1
|
Yu ZL, Gao RY, Lv C, Geng XL, Ren YJ, Zhang J, Ren JY, Wang H, Ai FB, Wang ZY, Zhang BB, Liu DH, Yue B, Wang ZT, Dou W. Notoginsenoside R1 promotes Lgr5 + stem cell and epithelium renovation in colitis mice via activating Wnt/β-Catenin signaling. Acta Pharmacol Sin 2024; 45:1451-1465. [PMID: 38491161 PMCID: PMC11192909 DOI: 10.1038/s41401-024-01250-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/25/2024] [Indexed: 03/18/2024] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by persistent damage to the intestinal barrier and excessive inflammation, leading to increased intestinal permeability. Current treatments of IBD primarily address inflammation, neglecting epithelial repair. Our previous study has reported the therapeutic potential of notoginsenoside R1 (NGR1), a characteristic saponin from the root of Panax notoginseng, in alleviating acute colitis by reducing mucosal inflammation. In this study we investigated the reparative effects of NGR1 on mucosal barrier damage after the acute injury stage of DSS exposure. DSS-induced colitis mice were orally treated with NGR1 (25, 50, 125 mg·kg-1·d-1) for 10 days. Body weight and rectal bleeding were daily monitored throughout the experiment, then mice were euthanized, and the colon was collected for analysis. We showed that NGR1 administration dose-dependently ameliorated mucosal inflammation and enhanced epithelial repair evidenced by increased tight junction proteins, mucus production and reduced permeability in colitis mice. We then performed transcriptomic analysis on rectal tissue using RNA-sequencing, and found NGR1 administration stimulated the proliferation of intestinal crypt cells and facilitated the repair of epithelial injury; NGR1 upregulated ISC marker Lgr5, the genes for differentiation of intestinal stem cells (ISCs), as well as BrdU incorporation in crypts of colitis mice. In NCM460 human intestinal epithelial cells in vitro, treatment with NGR1 (100 μM) promoted wound healing and reduced cell apoptosis. NGR1 (100 μM) also increased Lgr5+ cells and budding rates in a 3D intestinal organoid model. We demonstrated that NGR1 promoted ISC proliferation and differentiation through activation of the Wnt signaling pathway. Co-treatment with Wnt inhibitor ICG-001 partially counteracted the effects of NGR1 on crypt Lgr5+ ISCs, organoid budding rates, and overall mice colitis improvement. These results suggest that NGR1 alleviates DSS-induced colitis in mice by promoting the regeneration of Lgr5+ stem cells and intestinal reconstruction, at least partially via activation of the Wnt/β-Catenin signaling pathway. Schematic diagram of the mechanism of NGR1 in alleviating colitis. DSS caused widespread mucosal inflammation epithelial injury. This was manifested by the decreased expression of tight junction proteins, reduced mucus production in goblet cells, and increased intestinal permeability in colitis mice. Additionally, Lgr5+ ISCs were in obviously deficiency in colitis mice, with aberrant down-regulation of the Wnt/β-Catenin signaling. However, NGR1 amplified the expression of the ISC marker Lgr5, elevated the expression of genes associated with ISC differentiation, enhanced the incorporation of BrdU in the crypt and promoted epithelial restoration to alleviate DSS-induced colitis in mice, at least partially, by activating the Wnt/β-Catenin signaling pathway.
Collapse
Affiliation(s)
- Zhi-Lun Yu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Rui-Yang Gao
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Cheng Lv
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xiao-Long Geng
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Yi-Jing Ren
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Jing Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Jun-Yu Ren
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Hao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Fang-Bin Ai
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Zi-Yi Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Bei-Bei Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Dong-Hui Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Bei Yue
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China.
| | - Zheng-Tao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China.
| | - Wei Dou
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China.
| |
Collapse
|
2
|
Wen J, Xiang Q, Guo J, Zhang J, Yang N, Huang Y, Chen Y, Hu T, Rao C. Pharmacological activities of Zanthoxylum L. plants and its exploitation and utilization. Heliyon 2024; 10:e33207. [PMID: 39022083 PMCID: PMC11252797 DOI: 10.1016/j.heliyon.2024.e33207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
The study aims to provide an up-to-date review at the advancements of the investigations on the ethnopharmacology, phytochemistry, pharmacological effect and exploitation and utilizations of Zanthoxylum L. Besides, the possible tendency and perspective for future research of this plant are discussed, as well. This article uses "Zanthoxylum L." "Zanthorylum bungeanum" as the keywords and collects relevant information on Zanthoxylum L. plants through electronic searches (Elsevier, PubMed, ACS, Web of Science, Science Direct, CNKI, Google Scholar), relevant books, and classic literature about Chinese herb. The plants of this genus are rich in volatile oils, alkaloids, amides, lignans, coumarins and organic acids, and has a wide range of pharmacological activities, including but not limited to anti-inflammatory, analgesic, anti-tumor, hypoglycemic, hypolipidemic, antioxidant and anti-infectious. This article reviewed both Chinese and international research progress on the active ingredients and pharmacological activities of Zanthoxylum L. as well as the applications of this genus in the fields of food, medicinal and daily chemicals, and clarified the material basis of its pharmacological activities. Based on traditional usage, phytochemicals, and pharmacological properties, of Zanthoxylum L. species, which indicate that they possess diverse bioactive metabolites with interesting bioactivities. Zanthoxylum L. is a potential medicinal and edible plant with diverse pharmacological effects. Due to its various advantages, it may have vast application potential in the food and medicinal industries and daily chemicals. Nonetheless, the currently available data has several gaps in understanding the herbal utilization of Zanthoxylum L. Thus, further research into their toxicity, mechanisms of actions of the isolated bioactive metabolites, as well as scientific connotations between the traditional medicinal uses and pharmacological properties is required to unravel their efficacy in therapeutic potential for safe clinical application.
