1
|
Elariny HA, Kabel AM, Selim HMRM, Helal AI, Abdelrahman D, Borg HM, Elkady MA, Dawood LM, El-Badawy MF, Almalawi HFA, Arafa ESA, Alsufyani SE, Arab HH. Repositioning Canagliflozin for Mitigation of Aluminium Chloride-Induced Alzheimer's Disease: Involvement of TXNIP/NLRP3 Inflammasome Axis, Mitochondrial Dysfunction, and SIRT1/HMGB1 Signalling. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1805. [PMID: 39596990 PMCID: PMC11596744 DOI: 10.3390/medicina60111805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Background and Objectives: Alzheimer's disease (AD) is the most common neurodegenerative disorder in the world. Due to failure of the traditional drugs to produce a complete cure for AD, the search for new safe and effective lines of therapy has attracted the attention of ongoing research. Canagliflozin is an anti-diabetic agent with proven efficacy in the treatment of neurological disorders in which mitochondrial dysfunction, oxidative stress, apoptosis, and autophagy play a pathophysiological role. Elucidation of the potential effects of different doses of canagliflozin on AD induced by aluminium chloride in rats and exploration of the molecular mechanisms that may contribute to these effects were the primary objectives of the current study. Materials and Methods: In a rat model of AD, the effect of three different doses of canagliflozin on the behavioural, biochemical, and histopathological alterations induced by aluminium chloride was assessed. Results: Canagliflozin administered to aluminium chloride-treated animals induced dose-dependent normalisation in the behavioural tests, augmentation of the antioxidant defence mechanisms, inhibition of TXNIP/NLRP3 inflammasome signalling, modulation of the SIRT1/HMGB1 axis, interference with the pro-inflammatory and the pro-apoptotic mechanisms, and restoration of the mitochondrial functions and autophagy in the hippocampal tissues to approximately baseline values. In addition, canagliflozin exhibited an interesting dose-dependent ability to repress aluminium chloride-induced histopathological changes in the brain. Conclusions: The effects of canagliflozin on oxidative stress, mitochondrial functions, inflammatory pathways, and autophagy signals may open new gates towards the mitigation of the pathologic features of AD.
Collapse
Affiliation(s)
- Hemat A. Elariny
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 55476, Saudi Arabia;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 35527, Egypt
| | - Ahmed M. Kabel
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (A.M.K.); (M.A.E.)
| | - Heba Mohammed Refat M. Selim
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia;
| | - Azza I. Helal
- Department of Histology and Cell Biology, Faculty of Medicine, Kafrelsheikh University, Kafr El-Shaikh 33516, Egypt;
| | - Doaa Abdelrahman
- Internal Medicine Department, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hany M. Borg
- Physiology Department, Faculty of Medicine, Kafrelsheikh University, Kafr El-Shaikh 33516, Egypt;
| | - Mennatallah A. Elkady
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (A.M.K.); (M.A.E.)
| | - Lamees M. Dawood
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt;
| | - Mohamed F. El-Badawy
- Microbiology and Immunology Department, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt;
| | | | - El-Shaimaa A. Arafa
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Shuruq E. Alsufyani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (S.E.A.); (H.H.A.)
| | - Hany H. Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (S.E.A.); (H.H.A.)
| |
Collapse
|
2
|
Yadav H, Maiti S. Poly(allylamine)-adorned heptylcarboxymethyl galactomannan nanocarriers of canagliflozin for controlling type-2 diabetes: Optimization by Box-Behnken design and in vivo performance. Int J Biol Macromol 2024; 277:134253. [PMID: 39084426 DOI: 10.1016/j.ijbiomac.2024.134253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/10/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
In the past three decades, the prevalence of type-2 diabetes has arisen dramatically in countries of all income levels. A novel, most effective nanotechnology-based strategy may reduce the prevalence of diabetes. Recently, the shell-crosslinked polysaccharide-based micellar nanocarriers (MNCs) have shown great promise in terms of stability, controlled drug release, and improved in vivo performance. In this study, heptyl carboxymethyl guar gum was synthesized and characterized by ATR-FTIR, 1HNMR spectroscopy, surface charge, critical micelle concentration (23.9 μg/mL), and cytotoxicity analysis. Box-Behnken design was used to optimize the diameter, zeta potential, drug entrapment efficiency (DEE), and drug release characteristics of poly (allylamine)-crosslinked MNCs containing canagliflozin. The optimized MNCs revealed spherical morphology under TEM and had 149.3 nm diameter (PDI 21.2 %), +53.8 mV zeta potential, and 84 % DEE. The MNCs released about 63 % of the drug in 12 h under varying pH of the simulated gastrointestinal fluid. DSC and x-ray analyses suggested amorphous dispersion of drugs in the MNCs. CAM assay demonstrated the biocompatibility of the MNCs. The MNCs showed hemolysis of <1 %, 85 % mucin adsorption, and stability over three months. The MNCs demonstrated excellent anti-diabetic efficacy in streptozotocin-nicotinamide-induced diabetic rats, continuously lowering blood glucose levels up to 12 h.
