1
|
Andrés CMC, Pérez de la Lastra JM, Bustamante Munguira E, Andrés Juan C, Pérez-Lebeña E. Anticancer Activity of Metallodrugs and Metallizing Host Defense Peptides-Current Developments in Structure-Activity Relationship. Int J Mol Sci 2024; 25:7314. [PMID: 39000421 PMCID: PMC11242492 DOI: 10.3390/ijms25137314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
This article provides an overview of the development, structure and activity of various metal complexes with anti-cancer activity. Chemical researchers continue to work on the development and synthesis of new molecules that could act as anti-tumor drugs to achieve more favorable therapies. It is therefore important to have information about the various chemotherapeutic substances and their mode of action. This review focuses on metallodrugs that contain a metal as a key structural fragment, with cisplatin paving the way for their chemotherapeutic application. The text also looks at ruthenium complexes, including the therapeutic applications of phosphorescent ruthenium(II) complexes, emphasizing their dual role in therapy and diagnostics. In addition, the antitumor activities of titanium and gold derivatives, their side effects, and ongoing research to improve their efficacy and reduce adverse effects are discussed. Metallization of host defense peptides (HDPs) with various metal ions is also highlighted as a strategy that significantly enhances their anticancer activity by broadening their mechanisms of action.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | | | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | | |
Collapse
|
2
|
Luque-Navarro PM, Carrasco-Jiménez MP, Goracci L, Paredes JM, Espinar-Barranco L, Valverde-Pozo J, Torretta A, Parisini E, Mariotto E, Marchioro C, Laso A, Marco C, Viola G, Lanari D, López Cara LC. New bioisosteric sulphur-containing choline kinase inhibitors with a tracked mode of action. Eur J Med Chem 2023; 246:115003. [PMID: 36493617 DOI: 10.1016/j.ejmech.2022.115003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Since the identification of human choline kinase as a protein target against cancer progression, many compounds have been designed to inhibit its function and reduce the biosynthesis of phosphatidylcholine. Herein, we propose a series of bioisosteric inhibitors that are based on the introduction of sulphur and feature improved activity and lipophilic/hydrophilic balance. The evaluation of the inhibitory and of the antiproliferative properties of the PL (dithioethane) and FP (disulphide) libraries led to the identification of PL 48, PL 55 and PL 69 as the most active compounds of the series. Docking analysis using FLAP suggests that for hits to leads, binding mostly involves an interaction with the Mg2+ cofactor, or its destabilization. The most active compounds of the two series are capable of inducing apoptosis following the mitochondrial pathway and to significantly reduce the expression of anti-apoptotic proteins such as the Mcl-1. The fluorescence properties of the compounds of the PL library allowed the tracking of their mode of action, while PAINS (Pan Assays Interference Structures) filtration databases suggest the lack of any unspecific biological response.
Collapse
Affiliation(s)
- Pilar M Luque-Navarro
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, Campus of Cartuja s/n, Granada, 18071, Spain; Department of Pharmaceutical Sciences, University of Perugia, Perugia, 06123 Italy
| | - M Paz Carrasco-Jiménez
- Department of Biochemistry and Molecular Biology I, University of Granada, Campus of Fuentenueva s/n, Granada, 18071, Spain.
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, 06123, Italy
| | - Jose M Paredes
- Department of Physical-Chemistry, Faculty of Pharmacy, University of Granada, Campus of Cartuja s/n, Granada, 18071, Spain
| | - Laura Espinar-Barranco
- Department of Physical-Chemistry, Faculty of Pharmacy, University of Granada, Campus of Cartuja s/n, Granada, 18071, Spain
| | - Javier Valverde-Pozo
- Department of Physical-Chemistry, Faculty of Pharmacy, University of Granada, Campus of Cartuja s/n, Granada, 18071, Spain
| | - Archimede Torretta
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, Milano, 20133, Italy
| | - Emilio Parisini
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, Milano, 20133, Italy; Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV, 1006, Latvia; Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, Bologna, 40126, Italy
| | - Elena Mariotto
- Department of Woman's and Child's Health, Laboratory of Oncohematology, University of Padova, Padova, 35128, Italy
| | - Chiara Marchioro
- Department of Woman's and Child's Health, Laboratory of Oncohematology, University of Padova, Padova, 35128, Italy
| | - Alejandro Laso
- Department of Biochemistry and Molecular Biology I, University of Granada, Campus of Fuentenueva s/n, Granada, 18071, Spain
| | - Carmen Marco
- Department of Biochemistry and Molecular Biology I, University of Granada, Campus of Fuentenueva s/n, Granada, 18071, Spain
| | - Giampietro Viola
- Department of Woman's and Child's Health, Laboratory of Oncohematology, University of Padova, Padova, 35128, Italy; Istituto di Ricerca Pediatrica (IRP) Fondazione Città della Speranza, Corso Stati Uniti 4, Padova, 35128, Italy.