Collapse
Affiliation(s)
- Jiayu Wen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiafu Guo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jian Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Nannan Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Huang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| |
Collapse
|
3
|
Lee MS, Shim HJ, Cho YY, Lee JY, Kang HC, Song IS, Lee HS. Comparative metabolism of aschantin in human and animal hepatocytes. Arch Pharm Res 2024; 47:111-126. [PMID: 38182943 DOI: 10.1007/s12272-023-01483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024]
Abstract
Aschantin, a tetrahydrofurofuran lignan with a 1,3-benzodioxole group derived from Flos Magnoliae, exhibits antioxidant, anti-inflammatory, cytotoxic, and antimicrobial activities. This study compared the metabolic profiles of aschantin in human, dog, mouse, and rat hepatocytes using liquid chromatography-high-resolution mass spectrometry. The hepatic extraction ratio of aschantin among the four species was 0.46-0.77, suggesting that it undergoes a moderate-to-extensive degree of hepatic metabolism. Hepatocyte incubation of aschantin produced 4 phase 1 metabolites, including aschantin catechol (M1), O-desmethylaschantin (M2 and M3), and hydroxyaschantin (M4), and 14 phase 2 metabolites, including O-methyl-M1 (M5 and M6) via catechol O-methyltransferase (COMT), six glucuronides of M1, M2, M3, M5, and M6, and six sulfates of M1, M2, M3, M5, and M6. Enzyme kinetic studies using aschantin revealed that the production of M1, a major metabolite, via O-demethylenation is catalyzed by cytochrome 2C8 (CYP2C8), CYP2C9, CYP2C19, CYP3A4, and CYP3A5 enzymes; the formation of M2 (O-desmethylaschantin) is catalyzed by CYP2C9 and CYP2C19; and the formation of M4 is catalyzed by CYP3A4 enzyme. Two glutathione (GSH) conjugates of M1 were identified after incubation of aschantin with human and animal liver microsomes in the presence of nicotinamide adenine dinucleotide phosphate and GSH, but they were not detected in the hepatocytes of all species. In conclusion, aschantin is extensively metabolized, producing 18 metabolites in human and animal hepatocytes catalyzed by CYP, COMT, UDP-glucuronosyltransferase, and sulfotransferase. These results can help in clarifying the involvement of metabolizing enzymes in the pharmacokinetics and drug interactions of aschantin and in elucidating GSH conjugation associated with the reactive intermediate formed from M1 (aschantin catechol).
Collapse
Affiliation(s)
- Min Seo Lee
- College of Pharmacy and BK21 Four-Sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hyun Joo Shim
- College of Pharmacy, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Yong-Yeon Cho
- College of Pharmacy and BK21 Four-Sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Joo Young Lee
- College of Pharmacy and BK21 Four-Sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Han Chang Kang
- College of Pharmacy and BK21 Four-Sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Im-Sook Song
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hye Suk Lee
- College of Pharmacy and BK21 Four-Sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| |
Collapse
|
4
|
Patel K, Patel DK. Biological Potential and Therapeutic Effectiveness of Phytoproduct 'Fargesin' in Medicine: Focus on the Potential of an Active Phytochemical of Magnolia fargesii. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:79-89. [PMID: 38726781 DOI: 10.2174/0127722708286664240429093913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 10/16/2024]
Abstract
Flos Magnoliae is one of the important medicinal plants in different traditional medicine, including Chinese herbal medicine. Lignans and neolignans, including tetrahydrofurofuran, tetrahydrofuran, and aryltetralin, are present in the Flos Magnoliae species. A wide range of pharmacological activity of Flos Magnoliae has been reported in medicine. Fargesin has been isolated from Magnolia fargesii and it is a lignan-class phytochemical. Fargesin has numerous pharmacological activities in medicine, including its effectiveness on lipid and glucose metabolism, oxidative stress, myocardial apoptosis, etc. In the present work, we have summarized the detailed scientific information of fargesin concerning its medicinal properties and pharmacological activities. Numerous biological and chemical aspects of fargesin are discussed here, including the detailed pharmacological activities and analytical aspects of fargesin. In this review, we have also compiled analytical data on fargesin based on available scientific literature. Ethnopharmacological information on fargesin was gathered by a literature survey on PubMed, Science Direct, Google, and Scopus using the terms fargesin, Flos Magnoliae, phytochemical, and herbal medicine. The present review paper compiled the scientific data on fargesin in medicine for its pharmacological activities and analytical aspects in a very concise manner with proper citations. The present work signified the biological importance of fargesin in medicine due to its significant impact on bone disorders, lung injury, colon cancer, atherosclerosis, neurological disorders, ischemia, sars-cov-2, allergy, lipid and glucose metabolism, melanin synthesis, and different classes of enzymes. Furthermore, fargesin also has anti-inflammatory, antihypertensive, antiprotozoal, antimycobacterial, and antifeedant activity. However, analytical methods used for the separation, identification and isolation of fargesin in different biological and non-biological samples were also covered in the present review. The present work revealed the pharmacological activities and analytical aspects of fargesin in medicine and other allied health sectors.
Collapse
Affiliation(s)
- Kanika Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India
| |
Collapse
|
5
|
Lee MS, Park EJ, Cho YY, Lee JY, Kang HC, Lee HS. Comparative metabolism of fargesin in human, dog, monkey, mouse, and rat hepatocytes. Toxicol Res 2024; 40:125-137. [PMID: 38223669 PMCID: PMC10786765 DOI: 10.1007/s43188-023-00211-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 01/16/2024] Open
Abstract
Fargesin, a bioactive lignan derived from Flos Magnoliae, possesses anti-inflammatory, anti-oxidative, anti-melanogenic, and anti-apoptotic effects. This study compared the metabolic profiles of fargesin in human, dog, monkey, mouse, and rat hepatocytes using liquid chromatography-high resolution mass spectrometry. In addition, we investigated the human cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT), and sulfotransferase (SULT) enzymes responsible for fargesin metabolism. The hepatic extraction ratio of fargesin among the five species ranged from 0.59 to 0.78, suggesting that it undergoes a moderate-to-extensive degree of hepatic metabolism. During metabolism, fargesin generates three phase 1 metabolites, including fargesin catechol (M1) and O-desmethylfargesin (M2 and M3), and 11 phase 2 metabolites, including O-methyl-M1 (M4 and M5) via catechol O-methyltransferase (COMT), glucuronides of M1, M2, M4, and M5, and sulfates of M1-M5. The production of M1 from fargesin via O-demethylenation is catalyzed by CYP2C9, CYP3A4, CYP2C19, and CYP2C8 enzymes, whereas the formation of M2 and M3 (O-desmethylfargesin) is catalyzed by CYP2C9, CYP2B6, CYP2C19, CYP3A4, CYP1A2, and CYP2D6 enzymes. M4 is metabolized to M4 glucuronide by UGT1A3, UGT1A8, UGT1A10, UGT2B15, and UGT2B17 enzymes, whereas M4 sulfate is generated by multiple SULT enzymes. Fargesin is extensively metabolized in human hepatocytes by CYP, COMT, UGT, and SULT enzymes. These findings help to elucidate the pharmacokinetics and drug interactions of fargesin.
