1
|
Bajraktari-Sylejmani G, Bay C, Gebauer L, Burhenne J, Weiss J, Sauter M. A Highly Sensitive UPLC-MS/MS Method for the Quantification of the Organic Cation Transporters' Mediated Metformin Uptake and Its Inhibition in Cells. Molecules 2024; 29:5162. [PMID: 39519803 PMCID: PMC11547985 DOI: 10.3390/molecules29215162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Metformin is the gold standard substrate for evaluating potential inhibitors of the organic cation transporters (OCTs). Here, we established a UPLC-MS/MS assay to quantify metformin in cell pellets with a range of 0.05-50 ng/mL using 6-deuterated metformin as an internal standard. We used an ion-pairing chromatographic approach with heptafluorobutyric acid, making use of a reverse-phase column, and overcame the associated ion-suppression via previously established post-column injection of aqueous ammonia. The assay was validated according to the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) recommendations for bioanalytical methods. The established extraction procedure was simple, very fast and ensured almost 100% recovery of the analyte. The exceptionally sharp peak form and retention of the ion-pairing chromatography are superior to other methods and allow us to measure as sensitively as 0.05 ng/mL. We used the herein established and validated method to develop a cellular OCT inhibition assay by using metformin as a substrate and human embryonic kidney cells (HEK) overexpressing the OCTs 1-3. The method presented may be useful for identifying new OCT inhibitors, but also for drug-drug interactions and other pharmacokinetic studies, where accurate quantification of low metformin amounts in relevant tissues is mandatory.
Collapse
Affiliation(s)
- Gzona Bajraktari-Sylejmani
- Internal Medicine IX—Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Clinic Heidelberg, Medical Faculty Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany; (C.B.); (J.B.); (M.S.)
| | - Cindy Bay
- Internal Medicine IX—Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Clinic Heidelberg, Medical Faculty Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany; (C.B.); (J.B.); (M.S.)
| | - Lukas Gebauer
- Institute of Clinical Pharmacology, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Jürgen Burhenne
- Internal Medicine IX—Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Clinic Heidelberg, Medical Faculty Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany; (C.B.); (J.B.); (M.S.)
| | - Johanna Weiss
- Internal Medicine IX—Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Clinic Heidelberg, Medical Faculty Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany; (C.B.); (J.B.); (M.S.)
| | - Max Sauter
- Internal Medicine IX—Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Clinic Heidelberg, Medical Faculty Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany; (C.B.); (J.B.); (M.S.)
| |
Collapse
|
2
|
Quantitation of Acetyl Hexapeptide-8 in Cosmetics by Hydrophilic Interaction Liquid Chromatography Coupled to Photo Diode Array Detection. SEPARATIONS 2021. [DOI: 10.3390/separations8080125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bioactive peptides are gaining more and more popularity in the research and development of cosmetic products with anti-aging effect. Acetyl hexapeptide-8 is a hydrophilic peptide incorporated in cosmetics to reduce the under-eye wrinkles and the forehead furrows. Hydrophilic interaction liquid chromatography (HILIC) is the separation technique of choice for analyzing peptides. In this work, a rapid HILIC method coupled to photodiode array detection operated at 214 nm was developed, validated and used to determine acetyl-hexapeptide-8 in cosmetics. Chromatography was performed on a Xbridge® HILIC BEH analytical column using as mobile phase a 40 mM ammonium formate water solution (pH 6.5)-acetonitrile mixture 30:70, v/v at flow rate 0.25 mL min−1. The assay was linear over the concentration range 20 to 30 μg mL−1 for the cosmetic formulations and 0.004 to 0.007% (w/w) for the cosmetic cream. The limits of quantitation for acetyl hexapeptide-8 were 1.5 μg mL−1 and 0.002% (w/w) for the assay of cosmetic formulations and cosmetic creams, respectively. The method was applied to the analysis of cosmetic formulations and anti-wrinkle cosmetic creams.
