1
|
Wang H, Cai P, Yu X, Li S, Zhu W, Liu Y, Wang D. Bioinformatics identifies key genes and potential drugs for energy metabolism disorders in heart failure with dilated cardiomyopathy. Front Pharmacol 2024; 15:1367848. [PMID: 38510644 PMCID: PMC10952830 DOI: 10.3389/fphar.2024.1367848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Background: Dysfunction in myocardial energy metabolism plays a vital role in the pathological process of Dilated Cardiomyopathy (DCM). However, the precise mechanisms remain unclear. This study aims to investigate the key molecular mechanisms of energy metabolism and potential therapeutic agents in the progression of dilated cardiomyopathy with heart failure. Methods: Gene expression profiles and clinical data for patients with dilated cardiomyopathy complicated by heart failure, as well as healthy controls, were sourced from the Gene Expression Omnibus (GEO) database. Gene sets associated with energy metabolism were downloaded from the Molecular Signatures Database (MSigDB) for subsequent analysis. Weighted Gene Co-expression Network Analysis (WGCNA) and differential expression analysis were employed to identify key modules and genes related to heart failure. Potential biological mechanisms were investigated through Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and the construction of a competing endogenous RNA (ceRNA) network. Molecular docking simulations were then conducted to explore the binding affinity and conformation of potential therapeutic drugs with hub genes. Results: Analysis of the left ventricular tissue expression profiles revealed that, compared to healthy controls, patients with dilated cardiomyopathy exhibited 234 differentially expressed genes and 2 genes related to myocardial energy metabolism. Additionally, Benzoylaconine may serve as a potential therapeutic agent for the treatment of dilated cardiomyopathy. Conclusion: The study findings highlight the crucial role of myocardial energy metabolism in the progression of Dilated Cardiomyopathy. Notably, Benzoylaconine emerges as a potential candidate for treating Dilated Cardiomyopathy, potentially exerting its therapeutic effects by targeted modulation of myocardial energy metabolism through NRK and NT5.
Collapse
Affiliation(s)
- Haixia Wang
- Guangzhou University of Traditional Chinese Medicine ShunDe Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Peifeng Cai
- Guangzhou University of Traditional Chinese Medicine ShunDe Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Xiaohan Yu
- Guangzhou University of Traditional Chinese Medicine ShunDe Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Shiqi Li
- Guangzhou University of Traditional Chinese Medicine ShunDe Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Wei Zhu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, China
| | - Yuntao Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Departments of Gynecologic Oncology, Guangzhou, China
| | - Dawei Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Departments of Gynecologic Oncology, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Zhang J, Ji C, Zhai X, Tong H, Hu J. Frontiers and hotspots evolution in anti-inflammatory studies for coronary heart disease: A bibliometric analysis of 1990-2022. Front Cardiovasc Med 2023; 10:1038738. [PMID: 36873405 PMCID: PMC9978200 DOI: 10.3389/fcvm.2023.1038738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/17/2023] [Indexed: 02/18/2023] Open
Abstract
Background Coronary heart disease (CHD) is characterized by forming of arterial plaques composed mainly of lipids, calcium, and inflammatory cells. These plaques narrow the lumen of the coronary artery, leading to episodic or persistent angina. Atherosclerosis is not just a lipid deposition disease but an inflammatory process with a high-specificity cellular and molecular response. Anti-inflammatory treatment for CHD is a promising therapy; several recent clinical studies (CANTOS, COCOLT, and LoDoCo2) provide therapeutic directions. However, bibliometric analysis data on anti-inflammatory conditions in CHD are lacking. This study aims to provide a comprehensive visual perspective on the anti-inflammatory research in CHD and will contribute to further research. Materials and methods All the data were collected from the Web of Science Core Collection (WoSCC) database. We used the Web of Science's systematic tool to analyze the year of countries/regions, organizations, publications, authors, and citations. CiteSpace and VOSviewer were used to construct visual bibliometric networks to reveal the current status and emerging hotspot trends for anti-inflammatory intervention in CHD. Results 5,818 papers published from 1990 to 2022 were included. The number of publications has been on the rise since 2003. Libby Peter is the most prolific author in the field. "Circulation" was ranked first in the number of journals. The United States has contributed the most to the number of publications. The Harvard University System is the most published organization. The top 5 clusters of keywords co-occurrence are inflammation, C-reactive protein, coronary heart disease, nonsteroidal anti-inflammatory, and myocardial infarction. The top 5 literature citation topics are chronic inflammatory diseases, cardiovascular risk; systematic review, statin therapy; high-density lipoprotein. In the past 2 years, the strongest keyword reference burst is "Nlrp3 inflammasome," and the strongest citation burst is "Ridker PM, 2017 (95.12)." Conclusion This study analyzes the research hotspots, frontiers, and development trends of anti-inflammatory applications in CHD, which is of great significance for future studies.
