1
|
Sethi S, Takashima Y, Nakamura S, Wan L, Honda N, Fujimoto K. Acceleration of the Deamination of Cytosine through Photo-Crosslinking. Curr Issues Mol Biol 2023; 45:4687-4700. [PMID: 37367047 DOI: 10.3390/cimb45060298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Herein, we report the major factor for deamination reaction rate acceleration, i.e., hydrophilicity, by using various 5-substituted target cytosines and by carrying out deamination at high temperatures. Through substitution of the groups at the 5'-position of the cytosine, the effect of hydrophilicity was understood. It was then used to compare the various modifications of the photo-cross-linkable moiety as well as the effect of the counter base of the cytosine to edit both DNA and RNA. Furthermore, we were able to achieve cytosine deamination at 37 °C with a half-life in the order of a few hours.
Collapse
Affiliation(s)
- Siddhant Sethi
- Bioscience, Biotechnology, and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Ishikawa, Nomi 923-1292, Japan
| | - Yasuharu Takashima
- Bioscience, Biotechnology, and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Ishikawa, Nomi 923-1292, Japan
| | - Shigetaka Nakamura
- Bioscience, Biotechnology, and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Ishikawa, Nomi 923-1292, Japan
| | - Licheng Wan
- Bioscience, Biotechnology, and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Ishikawa, Nomi 923-1292, Japan
| | - Nozomi Honda
- Bioscience, Biotechnology, and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Ishikawa, Nomi 923-1292, Japan
| | - Kenzo Fujimoto
- Bioscience, Biotechnology, and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Ishikawa, Nomi 923-1292, Japan
| |
Collapse
|
2
|
Bhakta S, Tsukahara T. Artificial RNA Editing with ADAR for Gene Therapy. Curr Gene Ther 2021; 20:44-54. [PMID: 32416688 DOI: 10.2174/1566523220666200516170137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Abstract
Editing mutated genes is a potential way for the treatment of genetic diseases. G-to-A mutations are common in mammals and can be treated by adenosine-to-inosine (A-to-I) editing, a type of substitutional RNA editing. The molecular mechanism of A-to-I editing involves the hydrolytic deamination of adenosine to an inosine base; this reaction is mediated by RNA-specific deaminases, adenosine deaminases acting on RNA (ADARs), family protein. Here, we review recent findings regarding the application of ADARs to restoring the genetic code along with different approaches involved in the process of artificial RNA editing by ADAR. We have also addressed comparative studies of various isoforms of ADARs. Therefore, we will try to provide a detailed overview of the artificial RNA editing and the role of ADAR with a focus on the enzymatic site directed A-to-I editing.
Collapse
Affiliation(s)
- Sonali Bhakta
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomicity, Ishikawa, 923-1292, Japan
| | - Toshifumi Tsukahara
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomicity, Ishikawa, 923-1292, Japan
| |
Collapse
|
3
|
Reveguk ZV, Khoroshilov EV, Sharkov AV, Pomogaev VA, Buglak AA, Tarnovsky AN, Kononov AI. Exciton Absorption and Luminescence in i-Motif DNA. Sci Rep 2019; 9:15988. [PMID: 31690734 PMCID: PMC6831829 DOI: 10.1038/s41598-019-52242-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/17/2019] [Indexed: 11/08/2022] Open
Abstract
We have studied the excited-state dynamics for the i-motif form of cytosine chains (dC)10, using the ultrafast fluorescence up-conversion technique. We have also calculated vertical electronic transition energies and determined the nature of the corresponding excited states in a model tetramer i-motif structure. Quantum chemical calculations of the excitation spectrum of a tetramer i-motif structure predict a significant (0.3 eV) red shift of the lowest-energy transition in the i-motif form relative to its absorption maximum, which agrees with the experimental absorption spectrum. The lowest excitonic state in i-(dC)10 is responsible for a 2 ps red-shifted emission at 370 nm observed in the decay-associated spectra obtained on the femtosecond time-scale. This delocalized (excitonic) excited state is likely a precursor to a long-lived excimer state observed in previous studies. Another fast 310 fs component at 330 nm is assigned to a monomer-like locally excited state. Both emissive states form within less than the available time resolution of the instrument (100 fs). This work contributes to the understanding of excited-state dynamics of DNA within the first few picoseconds, which is the most interesting time range with respect to unraveling the photodamage mechanism, including the formation of the most dangerous DNA lesions such as cyclobutane pyrimidine dimers.
Collapse
Affiliation(s)
- Zakhar V Reveguk
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, 199034, St. Petersburg, Russia
| | - Evgeny V Khoroshilov
- P.N. Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninsky Pr., 119991, Moscow, Russia
| | - Andrey V Sharkov
- P.N. Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninsky Pr., 119991, Moscow, Russia
| | - Vladimir A Pomogaev
- Department of Physics, Tomsk State University, Tomsk, 634050, Russia
- Department of Chemistry and Green-Nano Materials Research Center, College of Natural Sciences, Kyungpook National University 1370 Sankyuk-dong, Buk-gu, Daegu, 702-701, Republic of Korea
| | - Andrey A Buglak
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, 199034, St. Petersburg, Russia
| | - Alexander N Tarnovsky
- Department of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - Alexei I Kononov
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, 199034, St. Petersburg, Russia.
| |
Collapse
|
4
|
Jiang C, Lin X, Zhao Z. Applications of CRISPR/Cas9 Technology in the Treatment of Lung Cancer. Trends Mol Med 2019; 25:1039-1049. [DOI: 10.1016/j.molmed.2019.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/12/2019] [Accepted: 07/22/2019] [Indexed: 12/18/2022]
|
5
|
Sethi S, Honda N, Wan L, Nakamura S, Fujimoto K. Ultra-acceleration of Photochemical Cytosine Deamination by Using a 5'-Phosphate-Substituted Oligodeoxyribonucleotide Probe Containing a 3-Cyanovinylcarbazole Nucleotide at Its 5'-End. Chembiochem 2018; 19:2257-2261. [PMID: 30195263 DOI: 10.1002/cbic.201800384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Indexed: 01/18/2023]
Abstract
Genes are the blueprints for the architectures of living organisms, providing the backbone of the information required for formation of proteins. Changes in genes lead to disorders, and these disorders could be rectified by reversing the mutations that caused them. Photochemical methods currently in use for site-directed mutagenesis employ the photoactive 3-cyanovinylcarbazole (CNV K) nucleotide incorporated in the oligodeoxyribonucleotide (ODN) backbone. The major drawback of this method, the requirement for high temperature, has been addressed, and deamination has previously been achieved at 37 °C but with low efficiency. Here, efficient deamination has been accomplished under physiological conditions by using a short complementary photoactive ODN with a 5'-phosphate group in the -1 position with respect to the target cytosine. It is hypothesized that the free phosphate group affects the microenvironment around the target cytosine by activating the incoming nucleophile through hydrogen bonding with the water molecule, thus facilitating nucleophilic attack on the cytosine C-4 carbon. The degree of deamination observed in this technique is high and the effect of the phosphate group is to accelerate the deamination reaction.
Collapse
Affiliation(s)
- Siddhant Sethi
- Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Nomi, Ishikawa, 923-1292, Japan
| | - Nozomi Honda
- Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Nomi, Ishikawa, 923-1292, Japan
| | - Licheng Wan
- Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Nomi, Ishikawa, 923-1292, Japan
| | - Shigetaka Nakamura
- Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Nomi, Ishikawa, 923-1292, Japan
| | - Kenzo Fujimoto
- Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Nomi, Ishikawa, 923-1292, Japan
| |
Collapse
|