Collapse
Affiliation(s)
- Min Seo Lee
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Eun Jeong Park
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Yong-Yeon Cho
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Joo Young Lee
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Han Chang Kang
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Hye Suk Lee
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| |
Collapse
|
6
|
Alharthi F. Chicoric acid enhances the antioxidative defense system and protects against inflammation and apoptosis associated with the colitis model induced by dextran sulfate sodium in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119814-119824. [PMID: 37930572 DOI: 10.1007/s11356-023-30742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Although several anticolitic drugs are available, their application is associated with numerous side effects. Chicoric acid (CA) is a hydroxycinnamic acid found naturally in chicory (Cichorium intybus), purple coneflower (Echinacea purpurea), and basil with numerous health benefits, such as antioxidative and anti-inflammatory activities. Here, the potential anticolitic efficiency of CA against dextran sulfate sodium (DSS)-induced colitis in rats was examined in rats. Animals were randomly assigned to the following five groups: control, CA (100 mg/kg body weight), DSS [(DSS); 4% w/v], CA + DSS (100 mg/kg), and the 5-aminosalicylic acid (100 mg/kg) + DSS group. The obtained data revealed that CA significantly prevented the shortening of colon length. Meanwhile, the oxidative stress-related enzymes were increased, while malondialdehyde and nitric oxide, were markedly decreased significantly by CA. The results also indicated that CA administration decreased significantly the pro-apoptogenic indices (Bax and caspase-3) and enhanced significantly Bcl-2, the anti-apoptogenic protein. Moreover, DSS caused a significant elevation of pro-inflammatory mediators, including interleukin-1β, tumor necrosis factor-α, myeloperoxidase, cyclooxygenase II, prostaglandin E2, and peroxisome proliferator-activated receptor gamma. Interestingly, these changes were significantly decreased following the CA administration. At the molecular level, CA supplementation has increased significantly the expression level of nuclear factor erythroid 2-related factor-2 (Nrf2) and decreased the expressions of nitric oxide synthase and mitogen-activated protein kinase 14. CA has been determined to significantly lessen DSS-induced colitis by activating Nrf2 and its derived antioxidant molecules and suppressing inflammation and apoptosis cascades associated with the development of colitis; suggesting that CA could be used as an alternative naturally-derived anticolitic agent.
Collapse
Affiliation(s)
- Fahad Alharthi
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia.
| |
Collapse
|
7
|
Zhang Y, Ma R, Wang J. Protective effects of fargesin on cadmium-induced lung injury through regulating aryl hydrocarbon receptor. J Biochem Mol Toxicol 2022; 36:e23197. [PMID: 35983679 DOI: 10.1002/jbt.23197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/04/2022] [Accepted: 08/05/2022] [Indexed: 11/12/2022]
Abstract
Fragesin, a traditional Chinese medicine, has been shown to exert anti-inflammatory effect. The aim of this study was to figure out the possible effectiveness of the fargesin, and to invest the mechanisms by which it works in the cadmium-induced lung injury in mice. Fargesin was given 1 h before cadmium treatment for 7 days. Then, the bronchoalveolar lavage fluid (BALF) were harvested to test inflammatory cells and pro-inflammatory cytokine production. Lung histopathological changes, myeloperoxidase (MPO) activity, and aryl hydrocarbon receptor (AhR) and nuclear factor kappa B (NF-κB) activation were measured. Fargesin dose-dependently reduced inflammatory cells and pro-inflammatory cytokines in BALF, improved lung histopathological injury, and inhibited lung wet/dry ratio and MPO activity. Furthermore, fargesin inhibited cadmium-induced NF-κB activation. In addition, fargesin was found to increase AhR expression. In conclusion, fargesin attenuates cadmium-induced lung injury may be via activating AhR, which subsequently suppressing the inflammatory response.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rui Ma
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese, Jinan, China
| | - Juan Wang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China.,NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| |
Collapse
|
8
|
Magnoliae flos Downregulated Lipopolysaccharide-Induced Inflammatory Responses via NF-κB/ERK-JNK MAPK/STAT3 Pathways. Mediators Inflamm 2022; 2022:6281892. [PMID: 35795403 PMCID: PMC9251077 DOI: 10.1155/2022/6281892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/19/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022] Open
Abstract
Background. Magnoliae flos is the dried flower bud of Magnolia biondii and related plants. It has been used as a medicinal herb for the treatment of rhinitis, sinusitis, and sinus headaches. Nevertheless, the effects of Magnoliae flos in microbial infection or sepsis remain unclear. In this study, we investigated the anti-inflammatory effects of Magnoliae flos water extract (MF) in lipopolysaccharide- (LPS-) induced septic mice and LPS-stimulated RAW264.7 macrophages. Results. We found that MF reduced the mortality of LPS-challenged mice. Enzyme immunoassays and reverse transcription polymerase chain reaction analysis revealed that MF administration attenuated mRNA expression and protein production of proinflammatory mediators, including cyclooxygenase 2, inducible nitric oxide synthase, tumor necrosis factor-α, and interleukin-6. In parallel to these results in mice, pretreatment with MF suppressed the LPS-induced production of proinflammatory mediators in RAW264.7 macrophages. In addition, we found that MF exerted its suppressive effects by inhibiting the activation of the mitogen-activated protein kinase, nuclear factor-κB, and signal transducer and activator of transcription pathways at the protein level. Conclusion. MF could be a potential therapeutic agent for regulating excessive inflammatory responses in sepsis.