Collapse
Affiliation(s)
- Jiale Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chenyang Ji
- Science and Technology College of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Xu Zhai
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongxuan Tong
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingqing Hu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Gao AR, Li S, Tan XC, Huang T, Dong HJ, Xue R, Li JC, Zhang Y, Zhang YZ, Wang X. Xinyang Tablet attenuates chronic hypoxia-induced right ventricular remodeling via inhibiting cardiomyocytes apoptosis. Chin Med 2022; 17:134. [PMID: 36471367 PMCID: PMC9720925 DOI: 10.1186/s13020-022-00689-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hypoxia-induced pulmonary hypertension (HPH) is one of the fatal pathologies developed under hypobaric hypoxia and eventually leads to right ventricular (RV) remodeling and RV failure. Clinically, the mortality rate of RV failure caused by HPH is high and lacks effective drugs. Xinyang Tablet (XYT), a traditional Chinese medicine exhibits significant efficacy in the treatment of congestive heart failure and cardiac dysfunction. However, the effects of XYT on chronic hypoxia-induced RV failure are not clear. METHODS The content of XYT was analyzed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS). Sprague-Dawley (SD) rats were housed in a hypobaric chamber (equal to the parameter in altitude 5500 m) for 21 days to obtain the RV remodeling model. Electrocardiogram (ECG) and hemodynamic parameters were measured by iWorx Acquisition & Analysis System. Pathological morphological changes in the RV and pulmonary vessels were observed by H&E staining and Masson's trichrome staining. Myocardial apoptosis was tested by TUNEL assay. Protein expression levels of TNF-α, IL-6, Bax, Bcl-2, and caspase-3 in the RV and H9c2 cells were detected by western blot. Meanwhile, H9c2 cells were induced by CoCl2 to establish a hypoxia injury model to verify the protective effect and mechanisms of XYT. A CCK-8 assay was performed to determine the viability of H9c2 cells. CoCl2-induced apoptosis was detected by Annexin-FITC/PI flow cytometry and Hoechst 33,258 staining. RESULTS XYT remarkably improved RV hemodynamic disorder and ECG parameters. XYT attenuated hypoxia-induced pathological injury in RV and pulmonary vessels. We also observed that XYT treatment decreased the expression levels of TNF-α, IL-6, Bax/Bcl-2 ratio, and the numbers of myocardial apoptosis in RV. In H9c2 myocardial hypoxia model, XYT protected H9c2 cells against Cobalt chloride (CoCl2)-induced apoptosis. We also found that XYT could antagonize CoCl2-induced apoptosis through upregulating Bcl-2, inhibiting Bax and caspase-3 expression. CONCLUSIONS We concluded that XYT improved hypoxia-induced RV remodeling and protected against cardiac injury by inhibiting apoptosis pathway in vivo and vitro models, which may be a promising therapeutic strategy for clinical management of hypoxia-induced cardiac injury.
Collapse
Affiliation(s)
- An-Ran Gao
- grid.411866.c0000 0000 8848 7685Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China ,grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Shuo Li
- grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Xiao-Cui Tan
- grid.411866.c0000 0000 8848 7685Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China ,grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Ting Huang
- grid.411866.c0000 0000 8848 7685Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China ,grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Hua-Jin Dong
- grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Rui Xue
- grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Jing-Cao Li
- grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Yang Zhang
- grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - You-Zhi Zhang
- grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Xiao Wang
- grid.411866.c0000 0000 8848 7685Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| |
Collapse
|
4
|
Zhang M, Sun MY, Yin HJ, Wu ZZ, Jin Y, Min M, Xu FQ. The efficacy of Yiqi Huoxue therapy for chronic heart failure: A meta-analysis in accordance with PRISMA guideline. Medicine (Baltimore) 2022; 101:e30082. [PMID: 36042620 PMCID: PMC9410681 DOI: 10.1097/md.0000000000030082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Chronic heart failure (CHF) is the final destination of most cardiovascular diseases and the most important cause of death. The main clinical manifestations were pulmonary congestion and decreased cardiac output. The purpose of this systematic review is to evaluate the effectiveness of Yiqi Huoxue therapy on CHF. METHODS Seven electronic databases were searched to identify randomized controlled trials of Yiqi Huoxue (YQHX) method for CHF until April 30, 2020. The quality assessment of the included trials was performed by employing the Cochrane Risk of Bias tool and Jadad scale. RESULTS Nineteen randomized controlled trials were included in our review. Most of the included trials were considered as low quality. The aggregated results suggested that experimental group with YQHX therapy got better effect in increasing overall response rate (risk ratio, RR = 1.21, 95% confidence interval, CI 1.15-1.27), traditional Chinese medicine (TCM) syndrome response rate (RR = 1.26, 95% CI 1.17-1.36), 6-minute walk test (RR = 2.14, 95% CI 1.05-3.22), left ventricular ejection fraction (RR = 0.97, 95% CI 0.60-1.34), and stroke volume (standardized mean difference, SMD = 0.94, 95% CI 0.23-1.56), and in lowering down the TCM syndrome scores (SMD = -0.78, 95% CI -0.91 to -0.64), Minnesota Living with Heart Failure questionnaire (SMD = -1.01, 95% CI -1.56 to -0.45), 6-month readmission rate (RR = 0.50, 95% CI 0.28-0.89), B-type natriuretic peptide (SMD = -0.89, 95% CI -1.52 to -0.25), NT-proBNP (SMD = -2.07, 95% CI -3.34 to -0.08), and C-reactive protein (SMD = -2.04, 95% CI -4.12 to -0.67) as compared to using conventional Western medicine alone. There were no significant differences found in left ventricular end diastolic diameter and E/E' between experimental groups and control groups. Moreover, the included sample capacity is small and the trails are all in Chinese. Quality of the evidence for outcomes were "low" and "very low" according to the GRADE assessment. CONCLUSION YQHX is a valid complementary and alternative therapy in the management of CHF, especially in improving overall response rate, TCM syndrome response rate, 6-minute walk test, left ventricular ejection fraction, and stroke volume and in decreasing TCM syndrome scores, Minnesota Living with Heart Failure questionnaire, 6-month readmission rate, B-type natriuretic peptide, NT-proBNP, and C-reactive protein levels. Hence, YQHX is a relatively effective and safe therapy for CHF patients, which can be popularized and applied in the clinic. More long-term follow-up studies are still needed to substantiate and confirm the current findings.
