1
|
Zhang X, Wei G, Sheng Y, Bai W, Yang J, Zhang W, Ye C. Polymer-Unit Fingerprint (PUFp): An Accessible Expression of Polymer Organic Semiconductors for Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21537-21548. [PMID: 37084318 DOI: 10.1021/acsami.3c03298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
High-performance organic semiconductors (OSCs) can be designed based on the identification of functional units and their role in the material properties. Herein, we present a polymer-unit fingerprint (PUFp) generation framework, "Python-based polymer-unit-recognition script" (PURS), to identify the subunits "polymer unit" in the polymer and generate polymer-unit fingerprint (PUFp). Using 678 collected OSC data, machine learning (ML) models can be used to determine structure-mobility relationships by using PUFp as a structural input, and the classification accuracy reaches 85.2%. A polymer-unit library consisting of 445 units is constructed, and the key polymer units affecting the mobility of OSCs are identified. By investigating the combinations of polymer units with mobility performance, a scheme for designing OSCs by combining ML approaches and PUFp information is proposed. This scheme not only passively predicts OSC mobility but also actively provides structural guidance for high-mobility OSC material design. The proposed scheme demonstrates the ability to screen materials through pre-evaluation and classification ML steps and is an alternative methodology for applying ML in high-mobility OSC discovery.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Materials Science and Engineering & Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- Academy for Advanced Interdisciplinary Studies & Department of Physics, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Genwang Wei
- Department of Materials Science and Engineering & Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- Academy for Advanced Interdisciplinary Studies & Department of Physics, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Ye Sheng
- Department of Materials Science and Engineering & Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- Materials Genome Institute, Shanghai University, Shanghai 200444, P. R. China
| | - Wenjun Bai
- Department of Materials Science and Engineering & Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- Academy for Advanced Interdisciplinary Studies & Department of Physics, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Jiong Yang
- Materials Genome Institute, Shanghai University, Shanghai 200444, P. R. China
- Zhejiang Laboratory, Hangzhou 311100, P. R. China
| | - Wenqing Zhang
- Department of Materials Science and Engineering & Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Caichao Ye
- Department of Materials Science and Engineering & Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- Academy for Advanced Interdisciplinary Studies & Department of Physics, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
2
|
Novel Diketopyrrolopyrrole-Based π-Conjugated Molecules Synthesized Via One-Pot Direct Arylation Reaction. Molecules 2019; 24:molecules24091760. [PMID: 31067638 PMCID: PMC6539255 DOI: 10.3390/molecules24091760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/30/2019] [Accepted: 05/05/2019] [Indexed: 12/17/2022] Open
Abstract
Diketopyrrolopyrrole (DPP) is an important type of π-conjugated building block for high-performance organic electronic materials. DPP-based conjugated materials are usually synthesized via Suzuki, Stille, or Negishi cross-coupling reactions, which require organometallic precursors. In this paper, a series of novel phenyl-cored DPP molecules, including five meta-phenyl-cored molecules and four para-phenyl-cored molecules, have been synthesized in moderate to good yields, in a facile manner, through the Pd-catalyzed direct arylation of C–H bonds, and their optoelectrical properties have been investigated in detail. All new molecules have been fully characterized by NMR, MALDI-TOF MS, elemental analysis, UV–visible spectroscopy, and cyclic voltammetry. This synthetic strategy has evident advantages of atom- and step-economy and low cost, compared with traditional cross-coupling reactions.
Collapse
|