Collapse
|
9
|
Liu L, Cai F, Lu Y, Xie Y, Li H, Long C. Comparative Lipidomic and Metabolomic Analyses Reveal the Mystery of Lacquer Oil from Toxicodendron vernicifluum for the Treatment of “Yuezi” Disease in Nujiang, China: From Anti-Inflammation and Anti-Postpartum Depression Perspective. Front Pharmacol 2022; 13:914951. [PMID: 35770099 PMCID: PMC9234167 DOI: 10.3389/fphar.2022.914951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background: In southwest China, especially in Nujiang, lacquer oil from the drupes of Toxicodendron vernicifluum (Stokes) F. A. Barkley, including black lacquer oil (BLO) and white lacquer oil (WLO), is one of the most important edible oils for the local people. Through the field investigation, the locals believe that lacquer oil has benefits for parturient women and for the treatment of “Yuezi” disease. However, studies on bioactivities and the chemical compositions of lacquer oil are limited.Purpose: This study was designed to reveal the mystery of lacquer oil for the treatment of “Yuezi” disease by testing its anti-inflammatory and anti-postpartum depressant activities and related bioactive compounds.Methods: The anti-inflammatory effects of lacquer oil were examined by establishing a lipopolysaccharide (LPS)-induced RAW264.7 cell inflammation model and detecting the level of pro-inflammatory factors such as NO, IL-6 and TNF-α. The antidepressant effects of lacquer oil were studied by building a mouse model of postpartum depression (PPD), and the animal behavior changes of PPD model mice were assessed by open field test (OFT), forced swimming test (FST) and tail suspension test (TST). The chemical profiles of BLO and WLO were detected by lipidomic and the untargeted metabolomic research methods based on UPLC-MS/MS.Results: The results showed that BLO and WLO exerted anti-inflammatory effects by reducing the release of pro-inflammatory factors and BLO had better anti-inflammatory effects than WLO. While only BLO had anti-postpartum depressant activities, as evidenced by the significantly reduced the immobility time of the BLO-treated PPD mice in TST and FST compared to the PPD model mice. The comparative lipidomic analysis revealed that BLO contained high levels of Diacylglycerols (DAG) and Diacylglyceryl trimethylhomoserines (DGTS) but low level of ceramides (Cer), sphingomyelines (SM), phosphatidylcholines (PC) and phosphatidylethanolamines (PE) compared with WLO. Metabolomics analysis showed that there were 57 chemical markers between BLO and WLO, of which 17 potential biomarkers have been declared to possess anti-inflammatory and/or antidepressant activities.Conclusion: The findings of this study furnish a scientific support for the traditional uses of lacquer oil for the treatment of “Yuezi” disease from anti-inflammation and anti-postpartum depression perspective.
Collapse
Affiliation(s)
- Liya Liu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Fei Cai
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Yitong Lu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yuting Xie
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Hao Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Chunlin Long
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
- *Correspondence: Chunlin Long, ,
| |
Collapse
|
10
|
Osmakov DI, Kalinovskii AP, Belozerova OA, Andreev YA, Kozlov SA. Lignans as Pharmacological Agents in Disorders Related to Oxidative Stress and Inflammation: Chemical Synthesis Approaches and Biological Activities. Int J Mol Sci 2022; 23:6031. [PMID: 35682715 PMCID: PMC9181380 DOI: 10.3390/ijms23116031] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Plant lignans exhibit a wide range of biological activities, which makes them the research objects of potential use as therapeutic agents. They provide diverse naturally-occurring pharmacophores and are available for production by chemical synthesis. A large amount of accumulated data indicates that lignans of different structural groups are apt to demonstrate both anti-inflammatory and antioxidant effects, in many cases, simultaneously. In this review, we summarize the comprehensive knowledge about lignan use as a bioactive agent in disorders associated with oxidative stress and inflammation, pharmacological effects in vitro and in vivo, molecular mechanisms underlying these effects, and chemical synthesis approaches. This article provides an up-to-date overview of the current data in this area, available in PubMed, Scopus, and Web of Science databases, screened from 2000 to 2022.
Collapse
Affiliation(s)
- Dmitry I. Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Aleksandr P. Kalinovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| | - Olga A. Belozerova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| | - Yaroslav A. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey A. Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| |
Collapse
|
11
|
Zhang Y, Zhang Y, Zhao Y, Wu W, Meng W, Zhou Y, Qiu Y, Li C. Protection against ulcerative colitis and colorectal cancer by evodiamine via anti‑inflammatory effects. Mol Med Rep 2022; 25:188. [PMID: 35362542 PMCID: PMC8985202 DOI: 10.3892/mmr.2022.12704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/15/2022] [Indexed: 01/08/2023] Open
Abstract
Evodiamine (Evo) is an alkaloid that can be extracted from the berry fruit Evodia rutaecarpa and has been reported to exert various pharmacological effects, such as antidiarrheal, antiemetic and antiulcer effects. In vivo, the potential effects of Evo were investigated in a mouse model of dextran sodium sulfate (DSS)‑induced ulcerative colitis (UC) and in adenomatous polyposis coli (Apc)MinC/Gpt C57BL/6 mice with colorectal cancer (CRC), where the latter harbours a point‑mutation in the Apc gene. Evo suppressed the degree of weight loss and colon shortening induced by DSS, decreased the disease activity index value and ameliorated the pathological alterations in the colon of mice with UC as examined via H&E staining of colon tissues. In addition, Evo decreased the number and size of colonic tumors in ApcMinC/Gpt mice. Proteomics (colon tissues), ELISA (colon tissues and serum) and western blotting (colon tissues) results revealed that Evo inhibited NF‑κB to mediate the levels of various cytokines, including, in the DSS‑induced UC model, IL‑1β, IL‑2, IL‑6, IL‑8, TNF‑α, IFN‑γ (ELISA of colon tissues and serum), NF‑κB, IKKα+β, IκBα, S100a9, TLR4 and MyD88 (western blotting of colon tissues), and, in the colorectal cancer model, IL‑1β, IL‑2, IL‑6, IL‑15, IL‑17, IL‑22, TNF‑α (ELISA of colon tissues and serum), NF‑κB, IKKα+β, IκBα and S100a9 (western blotting of colon tissues), to achieve its anti‑inflammatory and antitumor effects. In vitro, Evo also reduced the viability of the colon cancer cell line SW480, inhibited mitochondrial membrane potential (MMP detection), caused G2/M‑phase arrest (cell cycle detection) and suppressed the translocation of phosphorylated‑NF‑κB from the cytoplasm into the nucleus (immunofluorescence of p‑NF‑κB). Theoretical evidence (MD simulations) suggest that Evo may bind to the ordered domain (α‑helix) of NF‑κB to influence this protein. The protein secondary structure changes were analyzed by the cpptraj module in Amber. In addition, these data provide experimental evidence that Evo may be an effective agent for treating UC and CRC.