Collapse
Affiliation(s)
- Harsh Yadav
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India.
| |
Collapse
|
3
|
Rageh AH, Abdel-Aal FAM, Farrag SA, Ali AMBH. A surfactant-based quasi-hydrophobic deep eutectic solvent for dispersive liquid-liquid microextraction of gliflozins from environmental water samples using UHPLC/fluorescence detection. Talanta 2024; 266:124950. [PMID: 37524041 DOI: 10.1016/j.talanta.2023.124950] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
Despite the anticipated exceptional properties of deep eutectic solvents (DES) in microextraction techniques, their self-aggregation behaviour has only been sporadically studied in the previous literature. In the presented study, a novel surfactant-based quasi-hydrophobic deep eutectic solvent (DES) is synthesized and utilized in dispersive liquid-liquid microextraction (DLLME) of three gliflozins in environmental water samples as a proof-of-concept examples. The synthesized DES is composed of benzalkonium chloride (BZKCl) as a hydrogen bond acceptor and octanol (Oct) as a hydrogen bond donor. A full optimization of the extraction conditions was carried out including molar ratio and composition of DES, volume of DES, volume of water samples, extraction time and type of diluting solvent. Moreover, the extraction mechanism was thoroughly investigated, and it was established that the extraction of the target analytes is attributed to the analytes' incorporation into the micelles' cores that facilitates mass transfer from the aqueous layer into DES layer. Furthermore, micelles formed by surfactant-based DES will provide adequate dispersion of extractant phase within water samples, which consequently improves the extraction efficiency. Micelles formation was confirmed by transmission electron microscopy (TEM). Furthermore, 1H NMR spectra verifies that the synthesized DES keeps its integrity even after extraction, which excludes any decomposition of DES after DLLME procedure. The extraction recovery is in an excellent agreement with the hydrophobicity of the investigated drugs, being the highest for the most hydrophobic one. The extracted analytes were separated by UHPLC coupled with fluorescence detection. Under the optimized experimental conditions, the method exhibits excellent linearity and a high detection sensitivity with a limit of detection of 0.5, 2.0 and 0.1 ng mL-1 for EMP (empagliflozin), DAP (dapagliflozin) and CAN (canagliflozin), respectively. The greenness of the developed microextraction approach was assessed by different greenness metrics such as Complex GAPI and AGREE tools. The developed method shows excellent greenness of synthetic procedure for preparation of DES, the environmentally benign nature of DLLME procedure as well as the greenness of the developed UHPLC approach.
Collapse
Affiliation(s)
- Azza H Rageh
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Fatma A M Abdel-Aal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Sherien A Farrag
- Institute for Drug Development and Innovation Research (IDDIR), Assiut University, Assiut, Egypt
| | - Al-Montaser Bellah H Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
4
|
Haneef J, Khan MD. Liquid chromatographic methods for the analysis of canagliflozin: concise overview and greener assessment. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4627-4639. [PMID: 37694570 DOI: 10.1039/d3ay00896g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
There is a pressing need for the development of greener liquid chromatographic bioanalytical methods for antidiabetic drugs for plasma monitoring and revisiting patients' dosage regimens. Besides, analytical methods are also needed for the quality assurance of finished drug products and regulatory approval. Therefore, the present review focuses on the reported liquid chromatographic methods (LC and LC-MS/MS) that are applied for quality control, forced degradation, and pharmacokinetic studies of a newer antidiabetic agent, canagliflozin (CNG). These reported studies are summarized based on liquid chromatographic separation parameters, such as column dimensions, mobile-phase compositions, flow rate, and use of different detection systems (UV, PDA, and mass spectrometry). The sample pretreatment of biological fluids, which is important for minimizing the matrix effect, is dealt with separately. Liquid-liquid extraction was found to be the most preferred methodology adopted for sample pretreatment followed by the solid-phase extraction technique. However, miniaturized novel pretreatment methods are untraceable in the literature for the extraction of CNG. Special emphasis is paid to the assessment of the greenness profiles of the reported analytical methods for the consideration of sustainable development and green analytical chemistry. Based on the National Environmental Method Index (NEMI) assessment tool, most of the reported studies fulfilled around half of the parameters and were found to be about 50% greener. It is proposed that toxic or hazardous solvents, such as acetonitrile or methanol, should be replaced with greener and environmentally friendly solvents. Thus, there is a need to develop more robust, efficient, and greener liquid chromatographic methods for the determination of CNG in biological fluids and drug products.