| | - Daniela Lanari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, 06123 Italy.
| | - Luisa Carlota López Cara
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, Campus of Cartuja s/n, Granada, 18071, Spain.
| |
Collapse
|
3
|
Lu Y, Ma X, Chang X, Liang Z, Lv L, Shan M, Lu Q, Wen Z, Gust R, Liu W. Recent development of gold(I) and gold(III) complexes as therapeutic agents for cancer diseases. Chem Soc Rev 2022; 51:5518-5556. [PMID: 35699475 DOI: 10.1039/d1cs00933h] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metal complexes have demonstrated significant antitumor activities and platinum complexes are well established in the clinical application of cancer chemotherapy. However, the platinum-based treatment of different types of cancers is massively hampered by severe side effects and resistance development. Consequently, the development of novel metal-based drugs with different mechanism of action and pharmaceutical profile attracts modern medicinal chemists to design and synthesize novel metal-based agents. Among non-platinum anticancer drugs, gold complexes have gained considerable attention due to their significant antiproliferative potency and efficacy. In most situations, the gold complexes exhibit anticancer activities by targeting thioredoxin reductase (TrxR) or other thiol-rich proteins and enzymes and trigger cell death via reactive oxygen species (ROS). Interestingly, gold complexes were recently reported to elicit biochemical hallmarks of immunogenic cell death (ICD) as an ICD inducer. In this review, the recent progress of gold(I) and gold(III) complexes is comprehensively summarized, and their activities and mechanism of action are documented.
Collapse
Affiliation(s)
- Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaoyan Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xingyu Chang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenlin Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lin Lv
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qiuyue Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ronald Gust
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Center for Chemistry and Biomedicine, Innsbruck, Austria.
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,State key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
4
|
Goetzfried SK, Kapitza P, Gallati CM, Nindl A, Cziferszky M, Hermann M, Wurst K, Kircher B, Gust R. Investigations of the reactivity, stability and biological activity of halido (NHC)gold(I) complexes. Dalton Trans 2022; 51:1395-1406. [PMID: 34989741 DOI: 10.1039/d1dt03528b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The significance of the halido ligand (Cl-, Br-, I-) in halido[3-ethyl-4-phenyl-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2H-imidazol-2-ylidene]gold(I) complexes (2-4) in terms of ligand exchange reactions, including the ligand scrambling to the bis[3-ethyl-4-phenyl-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2H-imidazol-2-ylidene]gold(I) complex (5), was evaluated by HPLC in acetonitrile/water = 50:50 (v/v) mixtures. In the presence of 0.9% NaCl, the bromido (NHC)gold(I) complex 3 was immediately transformed into the chlorido (NHC)gold(I) complex 2. The iodido (NHC)gold(I) complex 4 converted under the same conditions during 0.5 h of incubation by 52.83% to 2 and by 8.77% to 5. This proportion remained nearly constant for 72 h. The halido (NHC)gold(I) complexes also reacted very rapidly with 1 eq. of model nucleophiles, e.g., iodide or selenocysteine (Sec). For instance, Sec transformed 3 in the proportion 73.03% to the (NHC)Au(I)Sec complex during 5 min of incubation. This high reactivity against this amino acid, present in the active site of the thioredoxin reductase (TrxR), correlates with the complete inhibition of the isolated TrxR enzyme at 1 μM. Interestingly, in cellular systems (A2780cis cells), even at a 5-fold higher concentration, no increased ROS levels were detected. The concentration required for ROS generation was about 20 μM. Superficially considered, the antiproliferative and antimetabolic activities of the halido (NHC)Au(I) complexes correlate with the reactivity of the Au(I)-X bond (2 < 3 < 4). However, it is very likely that degradation products formed during the incubation in cell culture medium participated in the biological activity. In particular, the high-cytotoxic [(NHC)2Au(I)]+ complex (5) distorts the results.