Collapse
|
3
|
Attimarad M, Nair AB, Sreeharsha N, Al-Dhubiab BE, Venugopala KN, Shinu P. Development and Validation of Green UV Derivative Spectrophotometric Methods for Simultaneous Determination Metformin and Remogliflozin from Formulation: Evaluation of Greenness. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E448. [PMID: 33429964 PMCID: PMC7827813 DOI: 10.3390/ijerph18020448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/22/2022]
Abstract
The recent trend in green analytical chemistry is the development of green analytical methods using environmentally friendly solvents. Therefore, three ecofriendly manipulated UV spectroscopic techniques have been validated for the concurrent quantification of newly approved remogliflozin etabonate (REM) and metformin HCl (MET) tablets using water as a solvent. The first method was established using first derivative absorption spectroscopic method by determining the peak amplitude at 233.0 nm for REM and 252.2 nm for MET, a zero crossing of one the component. The second and third methods were based on the peak amplitude difference and first-order derivative absorption of the ratio spectra developed by the manipulation of scanned UV spectra. REM and MET showed good linearity in the series of 1-20 µg ml-1 and 2.5-35 µg ml-1, respectively, by all three methods with an excellent correlation coefficient (r2 ≥ 0.998). Further, the proposed UV spectroscopic techniques were validated as per International Council for Harmonization guidelines. The methods showed good sensitivity, accuracy, and precision. Anticipated procedures were effectively utilized for the concurrent quantification of REM and MET in laboratory prepared mixtures and tablets. The high percent recovery with low standard deviation found for both analytes by all three methods confirms the accuracy and precision of the procedures. Finally, the greenness of the proposed spectroscopic methods, evaluated by semi-quantitative and quantitative methods, showed the eco-friendly nature of the methods. Furthermore, the proposed approaches were simple, accurate, sensitive, economic, and environmentally friendly and hence can be utilized for regular quality control of REM and MET formulation.
Collapse
Affiliation(s)
- Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia; (A.B.N.); (N.S.); (B.E.A.-D.); (K.N.V.)
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia; (A.B.N.); (N.S.); (B.E.A.-D.); (K.N.V.)
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia; (A.B.N.); (N.S.); (B.E.A.-D.); (K.N.V.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Bangalore 560035, India
| | - Bandar E. Al-Dhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia; (A.B.N.); (N.S.); (B.E.A.-D.); (K.N.V.)
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia; (A.B.N.); (N.S.); (B.E.A.-D.); (K.N.V.)
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia;
| |
Collapse
|
4
|
Development and Validation of Rapid RP-HPLC and Green Second-Derivative UV Spectroscopic Methods for Simultaneous Quantification of Metformin and Remogliflozin in Formulation Using Experimental Design. SEPARATIONS 2020. [DOI: 10.3390/separations7040059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recently, a new formulation containing metformin HCl (MFH) and remogliflozin etabonate (RGE) has been approved for the management of diabetes mellitus. However, only one analytical method has been reported for the simultaneous determination of both the analytes. Therefore, the current study was designed to develop simple UV derivative spectroscopic and rapid RP-HPLC methods for simultaneous determination of MFH and RGE. The chromatographic separation of MFH and RGE was performed using a monolithic C18 column with an optimized chromatographic conditions carried out by full factorial Box–Behnken design model. The spectroscopic technique was based on the determination of peak amplitude of second-order derivative UV spectra at zero crossings. Further, both the methods were validated and compared statistically using Student’s-t-test and F-test, and employed for the concurrent estimation of MFH and RGE in laboratory mixed solutions and formulations. Perturbation plots and response surface models showed the effect of chromatographic parameters and the final chromatographic condition was selected from 47 solutions suggested by the desirability function. Further, UV spectroscopic and HPLC procedures showed good linearity in the range of 1–24 µg/mL and 2–150 µg/mL for RGE and 2–30 µg/mL and 5–200 µg/mL for MFH, respectively. The average percent assay was found to be 99.51% and 99.80% for MFH and 99.60% and 100.07% for RGE by spectroscopic and HPLC methods, respectively. The proposed methods were simple, accurate, precise, and rapid. Therefore, they can be used for regular quality control of MFH and RGE formulations and dissolution studies as well.
