1
|
Ying X, Hou Y, Zheng X, Ma J, Wu M, Liu M, Liu X, Zhang K. Exploring Putative Causal Associations between Diet and Periodontal Disease Susceptibility. JDR Clin Trans Res 2025; 10:44-53. [PMID: 38708597 PMCID: PMC11653277 DOI: 10.1177/23800844241247485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
INTRODUCTION Dietary factors may play an important role in periodontal health. However, current evidence from observational studies remains inconclusive. OBJECTIVE This study aimed to investigate the causal relationships between dietary exposures and periodontal disease risks using Mendelian randomization analysis. METHODS Large-scale genome-wide association study summary statistics for 20 dietary factors were obtained from the MRC-IEU consortium. Multivariable and univariable 2-sample Mendelian randomization analyses were performed to assess the causal effects of each dietary exposure on 6 periodontal outcomes, including gingivitis and periodontitis. RESULTS Genetically predicted higher dried fruit intake was significantly associated with reduced risks of acute gingivitis (odds ratio [OR]: 0.02; 95% confidence interval [CI]: 0.00-0.42; P = 0.01) and bleeding gums (OR: 0.96; 95% CI: 0.93-0.99; P = 0.01). Higher fresh fruit and water intake showed protective effects against chronic gingivitis (OR: 0.18; 95% CI: 0.04-0.91; P = 0.04 and OR: 0.15; 95% CI: 0.04-0.53; P = 0.00) and bleeding gums (OR: 0.95; 95% CI: 0.92-0.981; P = 0.00 and OR: 0.98; 95% CI: 0.96-0.99; P = 0.02). Alcohol intake frequency and processed meat intake were risk factors for bleeding gums (OR: 1.01; 95% CI: 1.00-1.02; P = 0.01 and OR: 1.05; 95% CI: 1.01-1.08; P = 0.00) and painful gums (OR: 1.01; 95% CI: 1.00-1.01; P = 0.00 and OR: 1.02; 95% CI: 1.01-1.03; P = 0.00). Most of the causal relationships between genetic predisposition to the specified dietary factors and periodontal diseases remained statistically significant (P < 0.05) after adjusting for genetic risks associated with dentures, smoking, and type 2 diabetes in multivariable Mendelian randomization models. CONCLUSIONS The findings suggest potential protective effects of higher fruit and water intake against gingivitis and other periodontal problems, while alcohol and processed meat intake may increase the risks of periodontal disease. Our study provides preliminary causal evidence on the effects of diet on periodontal health and could inform prevention strategies targeting dietary habits to improve oral health. KNOWLEDGE TRANSFER STATEMENT This study suggests that fruit and water intake may protect against periodontal disease, while alcohol and processed meats increase risk, informing dietary guidelines to improve oral health.
Collapse
Affiliation(s)
- X.X. Ying
- Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Dalian, China
| | - Y. Hou
- School of Stomatology, China Medical University, Shenyang, China
| | - X. Zheng
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - J.X. Ma
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - M.L. Wu
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - M. Liu
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - X.Y. Liu
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - K.L. Zhang
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Nasution DLI, Tjahajawati S, Indriyanti R, Amaliya. Anti-inflammatory effectiveness of Peperomia pellucida (L.) Kunth in rats induced with periodontitis. Biochem Biophys Rep 2024; 40:101856. [PMID: 39539670 PMCID: PMC11558638 DOI: 10.1016/j.bbrep.2024.101856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background Periodontitis, marked by deep periodontal pocket depth (PPD), facilitates bacterial colonization and inflammation, necessitating adjunctive therapies. Although 0.2 % chlorhexidine (CHX) mouthwash is effective, its side effects have led to the search for alternative treatments. Peperomia pellucida (L.) Kunth, known as Pepper Elder, is a traditional medicinal plant with potential as an adjunctive herbal therapy for periodontitis. Objective This study aimed to investigate the anti-inflammatory efficacy of Peperomia pellucida extract in rats with induced periodontitis. Methods A post-test control group design was used in this laboratory experimental study. Four groups of Wistar strain Rattus norvegicus rats were utilized: a Pristine group (without periodontitis), a negative control group (induced periodontitis only), a positive control group (induced periodontitis and administered 0.2 % CHX), and an experimental group (induced periodontitis and administered 2.5 μL of Pepper Elder extract). Each treatment group received daily administration for one week. PPD measurements were taken on days 0, 3, 5, and 7. Blood serum was collected on day 7 for ELISA to measure IL-1β, TNF-α, IL-10, and IL-13 levels. Statistical analysis was performed using the Kruskal-Wallis test with a post hoc LSD and Mann-Whitney test. Results The extract-treated rats showed a decrease in PPD, with significant differences between the extract group and the negative control group (p < 0.05). TNF-α levels in the extract group differed significantly from the negative control group (p < 0.05) but not from the Pristine and positive control groups. IL-1β levels differed significantly only from the negative control group. IL-10 levels were significantly different from both the Pristine and negative control groups, while IL-13 levels differed significantly only from the negative control group. Conclusion Peperomia pellucida (L.) Kunth extract exhibits anti-inflammatory effects in rats with induced periodontitis.
Collapse
Affiliation(s)
- Dewi Lidya Ichwana Nasution
- Doctoral Program of Dentistry, Faculty of Dentistry, Padjadjaran University, Indonesia
- Department of Periodontic, Faculty of Dentistry Jenderal Achmad Yani University, Indonesia
| | - Sri Tjahajawati
- Departement of Oral Biology, Faculty of Dentistry, Padjadjaran University, Indonesia
| | - Ratna Indriyanti
- Departement of Pediatric Dentistry Faculty of Dentistry, Padjadjaran University, Indonesia
| | - Amaliya
- Department of Periodontic, Faculty of Dentistry, Padjadjaran University, Indonesia
| |
Collapse
|
3
|
German IJS, Barbalho SM, Andreo JC, Zutin TLM, Laurindo LF, Rodrigues VD, Araújo AC, Guiguer EL, Direito R, Pomini KT, Shinohara AL. Exploring the Impact of Catechins on Bone Metabolism: A Comprehensive Review of Current Research and Future Directions. Metabolites 2024; 14:560. [PMID: 39452941 PMCID: PMC11509841 DOI: 10.3390/metabo14100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Degenerative musculoskeletal diseases represent a global health problem due to the progressive deterioration of affected individuals. As a bioactive compound, catechins have shown osteoprotective properties by stimulating osteoblastic cells and inhibiting bone resorption. Thus, this review aimed to address the mechanism of action of catechins on bone tissue. Methods: The search was applied to PubMed without limitations in date, language, or article type. Fifteen articles matched the topic and objective of this review. Results: EGCG (epigallocatechin gallate) and epicatechin demonstrated action on the osteogenic markers RANKL, TRAP, and NF-κβ and expression of BMPs and ALP, thus improving the bone microarchitecture. Studies on animals showed the action of EGCG in increasing calcium and osteoprotegerin levels, in addition to regulating the transcription factor NF-ATc1 associated with osteoclastogenesis. However, it did not show any effect on osteocalcin and RANK. Regarding human studies, EGCG reduced the risk of fracture in a dose-dependent manner. In periodontal tissue, EGCG reduced IL-6, TNF, and RANKL in vitro and in vivo. Human studies showed a reduction in periodontal pockets, gingival index, and clinical attachment level. The action of EGCG on membranes and hydrogels showed biocompatible and osteoinductive properties on the microenvironment of bone tissue by stimulating the expression of osteogenic growth factors and increasing osteocalcin and alkaline phosphate levels, thus promoting new bone formation. Conclusions: EGCG stimulates cytokines related to osteogenes, increasing bone mineral density, reducing osteoclastogenesis factors, and showing great potential as a therapeutic strategy for reducing the risk of bone fractures.
Collapse
Affiliation(s)
- Iris Jasmin Santos German
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, Brazil
| | - Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil (E.L.G.)
- Research Coordination, UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília 17525-902, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, Brazil
| | - Jesus Carlos Andreo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, Brazil
| | - Tereza Lais Menegucci Zutin
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil (E.L.G.)
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, Brazil; (L.F.L.)
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, Brazil; (L.F.L.)
| | - Adriano Cressoni Araújo
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil (E.L.G.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, Brazil
| | - Elen Landgraf Guiguer
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil (E.L.G.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, Brazil
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed. ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
| | - Karina Torres Pomini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil (E.L.G.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, Brazil
| | - André Luis Shinohara
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, Brazil
| |
Collapse
|
4
|
Mohammed SA, Akram HM. Evaluating the Efficacy of Resveratrol-Containing Mouthwash as an Adjunct Treatment for Periodontitis: A Randomized Clinical Trial. Eur J Dent 2024. [PMID: 39251207 DOI: 10.1055/s-0044-1788686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
OBJECTIVES To evaluate the effectiveness of resveratrol mouthwash as an adjunct to nonsurgical periodontal treatment of periodontitis. MATERIALS AND METHODS This study was a randomized, double-blind clinical trial study. The study included 57 participants with periodontitis. Clinical parameters (plaque index [PI], bleeding on probing [BOP], probing pocket depth [PPD], and clinical attachment loss [CAL]) were examined at the baseline visit, after 7 days, and after 30 days of using resveratrol mouthwash as an adjunct to nonsurgical periodontal treatment. The salivary levels of (interleukin [IL]-6) and RANKL (receptor activator of nuclear factor-kappa B ligand) were measured and compared before and after treatment. The participants answered the visual analog scale-based assessment questionnaire at the last visit. STATISTICAL ANALYSIS A one-way ANOVA (analysis of variance) test was used to compare the means of multiple groups (test, positive control, negative control) at baseline and after treatment. A paired t-test was also used to compare the means of a single group before and after treatment. In addition, Tukey's multiple comparisons test was used to identify specific pairwise differences between the three groups after finding significant differences with ANOVA. The Chi-square test was also used to compare the distribution of categorical variables like sex between the groups. RESULTS All interventions significantly reduced PI, BOP, PPD, and CAL, but resveratrol and chlorhexidine had a higher significant effect than placebo except for CAL without a significant difference between them. All mouthwashes significantly reduced the salivary concentration of IL-6. However, resveratrol and chlorhexidine had a significantly higher effect than placebo, while the concentration of RANKL was decreased in all groups without a significant difference between them. The participants' responses to the mouthwash questionnaire showed that resveratrol and chlorhexidine had the same feedback without significant differences. CONCLUSION Resveratrol-containing mouthwash could be used as an alternative to chlorhexidine as an adjunct to nonsurgical periodontal treatment of periodontitis.