Collapse
Affiliation(s)
- Sina Katharina Goetzfried
- Institute of Pharmacy, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Paul Kapitza
- Institute of Pharmacy, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Caroline Marie Gallati
- Institute of Pharmacy, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Anna Nindl
- Department of Internal Medicine V (Hematology and Oncology), Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria
| | - Monika Cziferszky
- Institute of Pharmacy, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Martin Hermann
- Department of Anesthesiology and Critical Care Medicine, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Klaus Wurst
- Institute for General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Brigitte Kircher
- Department of Internal Medicine V (Hematology and Oncology), Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria
| | - Ronald Gust
- Institute of Pharmacy, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
5
|
Mlostoń G, Kowalczyk M, Celeda M, Gach-Janczak K, Janecka A, Jasiński M. Synthesis and Cytotoxic Activity of Lepidilines A-D: Comparison with Some 4,5-Diphenyl Analogues and Related Imidazole-2-thiones. JOURNAL OF NATURAL PRODUCTS 2021; 84:3071-3079. [PMID: 34808062 PMCID: PMC8713287 DOI: 10.1021/acs.jnatprod.1c00797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 05/13/2023]
Abstract
A straightforward access to 2-unsubstituted imidazole N-oxides with subsequent deoxygenation by treatment with Raney-nickel followed by N-benzylation opens up a convenient route to lepidilines A and C. Both imidazolium salts were used to generate in situ the corresponding imidazol-2-ylidenes, which smoothly reacted with elemental sulfur, yielding imidazole-2-thiones. These reactions were performed either under classical conditions in pyridine solutions or mechanochemically using solid Cs2CO3 as a base. The structure of lepidiline C was unambiguously confirmed by X-ray analysis of its hexafluorophosphate. An analogous protocol toward lepidilines B and D and their 4,5-diphenyl analogues is less efficient due to observed instability of the key precursors, i.e., the respective 2-methylimidazole N-oxides. Comparison of cytotoxic activity against HL-60 and MCF-7 cell lines of all lepidilines, as well as their selected structural analogues (e.g., 4,5-diphenyl derivatives and PF6 salts), revealed slightly more potent activity of the 2-methylated series, irrespectively of the type of counterion present in the imidazolium salt. Remarkably, the well-known 1,3-diadamantylimidazolium bromide (the "Arduengo salt"), known as the precursor of the first, shelf-stable NHC representative, and its adamantyloxy analogue displayed the most significant cytotoxic activity in the studied series.
Collapse
Affiliation(s)
| | - Mateusz Kowalczyk
- Faculty
of Chemistry, University of Lodz, 91403 Łódź, Poland
- The
Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes
of the Polish Academy of Sciences, Faculty of Biology and Environmental
Protection, University of Lodz, 90237 Łódź, Poland
| | | | | | - Anna Janecka
- Department
of Biomolecular Chemistry, Medical University
of Lodz, 92215 Łódź, Poland
| | - Marcin Jasiński
- Faculty
of Chemistry, University of Lodz, 91403 Łódź, Poland
| |
Collapse
|
6
|
Tolbatov I, Marrone A, Coletti C, Re N. Computational Studies of Au(I) and Au(III) Anticancer MetalLodrugs: A Survey. Molecules 2021; 26:7600. [PMID: 34946684 PMCID: PMC8707411 DOI: 10.3390/molecules26247600] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022] Open
Abstract
Owing to the growing hardware capabilities and the enhancing efficacy of computational methodologies, computational chemistry approaches have constantly become more important in the development of novel anticancer metallodrugs. Besides traditional Pt-based drugs, inorganic and organometallic complexes of other transition metals are showing increasing potential in the treatment of cancer. Among them, Au(I)- and Au(III)-based compounds are promising candidates due to the strong affinity of Au(I) cations to cysteine and selenocysteine side chains of the protein residues and to Au(III) complexes being more labile and prone to the reduction to either Au(I) or Au(0) in the physiological milieu. A correct prediction of metal complexes' properties and of their bonding interactions with potential ligands requires QM computations, usually at the ab initio or DFT level. However, MM, MD, and docking approaches can also give useful information on their binding site on large biomolecular targets, such as proteins or DNA, provided a careful parametrization of the metal force field is employed. In this review, we provide an overview of the recent computational studies of Au(I) and Au(III) antitumor compounds and of their interactions with biomolecular targets, such as sulfur- and selenium-containing enzymes, like glutathione reductases, glutathione peroxidase, glutathione-S-transferase, cysteine protease, thioredoxin reductase and poly (ADP-ribose) polymerase 1.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Institut de Chimie Moleculaire de l’Université de Bourgogne (ICMUB), Université de Bourgogne Franche-Comté (UBFC), Avenue Alain Savary 9, 21078 Dijon, France;
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio” Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (A.M.); (C.C.)