Collapse
Affiliation(s)
- Miao Zhang
- Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Jinan University, Guangzhou, China
| | - Ming-Yue Sun
- Department of Cardiovascular Disease, Beijing Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui-Jun Yin
- Department of Cardiovascular Disease, Beijing Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zheng-Zhi Wu
- Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yu Jin
- Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Ma Min
- Jinan University, Guangzhou, China
| | - Feng-Qin Xu
- Department of Cardiovascular Disease, Beijing Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Feng-Qin Xu, Department of Cardiovascular Disease, Beijing Xiyuan Hospital, China Academy of Chinese Medical Sciences, Building Xingyuan, No. 1 Xiyuan Caochang, Beijing 100091, China (e-mail: )
| |
Collapse
|
5
|
Gao S, Li Y, Wu D, Jiao N, Yang L, Zhao R, Xu Z, Chen W, Lin X, Cheng S, Zhu L, Lan P, Zhu R. IBD Subtype-Regulators IFNG and GBP5 Identified by Causal Inference Drive More Intense Innate Immunity and Inflammatory Responses in CD Than Those in UC. Front Pharmacol 2022; 13:869200. [PMID: 35462887 PMCID: PMC9020454 DOI: 10.3389/fphar.2022.869200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023] Open
Abstract
Background: The pathological differences between Crohn’s disease (CD) and ulcerative colitis (UC) are substantial and unexplained yet. Here, we aimed to identify potential regulators that drive different pathogenesis of CD and UC by causal inference analysis of transcriptome data. Methods: Kruskal–Wallis and Dunnett’s tests were performed to identify differentially expressed genes (DEGs) among CD patients, UC patients, and controls. Subsequently, differentially expressed pathways (DEPs) between CD and UC were identified and used to construct the interaction network of DEPs. Causal inference was performed to identify IBD subtype-regulators. The expression of the subtype-regulators and their downstream genes was validated by qRT-PCR with an independent cohort. Results: Compared with the control group, we identified 1,352 and 2,081 DEGs in CD and UC groups, respectively. Multiple DEPs between CD and UC were closely related to inflammation-related pathways, such as NOD-like receptor signaling, IL-17 signaling, and chemokine signaling pathways. Based on the priori interaction network of DEPs, causal inference analysis identified IFNG and GBP5 as IBD subtype-regulators. The results with the discovery cohort showed that the expression level of IFNG, GBP5, and NLRP3 was significantly higher in the CD group than that in the UC group. The regulation relationships among IFNG, GBP5, and NLRP3 were confirmed with transcriptome data from an independent cohort and validated by qRT-PCR. Conclusion: Our study suggests that IFNG and GBP5 were IBD subtype-regulators that trigger more intense innate immunity and inflammatory responses in CD than those in UC. Our findings reveal pathomechanical differences between CD and UC that may contribute to personalized treatment for CD and UC.
Collapse
Affiliation(s)
- Sheng Gao
- Department of Bioinformatics, Putuo People's Hospital, Tongji University, Shanghai, China
| | - Yichen Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China
| | - Dingfeng Wu
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Na Jiao
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Yang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Rui Zhao
- Department of Bioinformatics, Putuo People's Hospital, Tongji University, Shanghai, China
| | - Zhifeng Xu
- Department of Bioinformatics, Putuo People's Hospital, Tongji University, Shanghai, China
| | - Wanning Chen
- Department of Bioinformatics, Putuo People's Hospital, Tongji University, Shanghai, China
| | - Xutao Lin
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China
| | - Sijing Cheng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China.,School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Lixin Zhu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China
| | - Ping Lan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China.,School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Ruixin Zhu
- Department of Bioinformatics, Putuo People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
6
|
Li J, Chen X, Li X, Tang J, Li Y, Liu B, Guo S. Cryptochlorogenic acid and its metabolites ameliorate myocardial hypertrophy through a HIF1α-related pathway. Food Funct 2022; 13:2269-2282. [PMID: 35141734 DOI: 10.1039/d1fo03838a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cryptochlorogenic acid (4-CQA) is a phenolic acid that has antioxidant and anti-inflammatory activities. Our preliminary study found that 4-CQA has a good effect on isoproterenol (ISO)-induced myocardial hypertrophy, while the mechanism remains largely unknown. This study aimed at delineating the metabolites and metabolic pathways of 4-CQA using liquid mass spectrometry and molecular biotechnology, exploring possible active metabolites and the mechanism of myocardial hypertrophy amelioration in H9c2 cells, and finally, investigating the pharmacokinetics of 4-CQA and its active metabolites in vivo. In summary, 56 potential effective metabolites were distinguished in rat urine, feces, plasma samples and heart tissue after intragastric administration of 4-CQA, and the main metabolic reaction types of 4-CQA included hydrogenation, methylation, glucuronidation, sulfation, hydration and their composite reactions in in vivo biotransformation. Besides, 4-CQA and its main active metabolites, caffeic acid and 4-O-feruloylquinic acid, significantly ameliorated pathological cardiac hypertrophy of H9c2 cells treated with ISO based on the Akt/mTOR/HIF-1α pathway. In addition, this study demonstrated that the prototype drugs 4-CQA and 4-O-ferulylquinic acid generally exhibit similar pharmacokinetic characteristics and caffeic acid presents relatively late peak time and low peak concentration in rats, which make them suitable candidate drugs.