Collapse
Affiliation(s)
- Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yaqin Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Zhao
- Department of Pharmacy, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wanyue Wu
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Weiqi Meng
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yulin Zhou
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ye Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130119, P.R. China
| | - Chenliang Li
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
12
|
Wang J, Shi K, Li S, Chen L, Liu W, Wu X, Shen Y, Sun Y, Cheng J, Wu X, Xu Q. Meisoindigo attenuates dextran sulfate sodium-induced experimental colitis via its inhibition of TAK1 in macrophages. Int Immunopharmacol 2021; 101:108239. [PMID: 34653728 DOI: 10.1016/j.intimp.2021.108239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022]
Abstract
At present, inflammatory bowel disease (IBD) seriously threatens human health, and its treatment is a huge challenge for people. In our studies, we found that meisoindigo, a derivative of indirubin, significantly ameliorated dextran sulfate sodium (DSS)-induced experimental colitis in mice. Meisoindigo treatment markedly elevated the level of glutathione, while suppressed the activities of alkaline phosphatase and myeloperoxidase in colonic tissues. Moreover, the mRNA expression of vascular cell adhesion molecule 1, intercellular adhesion molecule 1, cyclooxygenase-2 which are important colitis-related molecules and the levels of the inflammatory cytokines interleukin (IL)-18, IL-1β, IL-6, tumor necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS) were suppressed dose-dependently following treatment with meisoindigo. Immunofluorescence results indicated that meisoindigo inhibited macrophage infiltration and nuclear factor (NF)-κB activation in colons from DSS-treated mice. Therefore, mouse RAW264.7 and human THP-1 cells were treated with lipopolysaccharide (LPS) alone or combined adenosine triphosphate to activate NF-κB pathway in vitro. It was shown that meisoindigo reduced the elevated levels of NO, IL-18, IL-1β and TNF-α after LPS treatment in both cells. In addition, meisoindigo showed inhibitory effects on NF-κB by using a luciferase reporter gene that depends on NF-κB. Through molecular docking, microscale thermophoresis and cellular thermal shift assay. It was further found that meisoindigo targeted transforming growth factor β activated kinase-1 (TAK1), which is an important regulator in the upstream of NF-κB pathway. In conclusion, our findings show that meisoindigo can alleviate IBD effectively at low doses, and negatively regulate proinflammatory responses by inhibiting the activation of TAK1, which provides new ideas for clinical anti-inflammatory therapy.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Ke Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Shuaifei Li
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Lu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China; Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Wentao Liu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Xudong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | | | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| |
Collapse
|
13
|
Fargesin ameliorates osteoarthritis via macrophage reprogramming by downregulating MAPK and NF-κB pathways. Arthritis Res Ther 2021; 23:142. [PMID: 33990219 PMCID: PMC8120707 DOI: 10.1186/s13075-021-02512-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 04/14/2021] [Indexed: 12/23/2022] Open
Abstract
Background To investigate the role and regulatory mechanisms of fargesin, one of the main components of Magnolia fargesii, in macrophage reprogramming and crosstalk across cartilage and synovium during osteoarthritis (OA) development. Methods Ten-week-old male C57BL/6 mice were randomized and assigned to vehicle, collagenase-induced OA (CIOA), or CIOA with intra-articular fargesin treatment groups. Articular cartilage degeneration was evaluated using the Osteoarthritis Research Society International (OARSI) score. Immunostaining and western blot analyses were conducted to detect relative protein. Raw264.7 cells were treated with LPS or IL-4 to investigate the role of polarized macrophages. ADTC5 cells were treated with IL-1β and conditioned medium was collected to investigate the crosstalk between chondrocytes and macrophages. Results Fargesin attenuated articular cartilage degeneration and synovitis, resulting in substantially lower Osteoarthritis Research Society International (OARSI) and synovitis scores. In particular, significantly increased M2 polarization and decreased M1 polarization in synovial macrophages were found in fargesin-treated CIOA mice compared to controls. This was accompanied by downregulation of IL-6 and IL-1β and upregulation of IL-10 in serum. Conditioned medium (CM) from M1 macrophages treated with fargesin reduced the expression of matrix metalloproteinase-13, RUNX2, and type X collagen and increased Col2a1 and SOX9 in OA chondrocytes, but fargesin alone did not affect chondrocyte catabolic processes. Moreover, fargesin exerted protective effects by suppressing p38/ERK MAPK and p65/NF-κB signaling. Conclusions This study showed that fargesin switched the polarized phenotypes of macrophages from M1 to M2 subtypes and prevented cartilage degeneration partially by downregulating p38/ERK MAPK and p65/NF-κB signaling. Targeting macrophage reprogramming or blocking the crosstalk between macrophages and chondrocytes in early OA may be an effective preventive strategy.
Collapse
|
14
|
Hong PTL, Kim HJ, Kim WK, Nam JH. Flos magnoliae constituent fargesin has an anti-allergic effect via ORAI1 channel inhibition. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:251-258. [PMID: 33859065 PMCID: PMC8050608 DOI: 10.4196/kjpp.2021.25.3.251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/26/2022]
Abstract
Flos magnoliae (FM), the dry flower buds of Magnolia officinalis or its related species, is a traditional herbal medicine commonly used in Asia for symptomatic relief of and treating allergic rhinitis, headache, and sinusitis. Although several studies have reported the effects of FM on store-operated calcium entry (SOCE) via the ORAI1 channel, which is essential during intracellular calcium signaling cascade generation for T cell activation and mast cell degranulation, the effects of its isolated constituents on SOCE remain unidentified. Therefore, we investigated which of the five major constituents of 30% ethanoic FM (vanillic acid, tiliroside, eudesmin, magnolin, and fargesin) inhibit SOCE and their physiological effects on immune cells. The conventional whole-cell patch clamp results showed that fargesin, magnolin, and eudesmin significantly inhibited SOCE and thus human primary CD4+ T lymphocyte proliferation, as well as allergen-induced histamine release in mast cells. Among them, fargesin demonstrated the most potent inhibitory effects not only on ORAI1 (IC50 = 12.46 ± 1.300 μM) but also on T-cell proliferation (by 87.74% ± 1.835%) and mast cell degranulation (by 20.11% ± 5.366%) at 100 μM. Our findings suggest that fargesin can be a promising candidate for the development of therapeutic drugs to treat allergic diseases.
Collapse
Affiliation(s)
- Phan Thi Lam Hong
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea.,Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
| | - Hyun Jong Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea.,Department of Internal Medicine, Graduate School of Medicine, Dongguk University, Goyang 10326, Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea.,Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
| |
Collapse
|
15
|
Long SR, Liu RD, Kumar DV, Wang ZQ, Su CW. Immune Protection of a Helminth Protein in the DSS-Induced Colitis Model in Mice. Front Immunol 2021; 12:664998. [PMID: 33995396 PMCID: PMC8117093 DOI: 10.3389/fimmu.2021.664998] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/08/2021] [Indexed: 12/23/2022] Open
Abstract
Inflammatory bowel disease (IBD) increases the risk of colorectal cancer, and it has the potential to diminish the quality of life. Recent clinical and experimental evidence demonstrate protective aspects of parasitic helminth infection against IBD. Reports have highlighted the potential use of helminths and their byproducts as potential treatment for IBD. In the current study, we studied the effect of a newborn larvae-specific serine protease from Trichinella spiralis (TsSp) on the host immune and inflammatory responses. A 49-kDa recombinant TsSp (rTsSp) was expressed in Escherichia coli BL21 (DE3) and purified. The cytotoxicity of rTsSp was analyzed. The immune protective effect of rTsSp was studied by using dextran sodium sulfate (DSS)-induced mouse colitis model. The result illustrated that rTsSp has no toxic effects on cells. We further demonstrated that administration of the rTsSp without the additional adjuvant before the induction of DSS-induced colitis reduced the severity of intestinal inflammation and the disease index; it suppressed macrophage infiltration, reduced TNF-α secretion, and induced IL-10 expression. Our findings suggest therapeutic potential of rTsSp on colitis by altering the effect of macrophages. Data also suggest immunotherapy with rTsSp holds promise for use as an additional strategy to positively modulate inflammatory processes involved in IBD.