Collapse
|
5
|
Kang YJ, Jeong HC, Kim TE, Shin KH. Bioanalytical Method Using Ultra-High-Performance Liquid Chromatography Coupled with High-Resolution Mass Spectrometry (UHPL-CHRMS) for the Detection of Metformin in Human Plasma. Molecules 2020; 25:molecules25204625. [PMID: 33050662 PMCID: PMC7587192 DOI: 10.3390/molecules25204625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022] Open
Abstract
Metformin is the first-line medicine for the treatment of type 2 diabetes. Drug interactions between metformin and other drugs, food, or beverages cannot only cause changes in the pharmacokinetic profiles but also affect the efficacy of metformin. The purpose of this study was to develop a rapid and reliable bioanalytical method for the detection of plasma metformin concentration in humans. To remove interfering substances in plasma, acidified acetonitrile (acetonitrile containing 0.1% formic acid) was added to samples. Ultra-high-performance liquid chromatography (UHPLC) coupled with high resolution mass spectrometry (HRMS) was used to analyze metformin and its internal standard (metformin-d6). Analyte separation was performed on a BEH HILIC analytical column (100 × 2.1 mm, 1.7 μm) using a gradient elution of 0.1% formic acid (A) and acetonitrile with 0.1% formic acid (B). The total chromatographic run time was 2 min. The developed method was validated for its linearity, accuracy and precision, selectivity (signal of interfering substance; analyte, lower limit of quantification (LLOQ) ≤ 20%; IS, IS ≤ 5%), sensitivity (LLOQ, 5 ng/mL; S/N ratio ≥ 10), stability (low quality control (LQC, 15 ng/mL), 2.95–14.19%; high quality control (HQC, 1600 ng/mL), −9.49–15.10%), dilution integrity (diluted QC (4000 ng/mL); 10-folds diluted QC (400 ng/mL); 5-folds diluted QC (800 ng/mL); accuracy, 81.30–91.98%; precision, ≤4.47%), carry-over (signal of double blank; analyte, LLOQ ≤20%; IS, IS ≤5%), and matrix effect (LQC, 10.109%; HQC, 12.271%) under various conditions. The constructed calibration curves were shown linear in the concentration range of 5–2000 ng/mL, with within- and between-run precision values of <8.19% and accuracy in the range of 91.13–105.25%. The plasma metformin concentration of 16 healthy subjects was successfully measured by applying the validated bioanalytical method.
Collapse
Affiliation(s)
- Ye-Ji Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (Y.-J.K.); (H.-C.J.)
| | - Hyeon-Cheol Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (Y.-J.K.); (H.-C.J.)
| | - Tae-Eun Kim
- Department of Clinical Pharmacology, Konkuk University Medical Center, Seoul 05029, Korea;
| | - Kwang-Hee Shin
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (Y.-J.K.); (H.-C.J.)
- Correspondence: ; Tel.: +82-53-950-8582
| |
Collapse
|
6
|
Chaudhari K, Wang J, Xu Y, Winters A, Wang L, Dong X, Cheng EY, Liu R, Yang SH. Determination of metformin bio-distribution by LC-MS/MS in mice treated with a clinically relevant paradigm. PLoS One 2020; 15:e0234571. [PMID: 32525922 PMCID: PMC7289415 DOI: 10.1371/journal.pone.0234571] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
Metformin, an anti-diabetes drug, has been recently emerging as a potential “anti-aging” intervention based on its reported beneficial actions against aging in preclinical studies. Nonetheless, very few metformin studies using mice have determined metformin concentrations and many effects of metformin have been observed in preclinical studies using doses/concentrations that were not relevant to therapeutic levels in human. We developed a liquid chromatography-tandem mass spectrometry protocol for metformin measurement in plasma, liver, brain, kidney, and muscle of mice. Young adult male and female C57BL/6 mice were voluntarily treated with metformin of 4 mg/ml in drinking water which translated to the maximum dose of 2.5 g/day in humans. A clinically relevant steady-state plasma metformin concentrations were achieved at 7 and 30 days after treatment in male and female mice. Metformin concentrations were slightly higher in muscle than in plasma, while, ~3 and 6-fold higher in the liver and kidney than in plasma, respectively. Low metformin concentration was found in the brain at ~20% of the plasma level. Furthermore, gender difference in steady-state metformin bio-distribution was observed. Our study established steady-state metformin levels in plasma, liver, muscle, kidney, and brain of normoglycemic mice treated with a clinically relevant dose, providing insight into future metformin preclinical studies for potential clinical translation.
Collapse
Affiliation(s)
- Kiran Chaudhari
- Department of Pharmacology and Neuroscience, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Jianmei Wang
- Pharmaceutical analysis core lab, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Yong Xu
- Department of Pharmacology and Neuroscience, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Ali Winters
- Department of Pharmacology and Neuroscience, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Linshu Wang
- Department of Pharmacology and Neuroscience, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Xiaowei Dong
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Eric Y. Cheng
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Ran Liu
- Department of Pharmacology and Neuroscience, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Shao-Hua Yang
- Department of Pharmacology and Neuroscience, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- * E-mail:
| |
Collapse
|
7
|
Locatelli M, Carradori S, Mocan A. Innovative Extraction Techniques and Hyphenated Instrument Configuration for Complex Matrices Analysis. Molecules 2018; 23:molecules23092391. [PMID: 30231552 PMCID: PMC6225184 DOI: 10.3390/molecules23092391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 11/16/2022] Open
Affiliation(s)
- Marcello Locatelli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Simone Carradori
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.
| |
Collapse
|