Collapse
Affiliation(s)
- Sura A Mohammed
- Department of Periodontology, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Hadeel Mazin Akram
- Department of Periodontology, College of Dentistry, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
5
|
Sahin T. Fermented foods and probiotic consumption frequency as protective indicators for peri-implant diseases - a cross-sectional study. BMC Oral Health 2024; 24:849. [PMID: 39060941 PMCID: PMC11282801 DOI: 10.1186/s12903-024-04625-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Due to their modulatory effect on biofilm growth, bacterial gene expressions, and host-modulation effects, fermented foods and probiotic products could potentially have a protective role against peri-implant diseases. This cross-sectional study aimed to examine the association of consumption of fermented foods and products containing probiotics, with peri-implant health and diseases. METHODS A total of 126 implants were included. The peri-implant health status (peri-implantitis, peri-implant mucositis, and peri-implant health) was assessed through Chicago's Classification of periodontal and peri-implant Diseases and Conditions. A questionnaire was used to evaluate the consumption patterns of fermented and probiotic foods and product. One-way ANOVA was employed to compare the 3 peri-implant conditions categories in terms of fermented food and probiotic consumption. RESULTS There were significant differences in the daily and general consumption of yogurt, probiotic yogurt, kefir, ayran, vinegar, pomegranate syrup, whole meal bread, and homemade butter among peri-implantitis, peri-implant mucositis and peri-implant health (p < 0.05). The peri-implant health group consumed significantly more yogurt, kefir, ayran, vinegar, whole wheat bread, and homemade butter than peri-implant mucositis and peri-implantitis. CONCLUSION A higher consumption of fermented and probiotic foods may be associated with peri-implant health. Fermented and probiotic products may be useful for prevention of peri-implant diseases in patients with implants.
Collapse
Affiliation(s)
- Tugba Sahin
- Division of Periodontology, Faculty of Dentistry, Abant İzzet Baysal University, Bolu, Turkey.
| |
Collapse
|
6
|
Sağır SS, Başmısırlı E, Sapancı B, Kırmızıgül ÖA, İnanç N. Is There a Relationship Between the Dietary Inflammatory Index and Clinical Attachment Loss in Patients with Periodontitis? JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024:1-8. [PMID: 39051874 DOI: 10.1080/27697061.2024.2382961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE The pathogenesis of periodontal diseases is partially driven by oxidative stress. However, studies on the relationship between periodontitis and the inflammatory load of diet are still insufficient. Therefore, this study aimed to examine the relationship between the diet's inflammatory load and periodontitis and clinical attachment loss (CAL). METHODS This cross-sectional study included 119 participants diagnosed with periodontitis according to the 1999 classification. The dietary inflammatory index (DII) was calculated using three-day food consumption records and divided into quartiles (Q1, Q2, and Q3). Body mass index (BMI) was calculated as weight and height (kg/m2). Clinical attachment loss (CAL) score was determined, and the patients were grouped with those CAL scores as 7 < CAL and ≥7 CAL. RESULTS Of the 119 patients with periodontitis, aged 46.24 ± 12.84 years, 45.3% were found to have an anti-inflammatory diet profile (n = 54). When the daily energy and nutrient intake of individuals were examined, it was found that the intake of omega-3 fatty acids (p = 0.004), black tea (p = 0.021), and green pepper (p = 0.029) was higher in those with CAL < 7 compared to those with CAL ≥ 7. There was no relationship between the patients' DII and CAL values. Daily energy, protein, fiber, vitamin A, vitamin E, folic acid, Fe, Zn, and Mg intake in patients with an anti-inflammatory diet in Q1 were higher than in Q2 and Q3 (p < 0.001). CONCLUSION This study found no relationship between DII levels and CAL scores. However, it was observed that periodontitis patients following an anti-inflammatory diet had higher intakes of omega-3 fatty acids, vitamins A, E, and C, as well as zinc and magnesium which are nutrients known to be effective against inflammation. These patients also had CAL scores below 7. Therefore, reducing the inflammatory load of the diet may prevent the development of periodontitis, and further research in this regard would be beneficial.
Collapse
Affiliation(s)
- Seda Sultan Sağır
- Faculty of Health Science, Department of Nutrition and Dietetics, Nuh Naci Yazgan University, Kayseri, Turkey
| | - Eda Başmısırlı
- Faculty of Health Science, Department of Nutrition and Dietetics, Nuh Naci Yazgan University, Kayseri, Turkey
| | - Baturay Sapancı
- Vocational School of Health Sevices, Department of Dental Services, Osmaniye Korkut Ata University, Osmaniye, Turkey
| | | | - Neriman İnanç
- Faculty of Health Science, Department of Nutrition and Dietetics, Nuh Naci Yazgan University, Kayseri, Turkey
| |
Collapse
|
7
|
Bakrim S, Aboulaghras S, Aanniz T, Benali T, El Omari N, El-Shazly M, Lee LH, Mustafa SK, Sahib N, Rebezov M, Ali Shariati M, Lorenzo JM, Bouyahya A. Effects of Mediterranean diets and nutrigenomics on cardiovascular health. Crit Rev Food Sci Nutr 2024; 64:7589-7608. [PMID: 36908235 DOI: 10.1080/10408398.2023.2187622] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The field of nutrigenomics studies the interaction between nutrition and genetics, and how certain dietary patterns can impact gene expression and overall health. The Mediterranean diet (MedDiet), characterized by a high intake of fruits, vegetables, whole grains, and healthy fats, has been linked to better cardiovascular health (CVH) outcomes. This review summarizes the current state of research on the effects of nutrigenomics and MedDiet on cardiovascular health. Results suggest that MedDiet, through its impact on gene expression, can positively influence CVH markers such as blood pressure, lipid profile, and inflammation. However, more research is needed to fully understand the complex interactions between genetics, nutrition, and CVH, and to determine the optimal dietary patterns for individualized care. The aim of this scientific review is to evaluate the current evidence on the effects of nutrigenomics and MedDiet on cardiovascular health. The review summarizes the available studies that have investigated the relationship between nutrition, genetics, and cardiovascular health, and explores the mechanisms by which certain dietary patterns can impact CVH outcomes. The review focuses on the effects of MedDiet, a dietary pattern that is rich in whole foods and healthy fats, and its potential to positively influence CVH through its impact on gene expression. The review highlights the limitations of current research and the need for further studies to fully understand the complex interplay between nutrition, genetics, and cardiovascular health.
Collapse
Affiliation(s)
- Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
| | - Sara Aboulaghras
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research, Mohammed V University, Rabat, Morocco
| | - Tarik Aanniz
- Medical Biotechnology Laboratory, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Marrakesh-Safi, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, The German University in Cairo, Cairo, Egypt
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Nargis Sahib
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Mohammed Premier University, Oujda, Morocco
| | - Maksim Rebezov
- V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russian Federation
| | - Mohammad Ali Shariati
- Kazakh Research Institute of Processing and Food Industry, Semey Branch of the Institute, Almaty, Republic of Kazakhstan
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, Ourense, Spain
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
8
|
Peng S, Fu H, Li R, Li H, Wang S, Li B, Sun J. A new direction in periodontitis treatment: biomaterial-mediated macrophage immunotherapy. J Nanobiotechnology 2024; 22:359. [PMID: 38907216 PMCID: PMC11193307 DOI: 10.1186/s12951-024-02592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/28/2024] [Indexed: 06/23/2024] Open
Abstract
Periodontitis is a chronic inflammation caused by a bacterial infection and is intimately associated with an overactive immune response. Biomaterials are being utilized more frequently in periodontal therapy due to their designability and unique drug delivery system. However, local and systemic immune response reactions driven by the implantation of biomaterials could result in inflammation, tissue damage, and fibrosis, which could end up with the failure of the implantation. Therefore, immunological adjustment of biomaterials through precise design can reduce the host reaction while eliminating the periodontal tissue's long-term chronic inflammation response. It is important to note that macrophages are an active immune system component that can participate in the progression of periodontal disease through intricate polarization mechanisms. And modulating macrophage polarization by designing biomaterials has emerged as a new periodontal therapy technique. In this review, we discuss the role of macrophages in periodontitis and typical strategies for polarizing macrophages with biomaterials. Subsequently, we discuss the challenges and potential opportunities of using biomaterials to manipulate periodontal macrophages to facilitate periodontal regeneration.
Collapse
Affiliation(s)
- Shumin Peng
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Haojie Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Rui Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Hui Li
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100069, China
| | - Shuyuan Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Bingyan Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Jingjing Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China.
| |
Collapse
|
9
|
Sedláček P, Bludovská M, Plavinová I, Zavaďáková A, Müller L, Müllerová D. Dietary intake of plant polyphenols: Exploring trend in the Czech population. Cent Eur J Public Health 2024; 32:101-107. [PMID: 39069313 DOI: 10.21101/cejph.a7994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/14/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVES This study aimed to determine trend in polyphenol consumption in the Czech Republic during the last three decades. Additionally, it provides a brief overview of the beneficial effects of polyphenols in several body systems. METHODS Data from the Phenol-Explorer 3.6, a specialized database of polyphenolic substances, were assigned to the resources of the Czech Statistical Office on the consumption of food and beverages in the Czech Republic for the years 1989-2022. The average daily intake of polyphenols was determined by multiplying the average annual consumption of each type of food by the polyphenol content obtained from the database; results were given in milligrams of polyphenols per inhabitant and day. Since the food items in the data sources are not identical, it was necessary to create an extensive model of food categories. RESULTS The current value of polyphenol intake is 1,673 mg per day per inhabitant; however, this level most likely reflects methodological underestimation. The favourable increase in dietary polyphenol intake in the Czech population - doubling, to be precise - which we observed from 1989 to 2007, has been replaced by the opposite trend in the last 15 years. The current intake of polyphenols corresponds to the level that was already achieved in 2004. Hydroxycinnamic acids (from the group of phenolic acids) are the most prevalent dietary polyphenols, followed by flavanols (from the group of flavonoids). The most frequent source of polyphenols in the Czech population are non-alcoholic beverages such as coffee, tea and juices, followed by fruits, cereals, and vegetables, respectively. CONCLUSION Current trend of dietary polyphenol intake in the Czech population is slightly decreasing. This tendency, lasting since 2008, is indisputably negative. Plant polyphenols offer opportunities for inexpensive interventions in health promotion.