| | - Cecilia Coletti
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio” Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (A.M.); (C.C.)
| | - Nazzareno Re
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio” Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (A.M.); (C.C.)
| |
Collapse
|
7
|
Goetzfried SK, Koenig SMC, Gallati CM, Gust R. Internal and External Influences on Stability and Ligand Exchange Reactions in Bromido[3-ethyl-4-aryl-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2 H-imidazol-2-ylidene]gold(I) Complexes. Inorg Chem 2021; 60:8546-8553. [PMID: 34097405 PMCID: PMC8277168 DOI: 10.1021/acs.inorgchem.1c00325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The ligand scrambling
reaction of gold(I) complexes is a phenomenon
occurring primarily in L–AuI–X (L = phosphine, N-heterocyclic carbene (NHC), and thiol; X = halide and
thiol) complexes and has been observed among others for e.g., the
bromido[3-ethyl-4-(4-methoxyphenyl)-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2H-imidazol-2-ylidene]gold(I) complex (7a),
which underwent ligand rearrangement in aqueous solutions. In this
study, we investigated the influence of substituents on the 4-aryl
ring of the related (NHC)AuIBr complexes (1a–9a) in terms of the conversion to the [(NHC)2AuI]+ (1b–9b) and [(NHC)2AuIIIBr2]+ (1c–9c) species. Furthermore,
the influence of external factors such as solvent, temperature, concentration,
and presence of halides (Cl–, Br–, and I–) or hydroxyl ions was studied to gain
a deeper understanding of the ligand rearrangement reaction. The substituent
on the 4-aryl ring has a marginal impact on the scrambling reaction.
Out of the investigated organic solvents (dimethylformamide (DMF),
dimethyl sulfoxide (DMSO), ethanol (EtOH), methanol (MeOH), and acetonitrile
(ACN)), only ACN separates single complex molecules. In all other
solvents, relatively stable ((NHC)AuIBr)2 dimers
are present. The addition of water to ACN solutions forces the formation
of such dimeric units, starting the transformation to [(NHC)2AuI]+ and [(NHC)2AuIIIBr2]+. The rate-determining step is the release
of Br– from a T-shape intermediate because an excess
of KBr terminates this reaction. Furthermore, it is obvious that only
single molecules react with halides. The aurophilic interactions between
two (NHC)AuIBr molecules are too strong in the presence
of water and largely impeded reaction with halides. As a single molecule,
the reaction with Cl– (e.g., in a 0.9% NaCl solution)
is notable, while I– even leads to a fast and quantitative
conversion to (NHC)AuII and finally to [(NHC)2AuI]+. Internal
and external factors of the ligand scrambling reaction
in (NHC)AuIBr complexes were investigated by the means
of HPLC. The data represent the impact of substituents, temperature,
solvent, concentration and addition of halides on the conversion to
the respective [(NHC)2AuI]+ and the
oxidation to the [(NHC)2AuIIIBr2]+ complexes.
Collapse
Affiliation(s)
- Sina Katharina Goetzfried
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, Innsbruck A-6020, Austria
| | - Sophie Marie Charlotte Koenig
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, Innsbruck A-6020, Austria
| | - Caroline Marie Gallati
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, Innsbruck A-6020, Austria
| | - Ronald Gust
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, Innsbruck A-6020, Austria
| |
Collapse
|
8
|
Abbasi M, Yaqoob M, Haque RA, Iqbal MA. Potential of Gold Candidates against Human Colon Cancer. Mini Rev Med Chem 2021; 21:69-78. [PMID: 32767935 DOI: 10.2174/1389557520666200807130721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 11/22/2022]
Abstract
Development of novel metallodrugs with pharmacological profile plays a significant role in modern medicinal chemistry and drug design. Metal complexes have shown remarkable clinical results in current cancer therapy. Gold complexes have attained attention due to their high antiproliferative potential. Gold-based drugs are used for the treatment of rheumatoid arthritis. Gold-containing compounds with selective and specific targets are capable to assuage the symptoms of a range of human diseases. Gold (I) species with labile ligands (such as Cl in TEPAuCl) interact with isolated DNA; therefore, this biomolecule has been considered as a target for gold drugs. Gold (I) has a high affinity towards sulfur and selenium. Due to this, gold (I) drugs readily interact with cysteine or selenocysteine residue of the enzyme to form protein-gold(I) thiolate or protein-gold (I) selenolate complexes that lead to inhibition of the enzyme activity. Au(III) compounds due to their square-planner geometriesthe same as found in cisplatin, represent a good source for the development of anti-tumor agents. This article aims to review the most important applications of gold products in the treatment of human colon cancer and to analyze the complex interplay between gold and the human body.