Collapse
Affiliation(s)
- Jamshed Haneef
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110 062, India.
| | - Mohd Danish Khan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110 062, India.
| |
Collapse
|
5
|
Gumieniczek A, Berecka-Rycerz A. Metabolism and Chemical Degradation of New Antidiabetic Drugs: A Review of Analytical Approaches for Analysis of Glutides and Gliflozins. Biomedicines 2023; 11:2127. [PMID: 37626624 PMCID: PMC10452759 DOI: 10.3390/biomedicines11082127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
The drug metabolism and drug degradation pathways may overlap, resulting in the formation of similar constituents. Therefore, the metabolism data can be helpful for deriving safe levels of degradation impurities and improving the quality of respective pharmaceutical products. The present article contains considerations on possible links between metabolic and degradation pathways for new antidiabetic drugs such as glutides, gliflozins, and gliptins. Special attention was paid to their reported metabolites and identified degradation products. At the same time, many interesting analytical approaches to conducting metabolism as well as degradation experiments were mentioned, including chromatographic methods and radioactive labeling of the drugs. The review addresses the analytical approaches elaborated for examining the metabolism and degradation pathways of glutides, i.e., glucagon like peptide 1 (GLP-1) receptor agonists, and gliflozins, i.e., sodium glucose co-transporter 2 (SGLT2) inhibitors. The problems associated with the chromatographic analysis of the peptide compounds (glutides) and the polar drugs (gliflozins) were addressed. Furthermore, issues related to in vitro experiments and the use of stable isotopes were discussed.
Collapse
Affiliation(s)
- Anna Gumieniczek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
| | | |
Collapse
|
6
|
Hendy MS, Mowaka S, Elkady EF, El-Zaher A, Ayoub BM. The potential off-target neuroprotective effect of sister gliflozins suggests their repurposing despite not crossing the blood-brain barrier: From bioanalytical assay in rats into theory genesis. J Sep Sci 2023; 46:e2200921. [PMID: 36637096 DOI: 10.1002/jssc.202200921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
Gliflozins are successfully marketed antidiabetic agents with a reported neuroprotective effect, and this study tests their blood-brain barrier crossing ability. Henceforward, a computational hypothesis interpreting their effects was reasonable after failure to cross into the brain. A chromatographic bioassay for canagliflozin, dapagliflozin, and empagliflozin was developed, validated, and applied to the rat's and rat's plasma and brain. HPLC method robustness was tested over two levels using Design of Experiment on MINITAB. It is the first method for gliflozins' detection in rats' brain tissue. The method was applied on 18 rats and six for each drug. Concentrations in plasma were determined but neither of them was detected in brain at the described chromatographic conditions. A computational study for the three drugs was endorsing two techniques. First, ligand-based target fishing reveals possible targets for gliflozins. They showed an ability to bind with human equilibrative nucleoside transporter 1, a regulator of adenosine extracellularly. Second, a docking study was carried out on this protein receptor. Results showed perfect alignment with a minimum of one hydrogen bond. Dapagliflozin achieved the lowest energy score with two hocking hydrogen bonds. This is proposing gliflozins ability to regulate equilibrative nucleoside transporter 1 receptors in peripheries, elevating the centrally acting neuroprotective adenosine.
Collapse
Affiliation(s)
- Moataz S Hendy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.,The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Shereen Mowaka
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.,The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.,Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo, Egypt
| | - Ehab F Elkady
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Asmaa El-Zaher
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Bassam M Ayoub
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.,School of Arts and Sciences, Concordia University Irvine, Irvine, California, USA
| |
Collapse
|
7
|
Current analytical methods to monitor type 2 diabetes medication in biological samples. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Wang S, Ding Y, Dong R, Wang H, Yin L, Meng S. Canagliflozin Improves Liver Function in Rats by Upregulating Asparagine Synthetase. Pharmacology 2021; 106:606-615. [PMID: 34515223 DOI: 10.1159/000518492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/14/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Canagliflozin (CANA) is a sodium-glucose cotransporter 2 inhibitor that was recently approved for treating diabetes. However, its effects on liver function are not well understood. The function of asparagine synthetase (ASNS) has been studied in several cancers but not in liver injury. Therefore, we investigated the connection between CANA and ASNS in alleviating damage (i.e., their hepatoprotective effect) in a rat liver injury model. METHODS The rat model of liver injury was established using carbon tetrachloride treatment. Rats with liver injury were administered CANA orally for 8 weeks daily. After week 8, peripheral blood was collected to measure serum alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase levels. Liver histopathology was examined using hematoxylin and eosin staining to determine the degree of liver injury. Protein expression in the rat livers was examined using Western blotting. RESULTS CANA treatment decreased serum alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase levels compared with those of the untreated group, demonstrating diminished liver injury. Mechanistically, CANA treatment activated AMP-activated protein kinase (AMPK), leading to increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and activating transcription factor 4 (ATF4), which upregulated ASNS expression in liver-injured rats. CONCLUSION CANA significantly alleviated liver injury by activating the AMPK/Nrf2/ATF4 axis and upregulating ASNS expression, indicating its potential for treating patients with type 2 diabetes mellitus with impaired liver function.
