability of short peptides to form aggregates under physiological conditions. The dipeptides studied were derived from different aromatic amino acids (heteroaromatic peptides). Tripeptides were obtained from two distinct aromatic amino acids and cysteine or methionine residue in the C-terminal, N-terminal, or central position. The ability of the peptides to form fibrous aggregates under physiological conditions was evaluated using three independent methods: the Congo Red assay, the Thioflavin T assay, and microscopic examinations using normal and polarized light. Materials potentially useful for regenerative medicine were selected based on their cytotoxicity to the endothelial cell line EA.hy 926 and physicochemical properties of films formed by peptides. The required parameters of biocompatibility were fulfilled by H-PheCysTrp-OH, H-PheCysTyr-OH, H-PheTyrMet-OH, and H-TrpTyr-OH.
Collapse
Affiliation(s)
- Wojciech Lipinski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Joanna Wasko
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Malgorzata Walczak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Justyna Fraczyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Zbigniew J Kaminski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Krystian Galecki
- Institute of General Food Chemistry, Faculty of Biotechnology & Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924, Lodz, Poland
| | - Zbigniew Draczynski
- Department of Material and Commodity Sciences and Textile Metrology, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Izabella Krucinska
- Department of Material and Commodity Sciences and Textile Metrology, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Marta Kaminska
- Division of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924, Lodz, Poland
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| |
Collapse
|
8
|
Chaberska A, Fraczyk J, Wasko J, Rosiak P, Kaminski ZJ, Solecka A, Stodolak‐Zych E, Strzempek W, Menaszek E, Dudek M, Niemiec W, Kolesinska B. Study on the Materials Formed by Self‐Assembling Hydrophobic, Aromatic Peptides Dedicated to Be Used for Regenerative Medicine. Chem Biodivers 2019; 16:e1800543. [DOI: 10.1002/cbdv.201800543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/13/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Agata Chaberska
- Institute of Organic ChemistryLodz University of Technology Zeromskiego 116 90-924 Lodz Poland
| | - Justyna Fraczyk
- Institute of Organic ChemistryLodz University of Technology Zeromskiego 116 90-924 Lodz Poland
| | - Joanna Wasko
- Institute of Organic ChemistryLodz University of Technology Zeromskiego 116 90-924 Lodz Poland
| | - Piotr Rosiak
- Institute of Organic ChemistryLodz University of Technology Zeromskiego 116 90-924 Lodz Poland
| | - Zbigniew J. Kaminski
- Institute of Organic ChemistryLodz University of Technology Zeromskiego 116 90-924 Lodz Poland
| | - Agnieszka Solecka
- AGH – University of Science and TechnologyDepartment of Biomaterials A. Mickiewicz 30 30-059 Krakow Poland
| | - Ewa Stodolak‐Zych
- AGH – University of Science and TechnologyDepartment of Biomaterials A. Mickiewicz 30 30-059 Krakow Poland
| | - Weronika Strzempek
- Department of Cytology, CMUJJagiellonian University Medical College Swietej Anny 12 31-008 Krakow Poland
| | - Elzbieta Menaszek
- Department of Cytology, CMUJJagiellonian University Medical College Swietej Anny 12 31-008 Krakow Poland
| | - Mariusz Dudek
- Institute of Materials Science and EngineeringLodz University of Technology Stefanowskiego 1/15 90-924 Lodz Poland
| | - Wiktor Niemiec
- AGH – University of Science and TechnologyDepartment of Silicate Chemistry and Macromolecular Compounds Department of Silicates Chemistry A. Mickiewicza 30 30-059 Krakow Poland
| | - Beata Kolesinska
- Institute of Organic ChemistryLodz University of Technology Zeromskiego 116 90-924 Lodz Poland
| |
Collapse
|