Collapse
Affiliation(s)
- Shao Rong Long
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, China.,Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Ruo Dan Liu
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, China
| | - Deepak Vijaya Kumar
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Zhong Quan Wang
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, China
| | - Chien-Wen Su
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
16
|
Pinocembrin alleviates ulcerative colitis in mice via regulating gut microbiota, suppressing TLR4/MD2/NF-κB pathway and promoting intestinal barrier. Biosci Rep 2021; 40:225839. [PMID: 32687156 PMCID: PMC7391130 DOI: 10.1042/bsr20200986] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/24/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Pinocembrin, a plant-derived flavonoid, has a variety of pharmacological activities, including anti-infection, anti-cancer, anti-inflammation, cardiovascular protection, etc. However, the mechanism of pinocembrin on the anti-colitis efficacy remains elusive and needs further investigation. Here, we reported that pinocembrin eased the severity of dextran sulfate sodium (DSS)-induced colitis in mice by suppressing the abnormal activation of toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signal pathway in vivo. In addition, the gut microbiota was disordered in DSS colitis mice, which was associated with a significant decrease in microbiota diversity and a great shift in bacteria profiles; however, pinocembrin treatment improved the imbalance of gut microbiota and made it similar to that in normal mice. On the other hand, in vitro, pinocembrin down-regulated the TLR4/NF-κB signaling cascades in lipopolysaccharide (LPS)-stimulated macrophages. At the upstream level, pinocembrin competitively inhibited the binding of LPS to myeloid differentiation protein 2 (MD2), thereby blocking the formation of receptor multimer TLR4/MD2·LPS. Furthermore, pinocembrin dose-dependently promoted the expression of tight junction proteins (ZO-1, Claudin-1, Occludin and JAM-A) in Caco-2 cells. In conclusion, our work presented evidence that pinocembrin attenuated DSS-induced colitis in mouse, at least in part, via regulating intestinal microbiota, inhibiting the over-activation of TLR4/MD2/NF-κB signaling pathway, and improving the barriers of intestine.
Collapse
|
17
|
Lipidomics-Based Comparison of Molecular Compositions of Green, Yellow, and Red Bell Peppers. Metabolites 2021; 11:metabo11040241. [PMID: 33919953 PMCID: PMC8070949 DOI: 10.3390/metabo11040241] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/11/2021] [Indexed: 12/24/2022] Open
Abstract
Identifying and annotating the molecular composition of individual foods will improve scientific understanding of how foods impact human health and how much variation exists in the molecular composition of foods of the same species. The complexity of this task includes distinct varieties and variations in natural occurring pigments of foods. Lipidomics, a sub-field of metabolomics, has emerged as an effective tool to help decipher the molecular composition of foods. For this proof-of-principle research, we determined the lipidomic profiles of green, yellow and red bell peppers (Capsicum annuum) using liquid chromatography mass spectrometry and a novel tool for automated annotation of compounds following database searches. Among 23 samples analyzed from 6 peppers (2 green, 1 yellow, and 3 red), over 8000 lipid compounds were detected with 315 compounds (106 annotated) found in all three colors. Assessments of relationships between these compounds and pepper color, using linear mixed effects regression and false discovery rate (<0.05) statistical adjustment, revealed 11 compounds differing by color. The compound most strongly associated with color was the carotenoid, β-cryptoxanthin (p-value = 7.4 × 10−5; FDR adjusted p-value = 0.0080). These results support lipidomics as a viable analytical technique to identify molecular compounds that can be used for unique characterization of foods.
Collapse
|
18
|
Mourão EDS, Carvalho TGCD, Lima SYEMD, Alencar Filho EBD. Identification of molecular scaffolds from Caatinga Brazilian biome with potential against Aedes aegypti by molecular docking and molecular dynamics simulations. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Tetrahydrofurofuranoid Lignans, Eudesmin, Fargesin, Epimagnolin A, Magnolin, and Yangambin Inhibit UDP-Glucuronosyltransferase 1A1 and 1A3 Activities in Human Liver Microsomes. Pharmaceutics 2021; 13:pharmaceutics13020187. [PMID: 33535454 PMCID: PMC7912740 DOI: 10.3390/pharmaceutics13020187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 11/17/2022] Open
Abstract
Eudesmin, fargesin, epimagnolin A, magnolin, and yangambin are tetrahydrofurofuranoid lignans with various pharmacological activities found in Magnoliae Flos. The inhibition potencies of eudesmin, fargesin, epimagnolin A, magnolin, and yangambin on six major human uridine 5'-diphospho-glucuronosyltransferase (UGT) activities in human liver microsomes were evaluated using liquid chromatography-tandem mass spectrometry and cocktail substrates. Eudesmin, fargesin, epimagnolin A, magnolin, and yangambin inhibited UGT1A1 and UGT1A3 activities, but showed negligible inhibition of UGT1A4, UGT16, UGT1A9, and UGT2B7 activities at 200 μM in pooled human liver microsomes. Moreover, eudesmin, fargesin, epimagnolin A, magnolin, and yangambin noncompetitively inhibited UGT1A1-catalyzed SN38 glucuronidation with Ki values of 25.7, 25.3, 3.6, 26.0, and 17.1 μM, respectively, based on kinetic analysis of UGT1A1 inhibition in pooled human liver microsomes. Conversely, the aforementioned tetrahydrofurofuranoid lignans competitively inhibited UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-glucuronidation with 39.8, 24.3, 15.1, 37.6, and 66.8 μM, respectively in pooled human liver microsomes. These in vitro results suggest the necessity of evaluating whether the five tetrahydrofurofuranoid lignans can cause drug-drug interactions with UGT1A1 and UGT1A3 substrates in vivo.