Collapse
Affiliation(s)
- Pavel Sedláček
- Department of Hygiene and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Monika Bludovská
- Department of Hygiene and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Iveta Plavinová
- Department of Hygiene and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Anna Zavaďáková
- Department of Hygiene and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Luděk Müller
- Department of Cybernetics, NTIS, University of West Bohemia in Pilsen, Pilsen, Czech Republic
| | - Dana Müllerová
- Department of Hygiene and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
10
|
Benahmed AG, Tippairote T, Gasmi A, Noor S, Avdeev O, Shanaida Y, Mojgani N, Emadali A, Dadar M, Bjørklund G. Periodontitis Continuum: Antecedents, Triggers, Mediators, and Treatment Strategies. Curr Med Chem 2024; 31:6775-6800. [PMID: 39428847 DOI: 10.2174/0109298673265862231020051338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 10/22/2024]
Abstract
Periodontitis (PD) is a chronic inflammatory disease of the periodontium characterized by the formation of gingival pockets and gingival recession. The local inflammatory environment can lead to the destruction of the extracellular matrix and subsequent bone loss. The pathophysiology of PD involves interactions between genetic predisposition, lifestyle, environmental factors, the oral microbiota condition, systemic health disorders, innate and adaptive immune responses, and various host defenses. The review highlighted the importance of the oral cavity condition in systemic health. Thus, a correlation between harmful oral microbiota and cardiovascular disease (CVD)/diabetes/ arthritis, etc, progressions through inflammation and bacterial translocation was highlighted. Antecedents increase an individual's risk of developing PD, trigger initiate microbe-host immunologic responses, and mediators sustain inflammatory interactions. Generally, this review explores the antecedents, triggers, and mediators along the pathophysiological continuum of PD. An analysis of modern approaches to treating periodontitis, including antibiotics for systemic and local use, was carried out. The potential role of natural ingredients such as herbal extracts, phytoconstituents, propolis, and probiotics in preventing and treating PD was highlighted.
Collapse
Affiliation(s)
| | - Torsak Tippairote
- Department of Research, HP Medical Centre, Bangkok, Thailand
- Thailand Initiatives for Functional Medicine, Bangkok, Thailand
| | - Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Oleksandr Avdeev
- Pediatric Dentistry Department, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Yurii Shanaida
- Pediatric Dentistry Department, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Naheed Mojgani
- Biotechnology Department, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Alireza Emadali
- School of Dentistry Medicine, Ahvaz Jondishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Dadar
- Department of Research, CONEM Iran Microbiology Research Group, Tehran, Iran
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
11
|
Basu A, Richardson LA, Carlos A, Abubakr NH, Weltman RL, Ebersole JL. The Associations of Cardiometabolic and Dietary Variables with Clinical Periodontitis in Adults with and without Type 2 Diabetes: A Cross-Sectional Study. Nutrients 2023; 16:81. [PMID: 38201914 PMCID: PMC10780717 DOI: 10.3390/nu16010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Periodontitis is a commonly occurring inflammatory oral disease affecting a large proportion of global and US adults and is characterized by the destruction of the tooth-supporting apparatus. Its etiology is multifactorial, and type 2 diabetes and diet play critical roles in its remission and progression. However, few studies have addressed nutritional and serum vitamin D status in adults with periodontitis in the presence of diabetes. A cross-sectional study (n = 78), and a sub-set of age- and BMI-matched case-control studies (n = 50), were conducted to examine differences in dietary and cardiometabolic variables, and serum vitamin D in adults with periodontitis with or without diabetes. Participants provided fasting blood samples and 24-h diet recalls on at least two different days. Data on health history, body weight, height, nutritional habits, and clinical features of periodontitis were also collected. The Mann-Whitney U Test (with exact p-value estimation by Monte Carlo simulation) was used to examine differences by diabetes status in continuous and ordinal variables. Results revealed significantly lower serum vitamin D, and dietary intake of fruits, vegetables, dairy, vitamins A and C in adults with periodontitis with vs. without diabetes in the sub-study (all p < 0.05). In the overall sample, adults with diabetes presented with higher caries risk measures and lower numbers of teeth than those without diabetes; plaque and bleeding scores did not differ by diabetes status. Finally, a significant associations of food habits was observed, especially consuming protein-rich foods twice a day with a lower bleeding score, and daily consumption of fried or fast foods with a fewer number of teeth present (all p < 0.05). The present findings show significant dietary and serum vitamin D inadequacies among adults with periodontitis, and diabetes further aggravates the observed malnourishment and oral health.
Collapse
Affiliation(s)
- Arpita Basu
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154, USA;
| | - Leigh Ann Richardson
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154, USA;
| | - Alicia Carlos
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada at Las Vegas, Las Vegas, NV 89154, USA; (A.C.); (N.H.A.); (J.L.E.)
| | - Neamat Hassan Abubakr
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada at Las Vegas, Las Vegas, NV 89154, USA; (A.C.); (N.H.A.); (J.L.E.)
| | - Robin L. Weltman
- Department of Clinical Sciences, School of Dental Medicine, University of Nevada at Las Vegas, Las Vegas, NV 89154, USA;
| | - Jeffrey L. Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada at Las Vegas, Las Vegas, NV 89154, USA; (A.C.); (N.H.A.); (J.L.E.)
| |
Collapse
|
12
|
Gawor JP, Ziemann D, Nicolas CS. A water additive with pomegranate can reduce dental plaque and calculus accumulation in dogs. Front Vet Sci 2023; 10:1241197. [PMID: 37841470 PMCID: PMC10570843 DOI: 10.3389/fvets.2023.1241197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023] Open
Abstract
Oral homecare plays a major part in dental disease prevention but it can be difficult to perform and time-consuming. Furthermore, the product used can be of limited efficiency. The goal of this study was to assess the efficacy of a water additive to limit the accumulation of plaque and calculus in dogs. Forty dogs were selected and randomly allocated to one of the two groups after scaling and polishing on day 0. The control group received no oral hygiene while the second group received the water additive (Vet Aquadent® FR3SH™, Virbac) every day. After 30 days, plaque and calculus accumulations were evaluated under anesthesia. The Gingival Bleeding Index (GBI) was assessed on days 0 and 30. On day 30, the plaque and calculus indices were significantly smaller (p < 0.05) in the Aquadent group compared to the control group with median (Q1-Q3) scores of 1.22 (0.99-1.44) vs. 2.31 (1.65-3.86), respectively for plaque and 0.25 (0.15-0.42) vs. 0.33 (0.32-0.69) for calculus. Between day 0 and day 30, the GBI significantly decreased in the control group [from 0.39 (0.21-0.56) to 0.19 (0.08-0.29)] and in the Aquadent group [from 0.33 (0.18-0.47) to 0.00 (0.00-0.00)] but the decrease was significantly greater in the Aquadent group. These results show for the first time that the water additive tested can reduce dental deposit accumulation in dogs and improve gingival health. It can be recommended after a dental cleaning, especially to owners who are reluctant to provide dental care at home due to a lack of time or convenience.
Collapse
|
13
|
Zhou S, Bao Z, Ma S, Ou C, Hu H, Yang Y, Feng X, Pan Y, Gong S, Fan F, Chen P, Chu Q. A local dark tea - Liubao tea - extract exhibits remarkable performance in oral tissue regeneration, inflammation relief and oral microbiota reconstruction. Food Funct 2023; 14:7400-7412. [PMID: 37475617 DOI: 10.1039/d3fo02277c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The prevalence of oral health problems is ubiquitous in contemporary society, with particular emphasis placed on the central role of oral flora in mitigating this issue. Both ancient literature and modern research have highlighted the promising application of tea with substantial bioactive properties, particularly dark tea, in preserving and promoting oral health. Liubao tea, a widely consumed dark tea with increasing popularity in recent years, has been reported to possess abundant bioactive constituents, exhibit remarkable antioxidant and anti-inflammatory effects, modulate the flora structure and so on. It may be a promising candidate for addressing oral health problems. In this study, Liubao tea was meticulously extracted, purified and identified, followed by an investigation of its potential to modulate oral microecology by virtue of an acetic acid-induced oral disorder murine model. The results revealed that Liubao tea extract (LTE) application commendably reconstructed the oral mucosal barrier, promoted tissue regeneration and mitigated micro-inflammation. Furthermore, LTE treatment could also ameliorate the oral flora composition by decreasing the abundance of Proteobacteria and increasing the abundance of Firmicutes and Actinobacteria at the phylum level, as well as inhibiting pernicious bacteria such as Streptococcus and Delftia acidovorans. So, it could promote the generation of a beneficial microenvironment and regulate the immune process. Overall, LTE demonstrated remarkable potential in regulating the balance of oral microecology, suggesting that it may represent a promising therapeutic strategy for oral health concerns.
Collapse
Affiliation(s)
- Su Zhou
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China.
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhelu Bao
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China.
| | - Shicheng Ma
- Wuzhou Liubao Tea Research Association, Wuzhou, 543000, P. R. China
| | - Cansong Ou
- Wuzhou Tea Industry Development Service Center, Wuzhou, 543000, P. R. China
| | - Hao Hu
- College of Agriculture and Food Science, Zhejiang Agriculture & Forest University, Hangzhou 310058, P. R. China
| | - Yunyun Yang
- College of Standardization, China Jiliang University, Hangzhou 310018, P. R. China
| | - Xinyu Feng
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China.
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yani Pan
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China.
| | - Shuying Gong
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China.
| | - Fangyuan Fan
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China.
| | - Ping Chen
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China.
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China.
| |
Collapse
|
14
|
Nikniaz S, Vaziri F, Mansouri R. Impact of resveratrol supplementation on clinical parameters and inflammatory markers in patients with chronic periodontitis: a randomized clinical trail. BMC Oral Health 2023; 23:177. [PMID: 36973728 PMCID: PMC10045616 DOI: 10.1186/s12903-023-02877-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Periodontitis is one of the most common chronic inflammatory diseases in the world, which affects oral health. Resveratrol is a polyphenol with therapeutic effects on the inflammation caused by periodontal pathogens. This study aimed to evaluate the impact of resveratrol supplementation on clinical parameters and inflammatory markers in patients with chronic periodontitis. METHODS In this randomized, double-blind study, 40 chronic periodontitis patients underwent non-surgical therapy and were randomly assigned to two intervention and control groups, receiving either resveratrol supplements or a placebo for four weeks. Salivary levels of interleukin-8 (IL-8), interleukin-1β (IL-1β), and clinical parameters, including pocket depth (PD), clinical attachment level (CAL), plaque index (PI), and bleeding index (BI), were measured before and after the intervention. RESULTS The results showed that in both the case and control groups, after four weeks of using resveratrol, only plaque index (PI) was significantly different compared to the control group (P = 0.0001). However, there were no significant differences in the mean pocket depth (PD), clinical attachment loss (CAL), bleeding index (BI), and salivary levels of IL-8 and IL-1β between the two groups after the intervention. CONCLUSION Resveratrol complement was helpful as an anti-inflammatory food supplement, along with other non-surgical periodontal treatments in chronic periodontitis patients.