Collapse
Affiliation(s)
- Mahvish Abbasi
- Department of Chemistry, University of Agriculture Faisalabad-38040, Pakistan
| | - Munazzah Yaqoob
- Department of Chemistry, University of Agriculture Faisalabad-38040, Pakistan
| | - Rosenani A Haque
- School of Chemical Sciences, Universiti Sains Malaysia, 11800-USM, Penang, Malaysia
| | | |
Collapse
|
9
|
In-vitro and in-vivo investigations into the carbene-gold anticancer drug candidates NHC*-Au-SCSNMe2 and NHC*-Au-S-GLUC against advanced prostate cancer PC3. Anticancer Drugs 2021; 31:672-683. [PMID: 32282370 DOI: 10.1097/cad.0000000000000930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The anticancer drug candidates 1,3-dibenzyl-4,5-diphenyl-imidazol-2-ylidene gold(I) dimethylamino dithiocarbamate and 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl-1-thiolate derivative exhibited nanomolar in-vitro activity against prostate cancer cells advanced prostate cancer (PC3) and micromolar inhibition of mammalian thioredoxin reductase. Encouraging maximum tolerable dose experiments led to human prostate cancer subcutaneous xenograft experiments; 1,3-dibenzyl-4,5-diphenyl-imidazol-2-ylidene gold(I) dimethylamino dithiocarbamate and 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl-1-thiolate derivative were applied twelve times at two doses in groups of n = 5 PC3 to tumor-bearing NMRI:nu/nu mice. 1,3-dibenzyl-4,5-diphenyl-imidazol-2-ylidene gold(I) dimethylamino dithiocarbamate and 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl-1-thiolate derivative at the dose of 10 and 20 mg/kg showed good tolerability, while no significant body weight loss was seen in both groups. In particular, for the drug 1,3-dibenzyl-4,5-diphenyl-imidazol-2-ylidene gold(I) dimethylamino dithiocarbamate the tumor growth inhibition suggested to be dose dependent, reflected by the respective optimal T/C values of 0.45 at the dose of 10 mg/kg and of 0.31 at the dose of 20 mg/kg. By contrast, the 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl-1-thiolate derivative treated groups showed no indication for dose-dependent antitumoral activity, as reflected by the optimal T/C values of 0.44 for the 10 mg/kg and for the 20 mg/kg treated mice. Immunohistochemical experiments involving Ki67 staining of tumor tissue showed that both compounds reduced PC3 cell proliferation against the difficult to treat advanced human prostate tumors derived from PC3.
Collapse
|
10
|
Chupakhin E, Krasavin M. Thioredoxin reductase inhibitors: updated patent review (2017-present). Expert Opin Ther Pat 2021; 31:745-758. [PMID: 33666133 DOI: 10.1080/13543776.2021.1899160] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Thioredoxin reductase (TrxR) is a selenocysteine-containing enzyme which is responsible - as a part of the thioredoxin system - for maintaining redox homeostasis in cells. It is upregulated in cancerous state as a defense against oxidative stress. TrxR has been mostly considered an anticancer drug target although it has applications in other therapeutic areas such as neurodegeneration, inflammation, microbial infections, and neonatal hyperoxic lung injury.Areas covered: The present review covers the patent literature that appeared in the period 2017-2020, i.e. since the publication of the previous expert opinion patent review on TrxR inhibitors. The recent additions to the following traditional classes of inhibitors are discussed: metal complexes, Michael acceptors as well as arsenic and selenium compounds. At the same time, a novel group of nitro (hetero)aromatic compounds have emerged which likely acts via covalent inhibition mechanism. Several miscellaneous chemotypes are grouped under Miscellaneous subsection.Expert opinion: While specificity over glutathione reductase is achieved easily, TrxR is still moving toward the later stages of development at a very slow rate. Michael acceptors, particularly based on TRXR substrate-mimicking scaffolds, are gaining impetus and so are dual and hybrid compounds. The development prospects of the emerging nitro (hetero)aromatic chemotypes remain uncertain.