Collapse
Affiliation(s)
- Jie Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| | - Xiaohe Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| | - Xiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| | - Jiayang Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| | - Yan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| | - Bin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| | - Shuzhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| |
Collapse
|
7
|
Mechanistic Insights of Qingre Jiedu Recipe Based on Network Pharmacology Approach against Heart Failure. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9024394. [PMID: 35140803 PMCID: PMC8820871 DOI: 10.1155/2022/9024394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022]
Abstract
Qingre Jiedu (QJ) recipe exerted significant cardioprotective efficacy against heart failure (HF), which is a growing health concern that continues to endanger patients' lives. To investigate the protective properties and mechanism of the QJ recipe, we established hydrogen peroxide (H2O2)-induced H9C2 cells and HF rats. The predicted targets and significant pathways of QJ against HF were collected and screened based on network pharmacology from key ingredients and validated by in vivo and in vitro experiments. The decoction of QJ (0.823 g/kg/day) was intragastrically administered for four weeks. QJ (400 μg/mL) was cultured with H2O2 stimulated in the H9C2 cells. A total of 31 effective active compounds were screened in QJ and covered 277 targets, of which 85 were shared with HF-related targets. In vivo, the QJ recipe remarkably protected heart function and reduced serum IL-1, IL-6, PIIINP, and CIV levels. Furthermore, QJ downregulated the key proteins mediating inflammatory responses (p-IKKα/β, p-NFκB, and IL-6) and cardiac fibrosis (STAT3 and MMP-9). In vitro, QJ protected the cardiomyocytes against H2O2-stimulated reactive oxygen species (ROS) production and upregulated PI3K and AKT expressions. Further experiments demonstrate that PI3K inhibitor LY294002 remarkably compromised the effects of QJ. In conclusion, our findings indicate that QJ could exert a cardioprotective effect and inhibit fibrosis and inflammation in HF rats via the PI3K-AKT signaling pathway.
Collapse
|
8
|
RNA-Seq Profiling to Investigate the Mechanism of Qishen Granules on Regulating Mitochondrial Energy Metabolism of Heart Failure in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:5779307. [PMID: 35003305 PMCID: PMC8741342 DOI: 10.1155/2021/5779307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023]
Abstract
Background. Qishen granules (QSG) are a frequently prescribed formula with cardioprotective properties prescribed to HF for many years. RNA-seq profiling revealed that regulation on cardiac mitochondrial energy metabolism is the main therapeutic effect. However, the underlying mechanism is still unknown. In this study, we explored the effects of QSG on regulating mitochondrial energy metabolism and oxidative stress through the PGC-1α/NRF1/TFAM signaling pathway. RNA-seq technology revealed that QSG significantly changed the differential gene expression of mitochondrial dysfunction in myocardial ischemic tissue. The mechanism was verified through the left anterior descending artery- (LAD-) induced HF rat model and oxygen glucose deprivation/recovery- (OGD/R-) established H9C2 induction model both in vivo and in vitro. Echocardiography and HE staining showed that QSG could effectively improve the cardiac function of rats with myocardial infarction in functionality and structure. Furthermore, transcriptomics revealed QSG could significantly regulate mitochondrial dysfunction-related proteins at the transcriptome level. The results of electron microscopy and immunofluorescence proved that the mitochondrial morphology, mitochondrial membrane structural integrity, and myocardial oxidative stress damage can be effectively improved after QSG treatment. Mechanism studies showed that QSG increased the expression level of mitochondrial biogenesis factor PGC-1α/NRF1/TFAM protein and regulated the balance of mitochondrial fusion/fission protein expression. QSG could regulate mitochondrial dysfunction in ischemia heart tissue to protect cardiac function and structure in HF rats. The likely mechanism is the adjustment of PGC-1α/NRF1/TFAM pathway to alleviate oxidative stress in myocardial cells. Therefore, PGC-1α may be a potential therapeutic target for improving mitochondrial dysfunction in HF.