Collapse
Affiliation(s)
- Shiqi Wang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China
| | - Yasong Ding
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China
| | - Ruoyao Dong
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China
| | - Hongyun Wang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China
| | - Lingdi Yin
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China
| | - Shengnan Meng
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
9
|
Barrios V, Escobar C. Canagliflozin: metabolic, cardiovascular and renal protection. Future Cardiol 2021; 17:443-458. [PMID: 33538620 DOI: 10.2217/fca-2020-0192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Patients with Type 2 Diabetes (T2D) are at risk of developing macrovascular (cardiac, cerebrovascular, peripheral arterial disease) and microvascular (nephropathy, neuropathy, retinopathy) complications. Glycemic control improves only microvascular outcomes. However, some SGLT-2 inhibitors and GLP1-R agonists have proven beneficial in macrovascular conditions. Canagliflozin is an SGLT2 inhibitor that provides sustained reductions in HbA1c, blood pressure and weight. Remarkably, as CANVAS program and CREDENCE trial demonstrated, canagliflozin promotes significant reductions in the frequency of atherosclerotic cardiovascular events, hospitalizations for heart failure and renal outcomes. In addition, real-world studies have confirmed the results of clinical trials in clinical practice. Therefore, canagliflozin should be considered a first-line therapy in the management of T2D patients in order to reduce both micro- and macrovascular complications.
Collapse
Affiliation(s)
- Vivencio Barrios
- Cardiology Department, University Hospital Ramón y Cajal. Alcalá University, Madrid, Spain
| | - Carlos Escobar
- Cardiology Department, University Hospital La Paz, Madrid, Spain
| |
Collapse
|
10
|
In Vitro Metabolism of DWP16001, a Novel Sodium-Glucose Cotransporter 2 Inhibitor, in Human and Animal Hepatocytes. Pharmaceutics 2020; 12:pharmaceutics12090865. [PMID: 32932946 PMCID: PMC7558535 DOI: 10.3390/pharmaceutics12090865] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/29/2020] [Accepted: 09/04/2020] [Indexed: 01/10/2023] Open
Abstract
DWP16001 is currently in a phase 2 clinical trial as a novel anti-diabetes drug for the treatment of type 2 diabetes by selective inhibition of sodium-glucose cotransporter 2. This in vitro study was performed to compare the metabolism of DWP16001 in human, dog, monkey, mouse, and rat hepatocytes, and the drug-metabolizing enzymes responsible for the metabolism of DWP16001 were characterized using recombinant human cytochrome 450 (CYP) and UDP-glucuronosyltransferase (UGT) enzymes expressed from cDNAs. The hepatic extraction ratio of DWP16001 in five species ranged from 0.15 to 0.56, suggesting that DWP16001 may be subject to species-dependent and weak-to-moderate hepatic metabolism. Five phase I metabolites (M1–M5) produced by oxidation as well as three DWP16001 glucuronides (U1–U3) and two hydroxy-DWP16001 (M1) glucuronides (U4, U5), were identified from hepatocytes incubated with DWP16001 by liquid chromatography-high resolution mass spectrometry. In human hepatocytes, M1, M2, M3, U1, and U2 were identified. Formation of M1 and M2 from DWP16001 was catalyzed by CYP3A4 and CYP2C19. M3 was produced by hydroxylation of M1, while M4 was produced by hydroxylation of M2; both hydroxylation reactions were catalyzed by CYP3A4. The formation of U1 was catalyzed by UGT2B7, but UGT1A4, UGT1A9, and UGT2B7 contributed to the formation of U2. In conclusion, DWP16001 is a substrate for CYP3A4, CYP2C19, UGT1A4, UGT1A9, and UGT2B7 enzymes. Overall, DWP16001 is weakly metabolized in human hepatocytes, but there is a potential for the pharmacokinetic modulation and drug–drug interactions, involved in the responsible metabolizing enzymes of DWP16001 in humans.