Collapse
Affiliation(s)
- Shabnam Nikniaz
- Department of Periodontics, School of Dentistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farzane Vaziri
- Department of Periodontics, School of Dentistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Reza Mansouri
- Department of Immunology, faculty of medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
15
|
Verma R, Kumar Gupta S, Lamba NP, Singh BK, Singh S, Bahadur V, Chauhan MS. Graphene and Graphene Based Nanocomposites for Bio‐Medical and Bio‐safety Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202204337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Renu Verma
- Amity University Rajasthan Jaipur India- 303002
| | | | | | | | | | - Vijay Bahadur
- Alliance University Chandapura-Anekal Main Road Bengaluru India- 562106
- Department of Pharmaceutical and Pharmacological science, University of Houston Houston USA- 77204
| | | |
Collapse
|
16
|
Root canal disinfection and maintenance of the remnant tooth tissues by using grape seed and cranberry extracts. Odontology 2022:10.1007/s10266-022-00766-w. [DOI: 10.1007/s10266-022-00766-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/08/2022] [Indexed: 12/14/2022]
|
17
|
Jayusman PA, Nasruddin NS, Mahamad Apandi NI, Ibrahim N, Budin SB. Therapeutic Potential of Polyphenol and Nanoparticles Mediated Delivery in Periodontal Inflammation: A Review of Current Trends and Future Perspectives. Front Pharmacol 2022; 13:847702. [PMID: 35903322 PMCID: PMC9315271 DOI: 10.3389/fphar.2022.847702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/21/2022] [Indexed: 01/04/2023] Open
Abstract
Periodontitis is an oral inflammatory process involving the periodontium, which is mainly caused by the invasion of periodontopathogenic microorganisms that results in gingival connective tissue and alveolar bone destruction. Metabolic products of the oral pathogens and the associated host immune and inflammatory responses triggered are responsible for the local tissue destruction. Numerous studies in the past decades have demonstrated that natural polyphenols are capable of modulating the host inflammatory responses by targeting multiple inflammatory components. The proposed mechanism by which polyphenolic compounds exert their great potential is by regulating the immune cell, proinflammatory cytokines synthesis and gene expression. However, due to its low absorption and bioavailability, the beneficial effects of these substances are very limited and it hampers their use as a therapeutic agent. To address these limitations, targeted delivery systems by nanoencapsulation techniques have been explored in recent years. Nanoencapsulation of polyphenolic compounds with different carriers is an efficient and promising approach to boost their bioavailability, increase the efficiency and reduce the degradability of natural polyphenols. In this review, we focus on the effects of different polyphenolic substances in periodontal inflammation and to explore the pharmaceutical significance of polyphenol-loaded nanoparticles in controlling periodontitis, which may be useful for further enhancement of their efficacy as therapeutic agents for periodontal disease.
Collapse
Affiliation(s)
- Putri Ayu Jayusman
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurrul Shaqinah Nasruddin
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul Inaas Mahamad Apandi
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norliwati Ibrahim
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Balkis Budin
- Centre for Diagnostic, Therapeutic and Investigative Studies, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Zhang Z, Yu Y, Zhu G, Zeng L, Xu S, Cheng H, Ouyang Z, Chen J, Pathak JL, Wu L, Yu L. The Emerging Role of Plant-Derived Exosomes-Like Nanoparticles in Immune Regulation and Periodontitis Treatment. Front Immunol 2022; 13:896745. [PMID: 35757759 PMCID: PMC9231591 DOI: 10.3389/fimmu.2022.896745] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Periodontitis is an infectious oral disease, which leads to the destruction of periodontal tissues and tooth loss. Although the treatment of periodontitis has improved recently, the effective treatment of periodontitis and the periodontitis-affected periodontal tissues is still a challenge. Therefore, it is urgent to explore new therapeutic strategies for periodontitis. Natural products show anti-microbial, anti-inflammatory, anti-oxidant and bone protective effects to periodontitis and most of these natural products are safe and cost-effective. Among these, the plant-derived exosome-like nanoparticles (PELNs), a type of natural nanocarriers repleted with lipids, proteins, RNAs, and other active molecules, show the ability to enter mammalian cells and regulate cellular activities. Reports from the literature indicate the great potential of PELNs in the regulation of immune functions, inflammation, microbiome, and tissue regeneration. Moreover, PELNs can also be used as drug carriers to enhance drug stability and cellular uptake in vivo. Since regulation of immune function, inflammation, microbiome, and tissue regeneration are the key phenomena usually targeted during periodontitis treatment, the PELNs hold the promising potential for periodontitis treatment. This review summarizes the recent advances in PELNs-related research that are related to the treatment of periodontitis and regeneration of periodontitis-destructed tissues and the underlying mechanisms. We also discuss the existing challenges and prospects of the application of PELNs-based therapeutic approaches for periodontitis treatment.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Yang Yu
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, China
| | - Guanxiong Zhu
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Liting Zeng
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Shaofen Xu
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Haoyu Cheng
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Zhaoguang Ouyang
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Jianwei Chen
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Janak L Pathak
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Lihong Wu
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Lina Yu
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
19
|
Effect of Green Tea on the Level of Salivary Interleukin-1 Beta in Patients with Chronic Periodontitis: A Randomized Clinical Trial. Int J Dent 2022; 2022:8992313. [PMID: 35706460 PMCID: PMC9192211 DOI: 10.1155/2022/8992313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022] Open
Abstract
Aim Interleukin-1 beta (IL-1β) is one of the major biomarkers involved in the pathogenesis of chronic periodontitis. The aim of this study was to evaluate the changes in salivary IL-1β concentration in patients with chronic periodontitis following daily consumption of green tea. Methods and Materials Thirty patients with an average age of 45.8 years suffering from chronic periodontitis were randomly assigned into 2 groups (i.e., experimental and control groups). Besides receiving phase 1 periodontal treatment (scaling and root planning (SRP)), the experimental group drank green tea for a period of 6 weeks. To measure the concentration of salivary IL-1β, saliva samples were taken from both groups at 2 time points, i.e., prior to SRP (time point 1 (T0)) and after 6 weeks (time point 2 (T1)). The nonparametric Wilcoxon test was used to examine and compare the changes in the concentration of salivary IL-1β in each group relevant to the 2 time points (T0 and T1). Data were submitted to statistical analysis. Results At the end of the study period, a significant reduction (P=0.0001) in the concentration of salivary IL-1β was observed in the experimental group (A). As for the control group (B), however, there was no significant change (P=0.307) in the concentration of salivary IL-1β after 6 weeks following phase 1 periodontal treatment. Conclusion Green tea supplementation, in addition to SRP, may reduce salivary IL-1β levels in patients with chronic periodontitis for a period of 6 weeks.
Collapse
|
20
|
Selim S, Almuhayawi MS, Alharbi MT, Al Jaouni SK, Alharthi A, Abdel-Wahab BA, Ibrahim MAR, Alsuhaibani AM, Warrad M, Rashed K. Insights into the Antimicrobial, Antioxidant, Anti-SARS-CoV-2 and Cytotoxic Activities of Pistacia lentiscus Bark and Phytochemical Profile; In Silico and In Vitro Study. Antioxidants (Basel) 2022; 11:antiox11050930. [PMID: 35624793 PMCID: PMC9138067 DOI: 10.3390/antiox11050930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/19/2022] Open
Abstract
Foodborne infections and antibiotic resistance pose a serious threat to public health and must be addressed urgently. Pistacia lentiscus is a wild-growing shrub and has been utilized for medicinal applications as well as for culinary purposes. The antibacterial and antioxidant activities of P. lentiscus bark in vitro, as well as the phytochemical composition, are the focus of this inquiry. The bark extract of P. lentiscus showed significant antimicrobial activity in experiments on bacteria and yeast isolated from human and food sources. The exposure time for the complete inhibition of cell viability of P. aeruginosa in the extracts was found to be 5% at 15 min. Phytochemical inquiry of the methanol extract demonstrates the existence of carbohydrates, flavonoids, tannins, coumarins, triterpenes, and alkaloids. Deep phytochemical exploration led to the identification of methyl gallate, gallic acid, kaempferol, quercetin, kaempferol 3-O-α-rhamnoside, kaempferol 3-O-β-glucoside, and Quercetin-3-O-β-glucoside. When tested using the DPPH assay, the methanol extracts of P. lentiscus bark demonstrated a high free radical scavenging efficiency. Further, we have performed a molecular modelling study which revealed that the extract of P. lentiscus bark could be a beneficial source for novel flavonoid glycosides inhibitors against SARS-CoV-2 infection. Taken together, this study highlights the Pistacia lentiscus bark methanol extract as a promising antimicrobial and antiviral agent.
Collapse
Affiliation(s)
- Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
- Correspondence: (S.S.); (M.S.A.); (K.R.)
| | - Mohammed S. Almuhayawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (S.S.); (M.S.A.); (K.R.)
| | - Mohanned T. Alharbi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, University of Jeddah, Jeddah 23218, Saudi Arabia;
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Afaf Alharthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia;
| | - Basel A. Abdel-Wahab
- Department of Medical Pharmacology, College of Medicine, Assiut University, Assiut 71515, Egypt;
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia
| | - Mervat A. R. Ibrahim
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt;
| | - Amnah Mohammed Alsuhaibani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Mona Warrad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Quriat, Jouf University, Al Qurayyat 77425, Saudi Arabia;
| | - Khaled Rashed
- Pharmacognosy Department, National Research Centre, 33El Bohouth Str., Dokki, Giza 12622, Egypt
- Correspondence: (S.S.); (M.S.A.); (K.R.)
| |
Collapse
|
21
|
Unraveling the beneficial effects of herbal Lebanese mixture “Za’atar”. History, studies, and properties of a potential healthy food ingredient. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104993] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
22
|
Ilyas UK, Elayadeth-Meethal M, Kuruniyan MS, Quadri SA, Rajasree R, Naseef PP. Densitometric Quantification and Optimization of Polyphenols in Phyllanthus maderaspatensis by HPTLC. Saudi J Biol Sci 2022; 29:1521-1529. [PMID: 35280567 PMCID: PMC8913410 DOI: 10.1016/j.sjbs.2021.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/11/2021] [Accepted: 11/13/2021] [Indexed: 12/21/2022] Open
Abstract
Quantifying and optimizing the polyphenol content of Phyllanthus maderaspatensis was accomplished using a single-solvent HPTLC system. Analyzing hydroalcoholic extracts for kaempferol, rutin, ellagic acid, quercetin, catechin, and gallic acid, we simultaneously quantified and optimized their concentration. In the experiment, the methanol to water ratio (%), temperature (°C), and time of extraction (min) were all optimized using a Box-Behnken statistical design. Kaempferol, rutin, ellagic acid, quercetin, catechin, and gallic acid were among the dependent variables analyzed. In the HPTLC separation, silica gel 60F254 plates were used, and toluene, ethyl acetate, and formic acid (5:4:1) made up the mobile phase. For kaempferol, rutin, ellagic acid, quercetin, catechin, and gallic acid, densitometric measurements were carried out using the absorbance mode at 254 nm. Hydroalcoholic extract of P. maderaspatensis contains rutin (0.344), catechin (2.62), gallic acid (0.93), ellagic acid (0.172), quercetin (0.0108) and kaempferol (0.06). Further, it may be affected by more than one factor at a time, resulting in a varying degree of reaction. A negative correlation was found between X1 (extraction time (min)) and X2 (temperature), as well as X1 and X3 (solvent ratios). Taking these characteristics into consideration, the method outlined here is a validated HPTLC method for measuring kaempferol, rutin, ellagic acid, quercetin, catechin, and gallic acid.