Collapse
|
9
|
Shao-Mei W, Li-Fang Y, Li-Hong W. Traditional Chinese medicine enhances myocardial metabolism during heart failure. Biomed Pharmacother 2021; 146:112538. [PMID: 34922111 DOI: 10.1016/j.biopha.2021.112538] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/02/2022] Open
Abstract
The prognosis of various cardiovascular diseases eventually leads to heart failure (HF). An energy metabolism disorder of cardiomyocytes is important in explaining the molecular basis of HF; this will aid global research regarding treatment options for HF from the perspective of myocardial metabolism. There are many drugs to improve myocardial metabolism for the treatment of HF, including angiotensin receptor blocker-neprilysin inhibitor (ARNi) and sodium glucose cotransporter 2 (SGLT-2) inhibitors. Although Western medicine has made considerable progress in HF therapy, the morbidity and mortality of the disease remain high. Therefore, HF has attracted attention from researchers worldwide. In recent years, the application of traditional Chinese medicine (TCM) in HF treatment has been gradually accepted, and many studies have investigated the mechanism whereby TCM improves myocardial metabolism; the TCMs studied include Danshen yin, Fufang Danshen dripping pill, and Shenmai injection. This enables the clinical application of TCM in the treatment of HF by improving myocardial metabolism. We systematically reviewed the efficacy of TCM for improving myocardial metabolism during HF as well as the pharmacological effects of active TCM ingredients on the cardiovascular system and the potential mechanisms underlying their ability to improve myocardial metabolism. The results indicate that TCM may serve as a complementary and alternative approach for the prevention of HF. However, further rigorously designed randomized controlled trials are warranted to assess the effect of TCM on long-term hard endpoints in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Wang Shao-Mei
- Cardiovascular Medicine Department, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang, China
| | - Ye Li-Fang
- Cardiovascular Medicine Department, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang, China
| | - Wang Li-Hong
- Cardiovascular Medicine Department, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
10
|
Chen XY, Chen XH, Li L, Su CP, Zhang YL, Jiang YY, Guo SZ, Liu B. Deciphering the effective combinatorial components from Si-Miao-Yong-An decoction regarding the intervention on myocardial hypertrophy. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113833. [PMID: 33465437 DOI: 10.1016/j.jep.2021.113833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 05/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Si-Miao-Yong-An decoction (SMYAD), a classical traditional Chinese medicine (TCM) formula, has been used to treat various cardiovascular diseases in clinics. AIM OF THE STUDY The aim of this study is to investigate the effective combinatorial components from SMYAD and its mechanism regarding the intervention on myocardial hypertrophy. MATERIALS AND METHODS SMYAD constituents absorbed in rat plasma and heart were identified using UHPLC Q-Exactive-Orbitrap MS/MS. The identified constituents in SMYAD were further analyzed using ADMET (absorption, distribution, metabolism, excretion and toxicity) prediction and molecular docking. The effective constituents were identified using isoproterenol (ISO)-induced H9c2 cardiomyocyte hypertrophy, and neochlorogenic acid (NCA), chlorogenic acid (CA), cryptochlorogenic acid (CCA), isochlorogenic acid C (ICAC), angoroside C (AGDC), isochlorogenic acid A (ICAA), sweroside (SRD), and harpagide (HPD) in SMYAD extract were quantified by HPLC for compatibility. Finally, anti-hypertrophic activities of candidate effective combinatorial components, which were prepared according to the determined molar concentration ratio of effective constituents using reference substance solution, were analyzed using immunofluorescence staining and Quantitative real-time PCR. The expression levels of PI3Kα, p-ERK, p-Akt, Akt, p-mTOR, mTOR and HIF-1α were measured using Western blot. RESULTS 32 prototypes of SMYAD were identified from plasma and heart tissue of rat. Combining with ADMET prediction, 31 dominant constituents were focused. Based on HIF-1 pathway identified in preliminary result, 17 targets were focused, which were used to dock with 31 constituents. 27 constituents were therefore hit as the potential effective constituents of SMYAD in inhibiting myocardial hypertrophy. Bioactivity evaluation showed that NCA, CA, CCA, ICAC, AGDC, ICAA, SRD, and HPD significantly inhibited the increase of H9c2 cell surface area induced by ISO. Except for ICAA and AGDC, the remaining 6 effective constituents, showing a certain inhibitory effect on ISO-induced ANP mRNA overexpression at high and low concentrations, participated in compatibility based on the molar concentration ratio determined by HPLC. Effective combinatorial components composed of the 6 effective constituents (effective combinatorial components ABC) showed significant inhibitory effect on the increase of cell surface area, and the overexpression of ANP and β-MHC mRNA in H9c2 cells induced by ISO. Moreover, effective combinatorial components ABC significantly inhibited the protein overexpressions of p-Akt, p-mTOR and HIF-1α. Based on the results, we put forward the strategy of "Focusing constituents" and "Focusing targets" for the effective constituents research of TCM formula. CONCLUSION Effective combinatorial components ABC composed of NCA, CA, CCA, ICAC, SRD and HPD from SMYAD inhibited ISO-induced cardiomyocyte hypertrophy and down-regulated expression of ANP and β-MHC mRNA through the inactivation of Akt/mTOR/HIF-1α pathway.