Collapse
|
20
|
Asgharzadeh F, Hashemzadeh A, Yaghoubi A, Avan A, Nazari SE, Soleimanpour S, Hassanian SM, Ferns GA, Rahmani F, Khazaei M. Therapeutic effects of silver nanoparticle containing sulfasalazine on DSS-induced colitis model. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Li X, Liu X, Zhang Y, Zhang Y, Liu S, Zhang N, Li Y, Wang D. Protective effect of Gloeostereum incarnatum on ulcerative colitis via modulation of Nrf2/NF‑κB signaling in C57BL/6 mice. Mol Med Rep 2020; 22:3418-3428. [PMID: 32945507 PMCID: PMC7453623 DOI: 10.3892/mmr.2020.11420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic non-specific inflammatory cell infiltration of the colon is generally considered to be the cause of ulcerative colitis (UC). Gloeostereum incarnatum (GI), a fungus rich in amino acids and fatty acids, exhibits a variety of biological functions. In the present study, GI was identified to contain 15 fatty acids, 17 amino acids and 11 metallic elements. The protective effect of GI against UC was investigated in C57BL/6 mice with UC induced by free drinking 3.5% dextran sulfate sodium (DSS). After a 21-day oral administration, GI prevented weight loss, enhancement of the disease activity index and colonic pathological alterations in mice with UC. GI reduced the levels of pro-inflammatory factors including interleukin (IL)-1β, IL-2, IL-6 and IL-12, tumor necrosis factor α and -β, interferon α and -γ, and pro-oxidative factors including reactive oxygen species and nitric oxide. In addition, it enhanced the levels of immunological factors including immunoglobulin (Ig)A, IgM and IgG, and antioxidative factors including superoxide dismutase and catalase in the serum and/or colon tissues. GI enhanced the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream proteins and suppressed the phosphorylation of NF-κB signaling in colon tissues. Together, GI was shown to alleviate the physiological and pathological state of DSS-induced UC in mice via its antioxidant and anti-inflammatory functions, which may be associated with its modulation of the activation of Nrf2/NF-κB signaling.
Collapse
Affiliation(s)
- Xiao Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Xin Liu
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Yaqin Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Shuyan Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Nan Zhang
- Gastroenterology and Endoscopy Center, The First Bethune Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Di Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| |
Collapse
|
22
|
Wang G, Gao JH, He LH, Yu XH, Zhao ZW, Zou J, Wen FJ, Zhou L, Wan XJ, Tang CK. Fargesin alleviates atherosclerosis by promoting reverse cholesterol transport and reducing inflammatory response. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158633. [DOI: 10.1016/j.bbalip.2020.158633] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/26/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
|
23
|
Yu Z, Yue B, Ding L, Luo X, Ren Y, Zhang J, Mani S, Wang Z, Dou W. Activation of PXR by Alpinetin Contributes to Abrogate Chemically Induced Inflammatory Bowel Disease. Front Pharmacol 2020; 11:474. [PMID: 32372959 PMCID: PMC7186371 DOI: 10.3389/fphar.2020.00474] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/26/2020] [Indexed: 01/14/2023] Open
Abstract
Alpinetin is a naturally occurring flavonoid from the ginger plants. We previously reported the identification of alpinetin as a ligand of human pregnane X receptor (hPXR). The current study investigated the role of alpinetin as a putative PXR activator in ameliorating chemically induced inflammatory bowel disease (IBD). We found that oral administration of alpinetin significantly alleviated the severity of dextran sulfate sodium (DSS)-induced colitis in mice by decreasing the inflammatory infiltration, the levels of the pro-inflammatory mediators, and the PXR target genes in the colon. In vitro, alpinetin blocked the nuclear translocation of p-p65 in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Further, alpinetin significantly upregulated PXR target genes and inhibited TNF-α-induced NF-κB-luciferase activity in LS174T colorectal cells; however, this regulatory effects were lost when cellular PXR gene was knocked down. In PXR transactivation assays, alpinetin increased both mouse and human PXR transactivation in a dose-dependent manner. Ligand occluding mutants, S247W/C284W and S247W/C284W/S208W, in hPXR-reporter assays, abrogated alpinetin-induced hPXR transactivation. Finally, alpinetin bound to the hPXR-ligand-binding domain (LBD) was confirmed by competitive ligand binding assay. The current study significantly extends prior observations by validating a PXR/NF-κB regulatory mechanism governing alpinetin's anti-inflammatory effects in a murine model of IBD.
Collapse
Affiliation(s)
- Zhilun Yu
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bei Yue
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Ding
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoping Luo
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yijing Ren
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingjing Zhang
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sridhar Mani
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, New York, NY, United States
| | - Zhengtao Wang
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Dou
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
Luo X, Yue B, Yu Z, Ren Y, Zhang J, Ren J, Wang Z, Dou W. Obacunone Protects Against Ulcerative Colitis in Mice by Modulating Gut Microbiota, Attenuating TLR4/NF-κB Signaling Cascades, and Improving Disrupted Epithelial Barriers. Front Microbiol 2020; 11:497. [PMID: 32296403 PMCID: PMC7136403 DOI: 10.3389/fmicb.2020.00497] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
Obacunone, a natural limonoid compound abundantly distributed in citrus fruits, possesses various biological properties, such as antitumor, antioxidant, and antiviral activities. Recent studies suggested an anti-inflammatory activity of obacunone in vitro, but its efficacy on intestinal inflammation remains unknown. This study was designed to evaluate the effects and mechanisms of obacunone in ameliorating intestinal inflammation in a mouse model of ulcerative colitis (UC). We found that obacunone efficiently alleviated the severity of dextran sulfate sodium (DSS)-induced mouse UC by modulating the abnormal composition of the gut microbiota and attenuating the excessive activation of toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling. The intestinal epithelial barrier was disrupted in DSS colitis mice, which was associated with activation of inflammatory signaling cascades. However, obacunone promoted the expression of tight junction proteins (TJP1 and occludin) and repressed the activation of inflammatory signaling cascades. In summary, our findings demonstrated that obacunone attenuated the symptoms of experimental UC in mice through modulation of the gut microbiota, attenuation of TLR4/NF-κB signaling cascades, and restoration of intestinal epithelial barrier integrity.