Collapse
Affiliation(s)
- UK Ilyas
- Department of Pharmacognosy and Phytochemistry, Moulana College of Pharmacy, Perinthalmanna, 679321, Kerala, India
| | - Muhammed Elayadeth-Meethal
- Department of Animal Breeding and Genetics, Kerala Veterinary and Animal Sciences University, Wayanad, 673576, Kerala, India
| | - Mohamed Saheer Kuruniyan
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Syed Altafuddin Quadri
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - R.S. Rajasree
- College of Pharmaceutical Sciences, Government Thirumala Devaswom Medical College, Alappuzha 688005, India
| | - Punnoth Poonkuzhi Naseef
- Department of Pharmaceutics, Moulana College of Pharmacy, Perinthalmanna, 679321, Kerala, India
- Corresponding author.
| |
Collapse
|
23
|
Bhattarai G, Jeon YM, Choi KC, Wagle S, Sim HJ, Kim JI, Zhao S, Kim JG, Cho ES, Kook SH, Lee JC. Functional improvement of collagen-based bioscaffold to enhance periodontal-defect healing via combination with dietary antioxidant and COMP-angiopoietin 1. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112673. [DOI: 10.1016/j.msec.2022.112673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/18/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
|
24
|
Zhao L, Wang H, Feng C, Song F, Du X. Preparation and Evaluation of Starch Hydrogel/Contact Lens Composites as Epigallocatechin Gallate Delivery Systems for Inhibition of Bacterial Adhesion. Front Bioeng Biotechnol 2021; 9:759303. [PMID: 34869268 PMCID: PMC8637123 DOI: 10.3389/fbioe.2021.759303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022] Open
Abstract
Microbial infections caused by wearing contact lenses has become a major health problem, so the design and development of antibacterial contact lenses has attracted widespread attention. To safely and effectively inhibit bacterial adhesion of contact lenses, we have facilely prepared epigallocatechin gallate (EGCG) loaded starch hydrogel/contact lens composites by in-situ free radical polymerization of the mixture containing 2-hydroxylethyl methacrylate, methacrylic acid and ethylene glycol dimethacrylate. The adequate transmittance of the resulting contact lenses was characterized by ultraviolet-visible spectrophotometry, and their satisfactory stability was examined using differential scanning calorimetry and thermogravimetric analysis. Whereafter, cytotoxicity and degradation experiments were performed to investigate the biocompatibility and degradability of the contact lenses. The results showed the nontoxicity and good degradability of the composites. Besides, the capacity of the contact lenses for in vitro release of EGCG was also evaluated, and the results showed that the EGCG in these contact lenses can be sustainably released for at least 14 days. Further bacterial adhesion assay suggested that the EGCG loaded starch hydrogel/contact lenses could significantly reduce the adhesion of Pseudomonas aeruginosa compared to the control. The EGCG loaded starch hydrogel/contact lens composites provide a potential intervention strategy for preventing ocular microbial infections and inhibiting bacterial keratitis.
Collapse
Affiliation(s)
- Lianghui Zhao
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China.,Weifang Medical University, Weifang, China
| | - Hongwei Wang
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
| | - Chengcheng Feng
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
| | - Fangying Song
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
| | - Xianli Du
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
25
|
Mooney EC, Holden SE, Xia XJ, Li Y, Jiang M, Banson CN, Zhu B, Sahingur SE. Quercetin Preserves Oral Cavity Health by Mitigating Inflammation and Microbial Dysbiosis. Front Immunol 2021; 12:774273. [PMID: 34899728 PMCID: PMC8663773 DOI: 10.3389/fimmu.2021.774273] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/08/2021] [Indexed: 11/21/2022] Open
Abstract
Failure to attenuate inflammation coupled with consequent microbiota changes drives the development of bone-destructive periodontitis. Quercetin, a plant-derived polyphenolic flavonoid, has been linked with health benefits in both humans and animals. Using a systematic approach, we investigated the effect of orally delivered Quercetin on host inflammatory response, oral microbial composition and periodontal disease phenotype. In vivo, quercetin supplementation diminished gingival cytokine expression, inflammatory cell infiltrate and alveolar bone loss. Microbiome analyses revealed a healthier oral microbial composition in Quercetin-treated versus vehicle-treated group characterized by reduction in the number of pathogenic species including Enterococcus, Neisseria and Pseudomonas and increase in the number of non-pathogenic Streptococcus sp. and bacterial diversity. In vitro, Quercetin diminished inflammatory cytokine production through modulating NF-κB:A20 axis in human macrophages following challenge with oral bacteria and TLR agonists. Collectively, our findings reveal that Quercetin supplement instigates a balanced periodontal tissue homeostasis through limiting inflammation and fostering an oral cavity microenvironment conducive of symbiotic microbiota associated with health. This proof of concept study provides key evidence for translational studies to improve overall health.
Collapse
Affiliation(s)
- Erin C. Mooney
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Sara E. Holden
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Xia-Juan Xia
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yajie Li
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Min Jiang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Camille N. Banson
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bin Zhu
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Sinem Esra Sahingur
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
26
|
Effects of Essential Oils and Selected Compounds from Lamiaceae Family as Adjutants on the Treatment of Subjects with Periodontitis and Cardiovascular Risk. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Essential oils from different plant species were found to contain different compounds exhibiting anti-inflammatory effects with the potential to be a valid alternative to conventional chemotherapy that is limited in long-term use due to its serious side effects. Generally, the first mechanism by which an organism counteracts injurious stimuli is inflammation, which is considered a part of the innate immune system. Periodontitis is an infectious and inflammatory disease caused by a dysbiosis in the subgingival microbiome that triggers an exacerbated immune response of the host. The immune–inflammatory component leads to the destruction of gingival and alveolar bone tissue. The main anti-inflammation strategies negatively modulate the inflammatory pathways and the involvement of inflammatory mediators by interfering with the gene’s expression or on the activity of some enzymes and so affecting the release of proinflammatory cytokines. These effects are a possible target from an effective and safe approach, suing plant-derived anti-inflammatory agents. The aim of the present review is to summarize the current evidence about the effects of essentials oils from derived from plants of the Lamiaceae family as complementary agents for the treatment of subjects with periodontitis and their possible effect on the cardiovascular risk of these patients.
Collapse
|
27
|
Zhang Q, Zhang J, Zhang J, Xu D, Li Y, Liu Y, Zhang X, Zhang R, Wu Z, Weng P. Antimicrobial Effect of Tea Polyphenols against Foodborne Pathogens: A Review. J Food Prot 2021; 84:1801-1808. [PMID: 34086921 DOI: 10.4315/jfp-21-043] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/03/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Food contamination by foodborne pathogens is still widespread in many countries around the world, and food safety is a major global public health issue. Therefore, novel preservatives that can guarantee safer food are in high demand. Contrary to artificial food preservatives, tea polyphenols (TPs) are getting wide attention as food additives for being "green," "safe," and "healthy." TPs come from many sources, and the purification technology is sophisticated. Compared with other natural antibacterial agents, the antibacterial effect of TPs is more stable, making them excellent natural antibacterial agents. This review includes a systematic summary of the important chemical components of TPs and the antibacterial mechanisms of TPs against various foodborne pathogens. The potential applications of TPs are also discussed. These data provide a theoretical basis for the in-depth study of TPs. HIGHLIGHTS
Collapse
Affiliation(s)
- Qianling Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Jin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Jiaqi Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Duo Xu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Yajuan Li
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Ruilin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Peifang Weng
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| |
Collapse
|
28
|
Lektemur Alpan A, Bakar O, Kızıldağ A, Özdede M, Topsakal Ş, Özmen Ö. Effects of taxifolin on bone formation and apoptosis in experimental periodontitis in diabetic rats. Biotech Histochem 2021; 97:306-314. [PMID: 34547962 DOI: 10.1080/10520295.2021.1977997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
We investigated the therapeutic potential of taxifolin for treatment of alveolar bone loss (ABL) in experimental periodontitis in diabetic rats. Diabetes mellitus (DM) was induced by streptozotocin. Rats were divided into six groups: untreated control; DM only (D) group; ligature only (P) group; DM + ligature (DP) group; DM + ligature + 5 mg/kg/day taxifolin (Taxi-5) group; DM + ligature + 10 mg/kg/day taxifolin (Taxi-10) group. Experimental periodontitis was induced by ligation of the first molar and allowed to progress for 30 days before performing cone-beam computed tomographic (CBCT), histomorphometric and immunohistochemical analyses of periodontal tissue destruction. ABL was assessed using CBCT. ABL was greatest in the P and DP groups. Decreased ABL was observed in the Taxi-5 and Taxi-10 groups. Bone morphogenic protein (BMP-2), osteocalcin (OCN), receptor activator of nuclear factor kappa-Β ligand (RANKL), alkaline phosphatase (ALP), type I collagen, B cell lymphoma-associated X (Bax), and B-cell lymphoma 2 (Bcl-2) levels were investigated using immunohistochemistry. The Taxi-5 and Taxi-10 groups exhibited decreased RANKL expression, but increased BMP-2, ALP, type I collagen and OCN levels compared to the P and DP groups. Bax activity was increased in the D, P and DP groups. Taxi-5 and Taxi-10 groups exhibited increased Bcl-2 activity. Our findings suggest that taxifolin can reduce apoptosis and improve alveolar bone formation in diabetic rats with periodontitis.