Collapse
MESH Headings
- Animals
- Atrial Natriuretic Factor/genetics
- Cardiomegaly/drug therapy
- Cardiomegaly/metabolism
- Cell Line
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/metabolism
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Isoproterenol/toxicity
- Male
- Medicine, Chinese Traditional
- Molecular Docking Simulation
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myosin Heavy Chains/genetics
- Phosphatidylinositol 3-Kinase/metabolism
- Phytochemicals/analysis
- Phytochemicals/pharmacology
- Phytochemicals/therapeutic use
- Plasma/chemistry
- Proto-Oncogene Proteins c-akt/metabolism
- Rats, Sprague-Dawley
- TOR Serine-Threonine Kinases/metabolism
- Rats
Collapse
Affiliation(s)
- Xiang-Yang Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, Beijing, PR China
| | - Xiao-He Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, Beijing, PR China
| | - Lin Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, Beijing, PR China
| | - Cong-Ping Su
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, Beijing, PR China
| | - Yan-Ling Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, Beijing, PR China
| | - Yan-Yan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, Beijing, PR China
| | - Shu-Zhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, Beijing, PR China.
| | - Bin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, Beijing, PR China.
| |
Collapse
|
11
|
Su C, Wang Q, Luo H, Jiao W, Tang J, Li L, Tian L, Chen X, Liu B, Yu X, Li S, Guo S, Wang W. Si-Miao-Yong-An decoction attenuates cardiac fibrosis via suppressing TGF-β1 pathway and interfering with MMP-TIMPs expression. Biomed Pharmacother 2020; 127:110132. [PMID: 32403042 DOI: 10.1016/j.biopha.2020.110132] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Myocardial fibrosis is an important pathological feature of pressure overload cardiac remodeling. Si-Miao-Yong-An decoction (SMYAD), a traditional Chinese formula, is now clinically used in the treatment of cardiovascular diseases in China. However, its mechanisms in the prevention of heart failure are not fully revealed. PURPOSE To determine whether treatment with SMYAD for 4 weeks would lead to changes in collagen metabolism and ventricular remodeling in a mice model of heart failure. METHODS Mice were subjected to transverse aorta constriction to generate pressure overload induced cardiac remodeling and then were administered SMYAD (14.85 g/kg/day) or captopril (16.5 mg/kg/day) intragastrically for 4 weeks after surgery. Echocardiography and immunohistochemical examination were used to evaluate the effects of SMYAD. The mRNA of collagen metabolism biomarkers were detected. Protein expression of TGF-β1/Smad and TGF-β1/TAK1/p38 pathway were assessed by Western blot. RESULTS SMYAD significantly improved cardiac function, increased left ventricle ejection fraction, and decreased fibrosis area and αSMA expression. Moreover, SMYAD reduced proteins expression related to collagen metabolism, including Col1, Col3, TIMP2 and CTGF. The increased levels of TGF-β1, Smad2, and Smad3 phosphorylation were attenuated in SMYAD group. In addition, SMYAD reduced the levels of TGF-β1, p-TAK1 and p-p38 compared with TAC group. CONCLUSIONS SMYAD improved cardiac fibrosis and heart failure by inhibition of TGF-β1/Smad and TGF-β1/TAK1/p38 pathway. SMYAD protected against cardiac fibrosis and maintained collagen metabolism balance by regulating MMP-TIMP expression. Taken together, these results indicate that SMYAD might be a promising therapeutic agent against cardiac fibrosis.
Collapse
Affiliation(s)
- Congping Su
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qing Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hui Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenchao Jiao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiayang Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lin Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lei Tian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiangyang Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Shuzhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
12
|
Liu J, Yang S, Wang W, Zhang Y, Wang Q, Sun X, Tan N, Du K, Wang Y, Zhao H. Use of Qishen granule for the treatment of heart failure: A systematic review and meta-analysis of animal studies. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Gao S, Zhang Q, Tian C, Li C, Lin Y, Gao W, Wu D, Jiao N, Zhu L, Li W, Zhu R, Wang W, Wang Y. The roles of Qishen granules recipes, Qingre Jiedu, Wenyang Yiqi and Huo Xue, in the treatment of heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112372. [PMID: 31683036 DOI: 10.1016/j.jep.2019.112372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/23/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Recipes (Qingre Jiedu (QJ), Wenyang Yiqi (WYYQ) and Huo Xue (HX)) in Qishen granules (QSG) are believed to synergistically exert cardio-protective effects. However, the underlying pattern of each decomposed recipe in QSG and their synergistic effects in the treatment of heart failure (HF) are not clear. OBJECTIVE The purpose of this study is to explore the biological contributions of decomposed recipes to therapeutic effects of QSG and reveal the pharmacological mechanism of QSG in treating HF. MATERIALS AND METHODS The therapeutic effects of QSG or its recipes on heart failure were examined in wet-lab at both transcription and phenotypic level using HF Sprague-Dawley rats. Sequencing and transcriptome analyses were performed using in silico approaches including identification of differentially expressed genes, pathway enrichment and protein-protein interaction network studies. Specially, an optimized in silico quantitative pathway analysis that maximally extracted gene expression information was developed to reveal differentially expressed pathways (DEPs) among various groups, and is publicly available as R package QPA on GitHub (https://github.com/github-gs/QPA). Finally, the HF-related genes predicted using DEP approach were validated by quantitative real-time polymerase chain reaction and western blot. RESULTS Multiple key genes and the associated signaling pathways were shown to be highly relevant for the therapeutic effect of QSG. Decreased expression of Spp1 gene required for inflammatory signaling and profibrotic signaling were observed in failing hearts treated with QJ, WYYQ and HX. Decreased expression of Cx3cr1 gene required for inflammatory signaling was observed in failing hearts treated with WYYQ and HX. Decreased expression of Myc gene required for oxidative stress and Fgfr2 gene required for profibrotic signaling were observed in failing hearts treated with HX and WYYQ, respectively. Increased expression of Adcy1 gene required for cAMP-PKA signaling cascade was observed in failing hearts treated with WYYQ and HX. CONCLUSIONS Our study suggests that QJ, WYYQ and HX recipes in QSG achieve synergistic and complementary therapeutic effects through alleviating inflammatory responses, attenuating ventricular remodeling and enhancing myocardial energy supply.