Collapse
|
11
|
Alam P, Iqbal M, Foudah AI, Alqarni MH, Shakeel F. Quantitative determination of canagliflozin in human plasma samples using a validated HPTLC method and its application to a pharmacokinetic study in rats. Biomed Chromatogr 2020; 34:e4929. [PMID: 32579725 DOI: 10.1002/bmc.4929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
Canagliflozin (CNZ) is the first sodium-glucose co-transporter-2 inhibitor approved for treatment of type 2 diabetes mellitus. In the proposed work, a sensitive, rapid and validated high-performance thin-layer chromatography (HPTLC) method was established for the estimation of CNZ in human plasma for the first time. HPTLC analysis of CNZ and internal standard (sildenafil) was performed on glass coated silica gel 60 F254 HPTLC plates using a binary mixture of chloroform-methanol 9:1 (%, v/v) as the mobile phase. Densitometric detection was done at 295 nm. Retardation factor values were obtained as 0.22 and 0.52 for the CNZ and the IS, respectively. The linearity range of CNZ was obtained as 200-3,200 ng/ml. A simple protein precipitation method was used for the extraction of analyte from plasma using methanol. The proposed HPTLC technique was validated for linearity, accuracy, precision and robustness. The proposed HPTLC technique was successfully utilized for the assessment of pharmacokinetic profile of CNZ in rats after oral administration. After oral administration, the peak plasma concentration of CNZ was obtained as 1458.01 ng/ml in 2 h. The proposed HPTLC method could be applied to the study of the pharmacokinetic profile of pharmaceutical formulations containing CNZ.
Collapse
Affiliation(s)
- Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed I Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammad H Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
|
13
|
Ultrasound-assisted dispersive liquid–liquid microextraction for determination of three gliflozins in human plasma by HPLC/DAD. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1136:121932. [DOI: 10.1016/j.jchromb.2019.121932] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 01/24/2023]
|
14
|
Emam AA, Abdelwahab NS. Stability-indicating chromatographic and chemometric methods for environmentally benign determination of canagliflozin and its major degradation product; A comparative study and greenness assessment. Biomed Chromatogr 2019; 33:e4612. [PMID: 31152603 DOI: 10.1002/bmc.4612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 11/09/2022]
Abstract
Recently, concepts of sustainable developments, like considering the environmental effect of chemicals used and the amount of hazardous wastes produced, has gained much interest. In this work, a recently approved treatment for type II diabetes mellitus, canagliflozin, was quantified along with its degradation product by two eco-friendly methods. The first was a specific green HPLC method using a C18 column as a stationary phase and a mobile phase consisting of methanol-water (98:2, v/v) pumped at a flow rate of 1 mL/min with UV detection at 225 nm, and using ibuprofen as an internal standard. The second method was a partial least square chemometric method with the wavelength range 220-320 nm and the data was autoscaled as a preprocessing step for determination of canagliflozin and its degradation product. The greenness profile of the developed methods was studied and compared with the reported methods. The proposed methods were suitable alternatives for the environmentally harmful reported methods for quality control analyses of canagliflozin-containing samples, analysis of pharmaceutical formulations and sensitive tracing of its possible degradation product. The methods were validated as per International Conference on Harmonization guidelines and statistically compared with the reported HPLC method.
Collapse
Affiliation(s)
- Aml A Emam
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni- Suef University, Egypt
| | - Nada S Abdelwahab
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni- Suef University, Egypt.,Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| |
Collapse
|
15
|
Development of an HPLC-MS/MS method to determine janagliflozin in human plasma and urine: application in clinical study. Bioanalysis 2018; 10:1439-1454. [PMID: 30182735 DOI: 10.4155/bio-2018-0129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM Janagliflozin is a novel, orally selective sodium-glucose co-transporter-2 (SGLT2) inhibitor, which showed good efficacy and safety in preclinical study. The objective of this study is to develop and validate the HPLC-MS/MS method to determine janagliflozin in both of human urine and plasma. METHODS Janagliflozin was separated on Waters Xbridge Phenyl C18 column and detected on API 4000 tandem mass spectrometer with ESI source in negative mode. RESULTS This method provided good linearity in the range of 5-5000 ng/ml and 5-1000 ng/ml in plasma and urine. The matrix effect and extraction recoveries across three concentration levels were consistent. CONCLUSION This validated method is reliable and has been successfully applied to a first-in-human trial of janagliflozin in Chinese subjects.
Collapse
|