Collapse
Affiliation(s)
- Aysan Lektemur Alpan
- Department of Periodontology, Faculty of Dentistry, Pamukkale University, Denizli, Turkey
| | | | - Alper Kızıldağ
- Department of Periodontology, Faculty of Dentistry, Pamukkale University, Denizli, Turkey
| | - Melih Özdede
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Pamukkale University, Denizli, Turkey
| | - Şenay Topsakal
- Department of Endocrinology and Metabolism, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Özlem Özmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
29
|
|
30
|
Beverages Containing Plant-Derived Polyphenols Inhibit Growth and Biofilm Formation of Streptococcus mutans and Children’s Supragingival Plaque Bacteria. BEVERAGES 2021. [DOI: 10.3390/beverages7030043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives: Polyphenols in edible berries and tea plant (Camellia sinensis) suppressed virulence factors of oral pathogens. We investigated if the commercially marketed plant polyphenols-containing beverages inhibited growth and biofilm formation of Streptococcus mutans and children’s dental plaque. Methods: Supragingival plaque collected from 16 children (7–11 years) were suspended in TSB for testing. Test beverages included 26 marketed packaged teas, ready-to-drink bottled raspberry flavored teas and cranberry juice cocktails with and without added sugars. Their effects on in vitro growth and biofilm formation of S. mutans and children’s plaque bacteria were determined after 24–48 h at 37 °C anaerobically in CDM with or without sucrose. Results: Brewed infusions from black, green and cinnamon or raspberry flavored teas bags inhibited growth and biofilm formation of children’s plaque bacteria. Compared to controls, bottled raspberry flavored teas and cranberry juice cocktails significantly inhibited growth and biofilm formation of test bacteria. Added sugar did not significantly impact the inhibition (p > 0.05). Biofilms formed in these beverages were loosely attached and easily dislodged from surfaces. Conclusions: Beverages rich in antimicrobial plant polyphenols reduce plaque adherence, may benefit oral health and are preferred over other sugary beverages. The concept of oral diseases prevention using natural foods/diet is innovative, practical and acceptable.
Collapse
|
31
|
Iviglia G, Torre E, Cassinelli C, Morra M. Functionalization with a Polyphenol-Rich Pomace Extract Empowers a Ceramic Bone Filler with In Vitro Antioxidant, Anti-Inflammatory, and Pro-Osteogenic Properties. J Funct Biomater 2021; 12:jfb12020031. [PMID: 34063147 PMCID: PMC8167574 DOI: 10.3390/jfb12020031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Oral diseases and periodontitis in particular are a major health burden worldwide, because of their association with various systemic diseases and with conditions such as peri-implantitis. Attempts have been made over the years to reverse bone loss due to the host disproportionate inflammatory response and to prevent failure of dental implants. To this end, the use of biomaterials functionalized with molecules characterized by anti-inflammatory and antioxidant properties could represent a new frontier for regenerating functional periodontal tissues. In this study, a new ceramic granulated biomaterial, named Synergoss Red (SR), functionalized with a polyphenolic mixture extracted from pomace of the Croatina grape variety, is introduced. Following a preliminary in-depth characterization of the extract by HPLC analysis and of the biomaterial surface and composition, we performed evaluations of cytocompatibility and a biological response through in vitro assays. The anti-inflammatory and antioxidant properties of the identified phenolic molecules contained in SR were shown to downregulate inflammation in macrophages, to stimulate in osteoblast-like cells the expression of genes involved in deposition of the early bone matrix, and to mitigate bone remodeling by decreasing the RANKL/OPG ratio. Thanks to its cytocompatibility and assorted beneficial effects on bone regeneration, SR could be considered an innovative regenerative approach in periodontal therapy.
Collapse
|
32
|
Lengert EV, Savkina AA, Ermakov AV, Saveleva MS, Lagutina DD, Stepanova TV, Ivanov AN. Influence of the new formulation based on silver alginate microcapsules loaded with tannic acid on the microcirculation of the experimental periodontitis in rats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112144. [PMID: 34082955 DOI: 10.1016/j.msec.2021.112144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/02/2021] [Accepted: 04/24/2021] [Indexed: 01/27/2023]
Abstract
The microvascular changes caused by disorders of host immune response to oral microorganisms resulting in long-lasting inflammation of gums play a critical role in the periodontal lesion in the pathogenesis of chronic periodontitis. Current strategies of non-surgical periodontal therapy are aimed at the attainment of anti-inflammatory effects. We hypothesized that the usage of the microencapsulated form of anti-inflammatory substances with vasoactive effects could enhance the efficiency of the therapy by the prolonged release of active components. The prepared suspension of silver-alginate microcapsules loaded with tannic acid in the hydrogel was applied in vivo to the experimental model of periodontitis in rats induced by a ligature. The effect of this formulation was assessed by monitoring changes in local microcirculation performed by the Laser Doppler Flowmetry (1 and 24 h after application of hydrogel on intact gums and 21-days after the start of periodontitis' modeling). Application of the hydrogel containing multicomponent microcapsules to the affected area of gums allows correction of inflammatory microcirculatory disorders in model periodontitis. Immobilization of tannic acid into microcapsules allows increasing the correction of the following parameters: perfusion disorders, neurogenic tone of arterioles, myogenic tone of precapillary sphincters, as well as a venous outflow in the microvasculature of the gums. The hydrogel containing multicomponent microcapsules reduces the vascular inflammatory response in the model of periodontitis. Loading of silver-alginate microcapsules with tannic acid enhances the efficiency of microvascular disorders' correction in the model of periodontitis that suggests the prospects for application of this drug delivery system for non-surgical treatment of periodontitis.
Collapse
Affiliation(s)
- Ekaterina V Lengert
- Central Research Laboratory, Saratov State Medical University of V. I. Razumovsky, Ministry of Health of the Russian Federation, 410012 Saratov, Russia; Education and Research Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov, Russia.
| | - Angelina A Savkina
- Central Research Laboratory, Saratov State Medical University of V. I. Razumovsky, Ministry of Health of the Russian Federation, 410012 Saratov, Russia
| | - Alexey V Ermakov
- Central Research Laboratory, Saratov State Medical University of V. I. Razumovsky, Ministry of Health of the Russian Federation, 410012 Saratov, Russia; Institute for Molecular Medicine, First Moscow State Medical University (Sechenov University), Moscow 119992, Russia
| | - Mariia S Saveleva
- Central Research Laboratory, Saratov State Medical University of V. I. Razumovsky, Ministry of Health of the Russian Federation, 410012 Saratov, Russia; Education and Research Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov, Russia
| | - Daria D Lagutina
- Central Research Laboratory, Saratov State Medical University of V. I. Razumovsky, Ministry of Health of the Russian Federation, 410012 Saratov, Russia
| | - Tatyana V Stepanova
- Central Research Laboratory, Saratov State Medical University of V. I. Razumovsky, Ministry of Health of the Russian Federation, 410012 Saratov, Russia
| | - Alexey N Ivanov
- Central Research Laboratory, Saratov State Medical University of V. I. Razumovsky, Ministry of Health of the Russian Federation, 410012 Saratov, Russia
| |
Collapse
|
33
|
Milia E, Bullitta SM, Mastandrea G, Szotáková B, Schoubben A, Langhansová L, Quartu M, Bortone A, Eick S. Leaves and Fruits Preparations of Pistacia lentiscus L.: A Review on the Ethnopharmacological Uses and Implications in Inflammation and Infection. Antibiotics (Basel) 2021; 10:antibiotics10040425. [PMID: 33921406 PMCID: PMC8069618 DOI: 10.3390/antibiotics10040425] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022] Open
Abstract
There is an increasing interest in revisiting plants for drug discovery, proving scientifically their role as remedies. The aim of this review was to give an overview of the ethnopharmacological uses of Pistacia lentiscus L. (PlL) leaves and fruits, expanding the search for the scientific discovery of their chemistry, anti-inflammatory, antioxidative and antimicrobial activities. PlL is a wild-growing shrub rich in terpenoids and polyphenols, the oil and extracts of which have been widely used against inflammation and infections, and as wound healing agents. The more recurrent components in PlL essential oil (EO) are represented by α-pinene, terpinene, caryophyllene, limonene and myrcene, with high variability in concentration depending on the Mediterranean country. The anti-inflammatory activity of the oil mainly occurs due to the inhibition of pro-inflammatory cytokines and the arachidonic acid cascade. Interestingly, the capacity against COX-2 and LOX indicates PlL EO as a dual inhibitory compound. The high content of polyphenols enriching the extracts provide explanations for the known biological properties of the plant. The protective effect against reactive oxygen species is of wide interest. In particular, their anthocyanins content greatly clarifies their antioxidative capacity. Further, the antimicrobial activity of PlL oil and extracts includes the inhibition of Staphylococcus aureus, Escherichia coli, periodontal bacteria and Candida spp. In conclusion, the relevant scientific properties indicate PlL as a nutraceutical and also as a therapeutic agent against a wide range of diseases based on inflammation and infections.
Collapse
Affiliation(s)
- Egle Milia
- Department of Medicine, Surgery and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
- Correspondence: (E.M.); (S.E.); Tel.: +39-79-228437 (E.M.); +41-31-632-25-42 (S.E.)
| | - Simonetta Maria Bullitta
- C.N.R., Institute for Animal Production System in Mediterranean Environment (ISPAAM), Traversa La Crucca 3, Località Baldinca, 07100 Sassari, Italy;
| | - Giorgio Mastandrea
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/C, 07100 Sassari, Italy;
| | - Barbora Szotáková
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic;
| | - Aurélie Schoubben
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti, 48-06123 Perugia, Italy;
| | - Lenka Langhansová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic;
| | - Marina Quartu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Cagliari, Italy;
| | - Antonella Bortone
- Dental Unite, Azienda Ospedaliero-Universitaria di Sassari, 07100 Sassari, Italy;
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
- Correspondence: (E.M.); (S.E.); Tel.: +39-79-228437 (E.M.); +41-31-632-25-42 (S.E.)
| |
Collapse
|
34
|
Tamura H, Maekawa T, Domon H, Hiyoshi T, Hirayama S, Isono T, Sasagawa K, Yonezawa D, Takahashi N, Oda M, Maeda T, Tabeta K, Terao Y. Effects of Erythromycin on Osteoclasts and Bone Resorption via DEL-1 Induction in Mice. Antibiotics (Basel) 2021; 10:antibiotics10030312. [PMID: 33803007 PMCID: PMC8002756 DOI: 10.3390/antibiotics10030312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 01/14/2023] Open
Abstract
Macrolides are used to treat various infectious diseases, including periodontitis. Furthermore, macrolides are known to have immunomodulatory effects; however, the underlying mechanism of their action remains unclear. DEL-1 has emerged as an important factor in homeostatic immunity and osteoclastogenesis. Specifically, DEL-1 is downregulated in periodontitis tissues. Therefore, in the present study, we investigated whether the osteoclastogenesis inhibitory effects of erythromycin (ERM) are mediated through upregulation of DEL-1 expression. We used a ligature-induced periodontitis model in C57BL/6Ncrl wild-type or DEL-1-deficient mice and in vitro cell-based mechanistic studies to investigate how ERM inhibits alveolar bone resorption. As a result of measuring alveolar bone resorption and gene expression in the tooth ligation model, ERM treatment reduced bone loss by increasing DEL-1 expression and decreasing the expression of osteoclast-related factors in wild-type mice. In DEL-1-deficient mice, ERM failed to suppress bone loss and gene expression of osteoclast-related factors. In addition, ERM treatment downregulated osteoclast differentiation and calcium resorption in in vitro experiments with mouse bone marrow-derived macrophages. In conclusion, ERM promotes the induction of DEL-1 in periodontal tissue, which may regulate osteoclastogenesis and decrease inflammatory bone resorption. These findings suggest that ERM may exert immunomodulatory effects in a DEL-1-dependent manner.