Collapse
Affiliation(s)
- Sheng Gao
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China.
| | - Qian Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| | - Chuan Tian
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, United States.
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| | - Yunzheng Lin
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China.
| | - Wenxing Gao
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China.
| | - Dingfeng Wu
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China.
| | - Na Jiao
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, PR China.
| | - Lixin Zhu
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, PR China; Department of Biochemistry, Genome, Environment and Microbiome Community of Excellence, The State University of New York at Buffalo, New York, 14214, United States.
| | - Wenzhe Li
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China.
| | - Ruixin Zhu
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China.
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China; School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| |
Collapse
|
14
|
Wu D, Huo M, Chen X, Zhang Y, Qiao Y. Mechanism of tanshinones and phenolic acids from Danshen in the treatment of coronary heart disease based on co-expression network. BMC Complement Med Ther 2020; 20:28. [PMID: 32020855 PMCID: PMC7076864 DOI: 10.1186/s12906-019-2712-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
Background The tanshinones and phenolic acids in Salvia miltiorrhiza (also named Danshen) have been confirmed for the treatment of coronary heart disease (CHD), but the action mechanisms remain elusive. Methods In the current study, the co-expression protein interaction network (Ce-PIN) was used to illustrate the differences between the tanshinones and phenolic acids of Danshen in the treatment of CHD. By integrating the gene expression profile data and protein-protein interactions (PPIs) data, the Ce-PINs of tanshinones and phenolic acids were constructed. Then, the Ce-PINs were analyzed by gene ontology enrichment analyzed based on the optimal algorithm. Results It turned out that Danshen is able to treat CHD by regulating the blood circulation, immune response and lipid metabolism. However, phenolic acids may regulate the blood circulation by Extracellular calcium-sensing receptor (CaSR), Endothelin-1 receptor (EDNRA), Endothelin-1 receptor (EDNRB), Kininogen-1 (KNG1), tanshinones may regulate the blood circulation by Guanylate cyclase soluble subunit alpha-1 (GUCY1A3) and Guanylate cyclase soluble subunit beta-1 (GUCY1B3). In addition, both the phenolic acids and tanshinones may regulate the immune response or inflammation by T-cell surface glycoprotein CD4 (CD4), Receptor-type tyrosine-protein phosphatase C (PTPRC). Conclusion Through the same targets of the same biological process and different targets of the same biological process, the tanshinones and phenolic acids synergistically treat coronary heart disease.
Collapse
Affiliation(s)
- Dongxue Wu
- Beijing University of Chinese Medicine, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing, 100102, China
| | - Mengqi Huo
- Beijing University of Chinese Medicine, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing, 100102, China
| | - Xi Chen
- Beijing University of Chinese Medicine, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing, 100102, China
| | - Yanling Zhang
- Beijing University of Chinese Medicine, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing, 100102, China.
| | - Yanjiang Qiao
- Beijing University of Chinese Medicine, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing, 100102, China.
| |
Collapse
|
15
|
Liu J, Li Y, Zhang Y, Huo M, Sun X, Xu Z, Tan N, Du K, Wang Y, Zhang J, Wang W. A Network Pharmacology Approach to Explore the Mechanisms of Qishen Granules in Heart Failure. Med Sci Monit 2019; 25:7735-7745. [PMID: 31613871 PMCID: PMC6813758 DOI: 10.12659/msm.919768] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This study aimed to investigate the intrinsic mechanisms of Qishen granules (QSG) in the treatment of HF, and to provide new evidence and insights for its clinical application. Information on QSG ingredients was collected from Traditional Chinese medicine systems pharmacology (TCMSP), TCM@Taiwan, TCMID, and Batman, and input into SwissTargetPrediction to identify the compound targets. HF-related targets were detected from Therapeutic Target Database (TTD), Disgenet-Gene, Drugbank database, and Online Mendelian Inheritance in Man (OMIM) database. The overlap targets of QSG and HF were identified for pathway enrichment analysis by utilizing the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The protein-protein interaction (PPI) network of QSG-HF was constructed, following by the generation of core targets, construction of core modules, and KEGG analysis of the core functional modules. There were 1909 potential targets predicted from the 243 bioactive compounds in QSG which shared 129 common targets with HF-related targets. KEGG pathway analysis of common targets indicated that QSG could regulated 23 representative pathways. In the QSG-HF PPI network analysis, 10 key targets were identified, including EDN1, AGT, CREB1, ACE, CXCR4, ADRBK1, AGTR1, BDKRB1, ADRB2, and F2. Further cluster and enrichment analysis suggested that neuroactive ligand-receptor interaction, cGMP-PKG signaling pathway, renin secretion, vascular smooth muscle contraction, and the renin-angiotensin system might be core pathways of QSG for HF. Our study elucidated the possible mechanisms of QSG from a systemic and holistic perspective. The key targets and pathways will provide new insights for further research on the pharmacological mechanism of QSG.