Collapse
Affiliation(s)
- Xiaoping Luo
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bei Yue
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhilun Yu
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yijing Ren
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhang
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junyu Ren
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Dou
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
25
|
Activation of PXR by alantolactone ameliorates DSS-induced experimental colitis via suppressing NF-κB signaling pathway. Sci Rep 2019; 9:16636. [PMID: 31719637 PMCID: PMC6851188 DOI: 10.1038/s41598-019-53305-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/30/2019] [Indexed: 01/26/2023] Open
Abstract
Alantolactone (ALA) is a sesquiterpene lactone with potent anti-inflammatory activity. However, the effect of ALA on intestinal inflammation remains largely unknown. The present study demonstrated that ALA significantly ameliorated the clinical symptoms of dextran sulfate sodium (DSS)-induced mice colitis as determined by body weight loss, diarrhea, colon shortening, inflammatory infiltration and histological injury. In mice exposed to DSS, ALA treatment significantly lowered pro-inflammatory mediators, including nuclear factor-kappa B (NF-κB) activation. In vitro, ALA inhibited NF-κB nuclear translocation and dose-dependently activated human/mouse pregnane X receptor (PXR), a key regulator gene in inflammatory bowel disease (IBD) pathogenesis. However, the pocket occluding mutants of the ligand-binding domain (LBD) of hPXR, abrogated ALA-mediated activation of the receptor. Overexpression of hPXR inhibited NF-κB-reporter activity and in this setting, ALA further enhanced the hPXR-mediated inhibition of NF-κB-reporter activity. Furthermore, silencing hPXR gene demonstrated the necessity for hPXR in downregulation of NF-κB activation by ALA. Finally, molecular docking studies confirmed the binding affinity between hPXR-LBD and ALA. Collectively, the current study indicates a beneficial effect of ALA on experimental IBD possibly via PXR-mediated suppression of the NF-κB inflammatory signaling.
Collapse
|
26
|
Lee HJ, Park JU, Guo RH, Kang BY, Park IK, Kim YR. Anti-Inflammatory Effects of Canavalia gladiata in Macrophage Cells and DSS-Induced Colitis Mouse Model. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1571-1588. [PMID: 31645121 DOI: 10.1142/s0192415x19500800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Canavalia gladiata, known as sword bean, has been used as a Chinese traditional medicine for anti-inflammatory effects. However, the action mechanisms of sword bean have not yet been clearly defined. In the present study, the whole parts of a ripened sword bean (RSB) and the green sword bean (GSB) containing bean pod were extracted with ethanol by reflux extraction. The two crude extracts (RSBE and GSBE) from RSB and GSB were validated by a liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis of gallic acid as a reference chemical. The anti-inflammatory effects of two sword bean extracts were extensively investigated using LPS-stimulated macrophage cells. First, RSBE and GSBE significantly inhibited the production of pro-inflammatory mediators, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), prostaglandinE2 (PGE2), and nitric oxide (NO) in LPS-induced RAW264.7 cells. RSBE and GSBE showed no cytotoxicity to RAW264.7 cells and mouse peritoneal macrophage cells. In addition, the overexpression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) induced by LPS in RAW264.7 cells was significantly decreased by RSBE and GSBE. Western blotting and immunostaining analysis showed that RSBE and GSBE inhibited the nuclear translocation of NF-κB subunits, which correlated with the inhibitory effects on inhibitor kappa B (IκB) degradation. In dextran sulfated sodium (DSS)-induced colitis mice model, RSBE restored body weight, colon length, and the levels of pro-inflammatory cytokines, such as TNF-α, IL-6, interleukin-1β (IL-1β), and interferon-γ (IFN-γ). In addition, RSBE significantly suppressed the expression of COX-2, iNOS, and NF-κB.
Collapse
Affiliation(s)
- Hwa-Jeong Lee
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea.,Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Jung Up Park
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Rui Hong Guo
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Bok Yun Kang
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Young Ran Kim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
27
|
Yue B, Luo X, Yu Z, Mani S, Wang Z, Dou W. Inflammatory Bowel Disease: A Potential Result from the Collusion between Gut Microbiota and Mucosal Immune System. Microorganisms 2019; 7:microorganisms7100440. [PMID: 31614539 PMCID: PMC6843348 DOI: 10.3390/microorganisms7100440] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Host health depends on the intestinal homeostasis between the innate/adaptive immune system and the microbiome. Numerous studies suggest that gut microbiota are constantly monitored by the host mucosal immune system, and any slight disturbance in the microbial communities may contribute to intestinal immune disruption and increased susceptibility to inflammatory bowel disease (IBD), a chronic relapsing inflammatory condition of the gastrointestinal tract. Therefore, maintaining intestinal immune homeostasis between microbiota composition and the mucosal immune system is an effective approach to prevent and control IBD. The overall theme of this review is to summarize the research concerning the pathogenesis of IBD, with particular focus on the factors of gut microbiota-mucosal immune interactions in IBD. This is a comprehensive and in-depth report of the crosstalk between gut microbiota and the mucosal immune system in IBD pathogenesis, which may provide insight into the further evaluation of the therapeutic strategies for IBD.
Collapse
Affiliation(s)
- Bei Yue
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China.
| | - Xiaoping Luo
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China.
| | - Zhilun Yu
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China.
| | - Sridhar Mani
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, The Bronx, NY 10461, USA.
| | - Zhengtao Wang
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China.
| | - Wei Dou
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China.
| |
Collapse
|
28
|
Fargesin inhibits melanin synthesis in murine malignant and immortalized melanocytes by regulating PKA/CREB and P38/MAPK signaling pathways. J Dermatol Sci 2019; 94:213-219. [PMID: 30956031 DOI: 10.1016/j.jdermsci.2019.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Fargesin is commonly used in the treatment of allergic rhinitis, inflammation, sinusitis and headache. OBJECTIVE The aim of the study is to investigate a new function of fargesin against melanin production and its underlying molecular mechanism. METHODS B16F10 mouse melanoma cells, Melan-a and human epidermal melanocytes were treated with different concentrations of fargesin for the indicated time. The extracellular and cellular melanin content was detected by spectrometry at 490 nm and 405 nm, respectively. RT-qPCR and Western blot analysis were used to exam the expression of melanogenic enzymes and the activities of PKA/CREB and p38 MAPK pathway components. Zebrafish was used as an in vivo model for studying the function of fargesin in regulating melanogenesis. RESULTS Fargesin effectively inhibited melanin production at moderate dose in mouse B16F10 melanoma cells, normal melanocyte cell lines and zebrafish. The expression of microphthalmia-associated transcription factor (MITF), its downstream melanogenic enzymes and tyrosinase activity were also strongly reduced by fargesin. Moreover, the increase of melanin production induced by UVB and forskolin could be fully reversed by fargesin treatment. Fargesin also effectively inhibited the activation of PKA/CREB and p38 MAPK as well as their interactions, which in turn is responsible for the expression of MITF and melanogenic enzymes. CONCLUSIONS These results show that fargesin can function as an anti-melanogenic agent, at least in part, by inhibiting PKA/CREB and p38/MAPK signaling pathways. Therefore, fargesin and its derivatives may potentially be used for preventing hyperpigmentation disorders in the future.
Collapse
|