Collapse
Affiliation(s)
- Hikaru Tamura
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.T.); (T.H.); (S.H.); (T.I.); (K.S.); (Y.T.)
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan;
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.T.); (K.T.)
| | - Tomoki Maekawa
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.T.); (T.H.); (S.H.); (T.I.); (K.S.); (Y.T.)
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan;
- Correspondence: (T.M.); (H.D.); Tel.: +81-25-227-2828 (T.M.); +81-227-2840 (H.D.)
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.T.); (T.H.); (S.H.); (T.I.); (K.S.); (Y.T.)
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan;
- Correspondence: (T.M.); (H.D.); Tel.: +81-25-227-2828 (T.M.); +81-227-2840 (H.D.)
| | - Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.T.); (T.H.); (S.H.); (T.I.); (K.S.); (Y.T.)
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.T.); (K.T.)
| | - Satoru Hirayama
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.T.); (T.H.); (S.H.); (T.I.); (K.S.); (Y.T.)
| | - Toshihito Isono
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.T.); (T.H.); (S.H.); (T.I.); (K.S.); (Y.T.)
| | - Karin Sasagawa
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.T.); (T.H.); (S.H.); (T.I.); (K.S.); (Y.T.)
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.T.); (K.T.)
| | - Daisuke Yonezawa
- Division of Oral Science for Health Promotion, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan;
| | - Naoki Takahashi
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.T.); (K.T.)
| | - Masataka Oda
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Yamashita 607-8414, Japan;
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan;
| | - Koichi Tabeta
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.T.); (K.T.)
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.T.); (T.H.); (S.H.); (T.I.); (K.S.); (Y.T.)
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan;
| |
Collapse
|
35
|
Karami E, Esfahrood ZR, Mansouri R, Haerian A, Abdian-Asl A. Effect of epigallocatechin-3-gallate on tumor necrosis factor-alpha production by human gingival fibroblasts stimulated with bacterial lipopolysaccharide: An in vitro study. J Indian Soc Periodontol 2021; 25:11-16. [PMID: 33642735 PMCID: PMC7904023 DOI: 10.4103/jisp.jisp_323_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/24/2020] [Accepted: 10/11/2020] [Indexed: 11/26/2022] Open
Abstract
Background: Evidence shows that epigallocatechin-3-gallate (EGCG) in green tea has anti-inflammatory effects. Aim: This study assessed the effect of EGCG on the production of tumor necrosis factor-alpha (TNF-α) as an inflammatory cytokine in periodontitis, which produced by human gingival fibroblasts (HGFs) stimulated with lipopolysaccharide (LPS) of Porphyromonas gingivalis. Materials and Methods: In this study, HGFs were cultured and subjected to LPS and EGCG. Cell viability of different concentrations of EGCG (10, 25, 50, 75, and 100 μM) and LPS (1, 10, 20, and 50 μg/mL) was assessed using methyl-thiazole-tetrazolium (MTT) assay. Then, the best concentrations of EGCG and P. gingivalis LPS were used simultaneously and separately to assess the production of TNF-α by HGFs using the enzyme-linked immunosorbent assay (ELISA). Assessments were done at 1, 3, and 5 days. Data were read using the ELISA reader and analyzed by the SPSS through two-way ANOVA. Results: LPS at 1, 10, and 20 and EGCG at 10.25 and 50 μM showed the least cytotoxicity in MTT assay. ELISA showed EGCG alone decreased the production of TNF-α in all days, except 10 μM on day 1. 1, 10, and 20 μg/mL LPS increased the output of TNF-α on days 1 and 3 while reducing it on day 5. The combination of EGCG and LPS showed a decrease of TNF-α in all days except on day 5 that revealed an increase in the production of TNF-α at 25 and 50 μM EGCG. Conclusion: In the combination use of EGCG and LPS, EGCG shows anti-inflammatory effects by decreasing the production of TNF-α by HGFs stimulated with P. gingivalis.
Collapse
Affiliation(s)
- Elahe Karami
- Department of Periodontics, School of Dentistry, Shahid Sadughi University of Medical Science, Yazd, Iran
| | - Zeinab Rezaei Esfahrood
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mansouri
- Department of Immunology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Blood and oncology research center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ahmad Haerian
- Department of Periodontics, School of Dentistry, Shahid Sadughi University of Medical Sciences, Yazd, Iran
| | - Amir Abdian-Asl
- Department of Immunology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
36
|
Izui S, Sekine S, Murai H, Takeuchi H, Amano A. Inhibitory effects of curcumin against cytotoxicity of Porphyromonas gingivalis outer membrane vesicles. Arch Oral Biol 2021; 124:105058. [PMID: 33515981 DOI: 10.1016/j.archoralbio.2021.105058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The purpose of this study was to examine whether curcumin, a turmeric root extract, protects human gingival epithelial (HGE) cells from the cytotoxic effects ofPorphyromonas gingivalis outer membrane vesicles (OMVs). DESIGN OMVs were prepared fromP. gingivalis OMZ314 and used to stimulate human gingival epithelial (HGE) cells. The effects of curcumin on cellular expression of inflammatory cytokines were evaluated using real-time reverse transcription-polymerase chain reaction assays, while those on cellular migration were examined with a scratch wound assay. Furthermore, HGE cells were incubated with OMVs in the presence or absence of curcumin, then intracellular invasion by OMVs was observed with confocal laser scanning microscopy. Also, the effects of curcumin on cellular apoptotic death was examined. RESULTS Gene expressions of IL-6, IL-1β, and TNF-α in HGE cells stimulated with OMVs were significantly suppressed by curcumin in a dose-dependent manner, with suppressed protein production also noted. Moreover, curcumin inhibited the cytotoxic effects of OMVs on cellular migration. Finally, curcumin inhibited OMV adherence to and entry of cells, as well as cellular apoptotic death in a dose-dependent manner. CONCLUSIONS Curcumin showed marked inhibitory effects against the cytotoxic actions of P. gingivalis OMVs, indicating possible potency for preventing periodontal disease.
Collapse
Affiliation(s)
- Shusuke Izui
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Japan
| | - Shinichi Sekine
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Japan
| | - Hiroki Murai
- Joint Research Laboratory (SARAYA) for Advanced Oral Environmental Science, Osaka University Graduate School of Dentistry, Japan
| | - Hiroki Takeuchi
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Japan; Joint Research Laboratory (SARAYA) for Advanced Oral Environmental Science, Osaka University Graduate School of Dentistry, Japan.
| |
Collapse
|
37
|
Soares EL, Dos Santos FA, Mroczek T, de Lima DC, Josefino HVB, da Silva LAB, Mecca LEA, Franco GCN. Effect of caloric restriction on alveolar bone loss in rats. Life Sci 2021; 269:119067. [PMID: 33465390 DOI: 10.1016/j.lfs.2021.119067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Affiliation(s)
| | | | - Tayline Mroczek
- Department of Health Sciences, Universidade Estadual de Ponta Grossa, PR, Brazil
| | | | | | | | | | | |
Collapse
|
38
|
Curuțiu C, Dițu LM, Grumezescu AM, Holban AM. Polyphenols of Honeybee Origin with Applications in Dental Medicine. Antibiotics (Basel) 2020; 9:E856. [PMID: 33266173 PMCID: PMC7761219 DOI: 10.3390/antibiotics9120856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022] Open
Abstract
Honeybee products are a great source of polyphenols with recognized applications in dental medicine. Although their biological mechanisms in oral diseases are not fully understood, numerous in vitro, in vivo and clinical studies have reported promising results in the prevention and treatment of oral diseases. Bioactivities, such as antibacterial, antiviral, antiparasite, anticancer, anti-inflammatory and anti-oxidant properties, recommend their future study in order to develop efficient alternatives in the management of widespread oral conditions, such as dental caries and periodontitis. The most investigated mechanisms of polyphenols in oral health rely on their ability to strengthen the dental enamel, decrease the development of dental plaque formation, inhibit the progression of dental caries and development of dental pathogens and show anti-inflammatory properties. These features recommend them as useful honeybee candidates in the management of emerging oral diseases.
Collapse
Affiliation(s)
- Carmen Curuțiu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (C.C.); (L.M.D.); (A.M.H.)
| | - Lia Mara Dițu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (C.C.); (L.M.D.); (A.M.H.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri Road, 050657 Bucharest, Romania
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (C.C.); (L.M.D.); (A.M.H.)
| |
Collapse
|
39
|
Ruta LL, Farcasanu IC. Interaction between Polyphenolic Antioxidants and Saccharomyces cerevisiae Cells Defective in Heavy Metal Transport across the Plasma Membrane. Biomolecules 2020; 10:E1512. [PMID: 33158278 PMCID: PMC7694260 DOI: 10.3390/biom10111512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/24/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Natural polyphenols are compounds with important biological implications which include antioxidant and metal-chelating characteristics relevant for their antimicrobial, antitumor, or antiaging potential. The mechanisms linking polyphenols and heavy metals in their concerted actions on cells are not completely elucidated. In this study, we used the model eukaryotic microorganism Saccharomyces cerevisiae to detect the action of widely prevalent natural polyphenols on yeast cells defective in the main components involved in essential heavy metal transport across the plasma membrane. We found that caffeic and gallic acids interfered with Zn accumulation, causing delays in cell growth that were alleviated by Zn supplementation. The flavones morin and quercetin interfered with both Mn and Zn accumulation, which resulted in growth improvement, but supplemental Mn and especially Zn turned the initially benefic action of morin and quercetin into potential toxicity. Our results imply that caution is needed when administering food supplements or nutraceuticals which contain both natural polyphenols and essential elements, especially zinc.
Collapse
Affiliation(s)
| | - Ileana Cornelia Farcasanu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Sos. Panduri 90–92, 050663 Bucharest, Romania;
| |
Collapse
|
40
|
Fahmy H, Hegazi N, El-Shamy S, Farag MA. Pomegranate juice as a functional food: a comprehensive review of its polyphenols, therapeutic merits, and recent patents. Food Funct 2020; 11:5768-5781. [PMID: 32608443 DOI: 10.1039/d0fo01251c] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pomegranate (Punica granatum) is an ancient perennial plant species of the Punicaceae family and is regarded as the 'miracle fruit' for its seeds being consumed as food, juice and as a functional food. Significant modern pharmacological and clinical evidence has highlighted the wide medicinal applications of pomegranate fruit parts and its juice. Pomegranate juice (PJ) that is superior to other fruit juices is a fortified source of dietary polyphenols with potential antioxidant capacity. Polyphenols of PJ include tannins, anthocyanins, and flavonoids. The presence of these beneficial phytochemicals is directly linked to its favourable health benefits viz., obesity and diabetes management and anti-inflammatory effects. This comprehensive review capitalizes on PJ with emphasis on the interrelationship between its holistic chemical composition, metabolism and biological effects. Moreover, the review recapitulates on the diverse health benefits of PJ and related patents in the field of PJ production to ensure the best produced juice quality.