Collapse
Affiliation(s)
- Junjie Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Yuan Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Yili Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Mengqi Huo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Xiaoli Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Zixuan Xu
- Respiratory Department, Nanjing Pukou Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Nannan Tan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Kangjia Du
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Yong Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Jian Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China (mainland)
| |
Collapse
|
16
|
Su C, Wang Q, Zhang H, Jiao W, Luo H, Li L, Chen X, Liu B, Yu X, Li S, Wang W, Guo S. Si-Miao-Yong-An Decoction Protects Against Cardiac Hypertrophy and Dysfunction by Inhibiting Platelet Aggregation and Activation. Front Pharmacol 2019; 10:990. [PMID: 31619988 PMCID: PMC6759602 DOI: 10.3389/fphar.2019.00990] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
Objective: The aim of this study was to determine whether Si-Miao-Yong-An decoction (SMYAD) could ameliorate pressure overload-induced heart hypertrophy and its mechanisms. Methods: C57BL/6 mice were subjected to either sham or transverse aortic constriction (TAC) surgery to induce heart hypertrophy. SMYAD (14.85 g/kg/day, ig) or captopril (16.5 mg/kg/day, ig) was administered to the mice for 4 weeks. Cardiac function was evaluated based on echocardiography. Heart hypertrophy was detected using hematoxylin and eosin or wheat germ agglutinin staining. Protein expression of CD41, CD61, and P-selectin were measured with Western blot and immunohistochemistry. The expression levels of atrial natriuretic peptide, brain natriuretic peptide, β-myosin heavy chain, β-thromboglobulin, and von Willebrand factor were evaluated by quantitative polymerase chain reaction. Results: Four weeks after TAC, mice developed exaggerated cardiac hypertrophy and demonstrated a strong decrease in left ventricular ejection fraction compared with sham (29.9 ± 9.3% versus 66.0 ± 9.9%; P < 0.001). Conversely, SMYAD improved cardiac dysfunction with preserved left ventricular ejection fraction (66.5 ± 17.2%; P < 0.001). Shortening fraction was increased by SMYAD, while the left ventricular internal diameter and left ventricular volume were decreased in SMYAD group. SMYAD treatment significantly attenuated cardiac hypertrophy as reflected by the inhibition of atrial natriuretic peptide, brain natriuretic peptide, β-myosin heavy chain mRNA expression, and by the decreasing of cardiac myocyte cross-sectional area. Furthermore, Western blot and immunohistochemistry indicated that the protein expression of platelet aggregation markers (CD41 and CD61) and platelet activation marker (P-selectin) were significantly higher in model mice compared with control. These pathological alterations in TAC-induced mice were significantly ameliorated or blocked by SMYAD administration. Conclusions: Our results suggested that SMYAD exerted its effect by inhibiting platelet aggregation and activation as revealed by CD41/CD61/P-selectin downregulation. Inhibition the activation of the platelets might contribute to the therapeutic effect of SMYAD in failing heart.
Collapse
Affiliation(s)
- Congping Su
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qing Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huimin Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenchao Jiao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiangyang Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Bin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuzhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Tian L, Su CP, Wang Q, Wu FJ, Bai R, Zhang HM, Liu JY, Lu WJ, Wang W, Lan F, Guo SZ. Chlorogenic acid: A potent molecule that protects cardiomyocytes from TNF-α-induced injury via inhibiting NF-κB and JNK signals. J Cell Mol Med 2019; 23:4666-4678. [PMID: 31033175 PMCID: PMC6584503 DOI: 10.1111/jcmm.14351] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/16/2019] [Accepted: 04/01/2019] [Indexed: 12/27/2022] Open
Abstract
The traditional Chinese herb Lonicerae Japonicae Flos has shown significant clinical benefits in the treatment of heart failure, but the mechanism remains unclear. As the main active ingredient found in the plasma after oral administration of Lonicerae Japonicae Flos, chlorogenic acid (CGA) has been reported to possess anti‐inflammatory, anti‐oxidant and anti‐apoptosis function. We firstly confirmed the cardioprotective effects of CGA in transverse aortic constriction (TAC)‐induced heart failure mouse model, through mitigating the TNF‐α–induced toxicity. We further used TNF‐α‐induced cardiac injury in human induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs) to elucidate the underlying mechanisms. CGA pre‐treatment could reverse TNF‐α–induced cellular injuries, including improved cell viability, increased mitochondrial membrane potential and inhibited cardiomyocytes apoptosis. We then examined the NF‐κB/p65 and major mitogen‐activated protein kinases (MAPKs) signalling pathways involved in TNF‐α–induced apoptosis of hiPSC‐CMs. Importantly, CGA can directly inhibit NF‐κB signal by suppressing the phosphorylation of NF‐κB/p65. As for the MAPKs, CGA suppressed the activity of only c‐Jun N‐terminal kinase (JNK), but enhanced extracellular signal‐regulated kinase1/2 (ERK1/2) and had no effect on p38. In summary, our study revealed that CGA has profound cardioprotective effects through inhibiting the activation of NF‐κB and JNK pathway, providing a novel therapeutic alternative for prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Lei Tian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong-Ping Su
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qing Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fu-Jian Wu
- Beijing Laboratory for Cardiovascular Precision Medicine, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Rui Bai
- Beijing Laboratory for Cardiovascular Precision Medicine, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hui-Min Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Ying Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wen-Jing Lu
- Beijing Laboratory for Cardiovascular Precision Medicine, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Feng Lan
- Beijing Laboratory for Cardiovascular Precision Medicine, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shu-Zhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|