Collapse
Affiliation(s)
- Heba Fahmy
- Pharmacognosy Department, Faculty of Pharmacy, Modern University for Technology & Information, Cairo, Egypt
| | | | | | | |
Collapse
|
41
|
Science and Healthy Meals in the World: Nutritional Epigenomics and Nutrigenetics of the Mediterranean Diet. Nutrients 2020; 12:nu12061748. [PMID: 32545252 PMCID: PMC7353392 DOI: 10.3390/nu12061748] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
The Mediterranean Diet (MD), UNESCO Intangible Cultural Heritage of Humanity, has become a scientific topic of high interest due to its health benefits. The aim of this review is to pick up selected studies that report nutrigenomic or nutrigenetic data and recapitulate some of the biochemical/genomic/genetic aspects involved in the positive health effects of the MD. These include (i) the antioxidative potential of its constituents with protective effects against several diseases; (ii) the epigenetic and epigenomic effects exerted by food components, such as Indacaxanthin, Sulforaphane, and 3-Hydroxytyrosol among others, and their involvement in the modulation of miRNA expression; (iii) the existence of predisposing or protective human genotypes due to allelic diversities and the impact of the MD on disease risk. A part of the review is dedicated to the nutrigenomic effects of the main cooking methods used in the MD and also to a comparative analysis of the nutrigenomic properties of the MD and other diet regimens and non-MD-related aliments. Taking all the data into account, the traditional MD emerges as a diet with a high antioxidant and nutrigenomic modulation power, which is an example of the “Environment-Livings-Environment” relationship and an excellent patchwork of interconnected biological actions working toward human health.
Collapse
|
42
|
A Mediterranean Diet Intervention Reduces the Levels of Salivary Periodontopathogenic Bacteria in Overweight and Obese Subjects. Appl Environ Microbiol 2020; 86:AEM.00777-20. [PMID: 32276980 DOI: 10.1128/aem.00777-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
The human oral cavity is a complex ecosystem, and the alterations in salivary microbial communities are associated with both oral and nonoral diseases. The Mediterranean diet (MD) is a healthy dietary pattern useful for both prevention and treatment of several diseases. To further explore the effects of the MD on human health, in this study, we investigated the changes in the salivary microbial communities in overweight/obese subjects after an individually tailored MD-based nutritional intervention. Healthy overweight and obese subjects were randomized between two intervention groups. The MD group (Med-D group) increased their MD adherence during 8 weeks of intervention while the control diet (control-D) group did not change their dietary habits. The salivary microbiota was assessed at baseline and after 4 and 8 weeks of intervention. Despite no observed changes in the overall salivary microbiota composition, we found a significant decrease in the relative abundances of species-level operational taxonomic units annotated as Porphyromonas gingivalis, Prevotella intermedia, and Treponema denticola in the Med-D group compared to that in the control-D group after 8 weeks of intervention, which are known to be associated with periodontal disease. Such variations were significantly linked to dietary variables such as MD adherence rates and intakes of animal versus vegetable proteins. In addition, increased levels of Streptococcus cristatus were observed in the Med-D group, which has been reported as an antagonistic taxon inhibiting P. gingivalis gene expression. Our findings suggest that an MD-based nutritional intervention may be implicated in reducing periodontal bacteria, and an MD may be a dietary strategy supportive of oral homeostasis.IMPORTANCE Changes in dietary behavior with increased adherence to a Mediterranean diet can determine a reduction of periodontopathogenic bacterial abundances in the saliva of overweight subjects with cardiometabolic risk due to an unhealthy lifestyle, without any change in individual energy intake, nutrient intake, and physical activity.
Collapse
|
43
|
Ford L, Stratakos AC, Theodoridou K, Dick JTA, Sheldrake GN, Linton M, Corcionivoschi N, Walsh PJ. Polyphenols from Brown Seaweeds as a Potential Antimicrobial Agent in Animal Feeds. ACS OMEGA 2020; 5:9093-9103. [PMID: 32363261 PMCID: PMC7191560 DOI: 10.1021/acsomega.9b03687] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/30/2020] [Indexed: 05/17/2023]
Abstract
Seaweeds offer a natural source of antimicrobials that may help curb antibiotic resistance in livestock. The antibacterial activity of phlorotannin extracts isolated from two brown seaweeds Ascophyllum nodosum and Fucus serratus was tested. The mechanism of action of phlorotannin extracts against Escherichia coli O157, Salmonella agona, and Streptococcus suis was elucidated by observing cell membrane permeability and intracellular adenosine triphosphate (ATP). The two extracts were effective at killing three foodborne pathogens without negatively affecting the pig intestinal cells. A. nodosum minimum inhibitory concentration (MIC) range for the different pathogens was between 1.56 and 0.78 mg/mL, whereas F. serratus was 3.13 mg/mL for all pathogens tested. A. nodosum was found to be much more potent compared to F. serratus. The difference in potency in the seaweeds may be a result of the phlorotannins' structural linkages. The antimicrobial properties of the seaweed extracts tested may provide alternative and complementary treatments to antibiotics and zinc oxide in animal feeds. The seasonal screening was performed on both species to assess the availability of phenolics throughout the year using two quantification methods, the Folin-Ciocalteu (FC) assay and quantitative nuclear magnetic resonance (NMR). The variation between the methods highlights the challenges involved in the quantification of complex phenolic structures. However, both methods show that the phenolics are subject to seasonal variation, which may prove problematic to the animal feed industry.
Collapse
Affiliation(s)
- Lauren Ford
- School
of Chemistry & Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, Northern Ireland, U.K.
| | - Alexandros Ch. Stratakos
- Centre
for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England Bristol, Coldharbour Lane, Bristol BS16 1QY, U.K.
| | - Katerina Theodoridou
- Institute
for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, Northern Ireland, U.K.
| | - Jaimie T. A. Dick
- Institute
for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, Northern Ireland, U.K.
| | - Gary N. Sheldrake
- School
of Chemistry & Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, Northern Ireland, U.K.
| | - Mark Linton
- Veterinary
Sciences Division, Agri-Food and Biosciences
Institute, Bacteriology Branch, 12 Stoney Road, Belfast BT4 3SD, Northern Ireland, U.K.
| | - Nicolae Corcionivoschi
- Veterinary
Sciences Division, Agri-Food and Biosciences
Institute, Bacteriology Branch, 12 Stoney Road, Belfast BT4 3SD, Northern Ireland, U.K.
| | - Pamela J. Walsh
- School
of Chemistry & Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, Northern Ireland, U.K.
| |
Collapse
|
44
|
Coleman CM, Ferreira D. Oligosaccharides and Complex Carbohydrates: A New Paradigm for Cranberry Bioactivity. Molecules 2020; 25:E881. [PMID: 32079271 PMCID: PMC7070526 DOI: 10.3390/molecules25040881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Cranberry is a well-known functional food, but the compounds directly responsible for many of its reported health benefits remain unidentified. Complex carbohydrates, specifically xyloglucan and pectic oligosaccharides, are the newest recognized class of biologically active compounds identified in cranberry materials. Cranberry oligosaccharides have shown similar biological properties as other dietary oligosaccharides, including effects on bacterial adhesion, biofilm formation, and microbial growth. Immunomodulatory and anti-inflammatory activity has also been observed. Oligosaccharides may therefore be significant contributors to many of the health benefits associated with cranberry products. Soluble oligosaccharides are present at relatively high concentrations (~20% w/w or greater) in many cranberry materials, and yet their possible contributions to biological activity have remained unrecognized. This is partly due to the inherent difficulty of detecting these compounds without intentionally seeking them. Inconsistencies in product descriptions and terminology have led to additional confusion regarding cranberry product composition and the possible presence of oligosaccharides. This review will present our current understanding of cranberry oligosaccharides and will discuss their occurrence, structures, ADME, biological properties, and possible prebiotic effects for both gut and urinary tract microbiota. Our hope is that future investigators will consider these compounds as possible significant contributors to the observed biological effects of cranberry.
Collapse
Affiliation(s)
- Christina M. Coleman
- Department of BioMolecular Sciences, Division of Pharmacognosy, and the Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | |
Collapse
|
45
|
Salehi B, Lopez-Jornet P, Pons-Fuster López E, Calina D, Sharifi-Rad M, Ramírez-Alarcón K, Forman K, Fernández M, Martorell M, Setzer WN, Martins N, Rodrigues CF, Sharifi-Rad J. Plant-Derived Bioactives in Oral Mucosal Lesions: A Key Emphasis to Curcumin, Lycopene, Chamomile, Aloe vera, Green Tea and Coffee Properties. Biomolecules 2019; 9:biom9030106. [PMID: 30884918 PMCID: PMC6468600 DOI: 10.3390/biom9030106] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023] Open
Abstract
Oral mucosal lesions have many etiologies, including viral or bacterial infections, local trauma or irritation, systemic disorders, and even excessive alcohol and tobacco consumption. Folk knowledge on medicinal plants and phytochemicals in the treatment of oral mucosal lesions has gained special attention among the scientific community. Thus, this review aims to provide a brief overview on the traditional knowledge of plants in the treatment of oral mucosal lesions. This review was carried out consulting reports between 2008 and 2018 of PubMed (Medline), Web of Science, Embase, Scopus, Cochrane Database, Science Direct, and Google Scholar. The chosen keywords were plant, phytochemical, oral mucosa, leukoplakia, oral lichen planus and oral health. A special emphasis was given to certain plants (e.g., chamomile, Aloe vera, green tea, and coffea) and plant-derived bioactives (e.g., curcumin, lycopene) with anti-oral mucosal lesion activity. Finally, preclinical (in vitro and in vivo) and clinical studies examining both the safety and efficacy of medicinal plants and their derived phytochemicals were also carefully addressed.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran.
| | - Pia Lopez-Jornet
- Instituto Murciano de InvestigaciónBiosanitaria (IMIB-Arrixaca-UMU), Clínica Odontológica Universitaria Hospital Morales Meseguer Adv. Marques de los velez s/n, 30008 Murcia, Spain.
| | - Eduardo Pons-Fuster López
- University of Murciaand, Clínica Odontológica Universitaria Hospital Morales Meseguer, Adv. Marques de los velez s/n, 30008 Murcia, Spain.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol 61663-335, Iran.
| | - Karina Ramírez-Alarcón
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile.
| | - Katherine Forman
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile.
| | - Marcos Fernández
- Department of Pharmacy, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - Célia F Rodrigues
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| | - Javad Sharifi-Rad
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan 35198-99951, Iran.
| |
Collapse
|