Collapse
Affiliation(s)
- Evgeny Chupakhin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg Russian Federation.,Institute for Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad Russian Federation
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg Russian Federation.,Institute for Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad Russian Federation
| |
Collapse
|
11
|
N-heterocyclic carbene-metal complexes as bio-organometallic antimicrobial and anticancer drugs, an update (2015–2020). Future Med Chem 2020; 12:2239-2275. [DOI: 10.4155/fmc-2020-0175] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
N-heterocyclic carbenes (NHCs) are organic compounds that typically mimic the chemical properties of phosphines. NHCs have made a significant impact on the field of coordination and organometallic chemistry because they are easy to prepare and handle and because of their versatility and stability. Importantly, the physicochemical properties of NHCs can be easily fine-tuned by simple variation of substituents on the nitrogen atoms. Over the past few years, various NHC–metal complexes have been extensively used as metal-based drug candidates and catalysts (homogeneous or heterogeneous) for various applications. To help assist future work with these compounds, this review provides a thorough review on the latest information involving some biomedical applications of NHC–metal complexes. Specifically, this article focuses on recent advances in the design, synthesis, characterization and biomedical applications (e.g., antimicrobial and anticancer activity) of various NHC–metal complexes (metal: silver, gold, palladium, rhodium, ruthenium, iridium and platinum) covering work published from 2015 to 2020. It is hoped that the promising discoveries to date will help accelerate studies on the encouraging potential of NHC–metal complexes as a class of effective therapeutic agents.
Collapse
|
12
|
Synthesis, Selected Transformations, and Biological Activity of Alkoxy Analogues of Lepidilines A and C. MATERIALS 2020; 13:ma13184190. [PMID: 32967232 PMCID: PMC7560456 DOI: 10.3390/ma13184190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/29/2022]
Abstract
Condensation of diacetyl monooxime with formaldimines derived from alkoxyamines in glacial acetic acid at room temperature leads to corresponding 2-unsubstituted imidazole N-oxides bearing an alkoxy substituent at the N(1) atom of the imidazole ring. Subsequent O-benzylation afforded, depending on the type of alkylating agent, either symmetric or nonsymmetric alkoxyimidazolium salts considered as structural analogues of naturally occurring imidazole alkaloids, lepidilines A and C. Some of the obtained salts were tested as precursors of nucleophilic heterocyclic carbenes (NHCs), which in situ reacted with elemental sulfur to give the corresponding N-alkoxyimidazole-2-thiones. The cytotoxic activity of selected 4,5-dimethylimidazolium salts bearing either two benzyloxy or benzyloxy and 1-adamantyloxy groups at N(1) and N(3) atoms was evaluated against HL-60 and MCF-7 cell lines using the MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. Notably, in two cases of alkoxyimidazolium salts, no effect of the counterion exchange (Br- → PF6-) on the biological activity was observed.
Collapse
|
13
|
Trujillo C, Sánchez-Sanz G, Elguero J, Alkorta I. The Lewis acidities of gold(I) and gold(III) derivatives: a theoretical study of complexes of AuCl and AuCl3. Struct Chem 2020. [DOI: 10.1007/s11224-020-01590-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Verron R, Achard T, Seguin C, Fournel S, Bellemin-Laponnaz S. Synthesis and Characterization of N-Heterocyclic Carbene Dithiocarbamate Platinum Complexes with Antitumoral Activity. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Raphaël Verron
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS); Université de Strasbourg-CNRS UMR 7504; 23 rue du Loess, BP 43 67034 Strasbourg Cedex 2 France
| | - Thierry Achard
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS); Université de Strasbourg-CNRS UMR 7504; 23 rue du Loess, BP 43 67034 Strasbourg Cedex 2 France
| | - Cendrine Seguin
- Faculté de Pharmacie; Université de Strasbourg-CNRS UMR 7199; 74 Route du Rhin, BP 6002 4 67401 Illkirch Cedex France
| | - Sylvie Fournel
- Faculté de Pharmacie; Université de Strasbourg-CNRS UMR 7199; 74 Route du Rhin, BP 6002 4 67401 Illkirch Cedex France
| | - Stéphane Bellemin-Laponnaz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS); Université de Strasbourg-CNRS UMR 7504; 23 rue du Loess, BP 43 67034 Strasbourg Cedex 2 France
| |
Collapse
|
15
|
Cordero-Rivera RE, Rendón-Nava D, Ángel-Jijón C, Suárez-Castillo OR, Mendoza-Espinosa D. Synthesis and Reactivity of (NHC)AuI–Mercaptopyridine Complexes. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- R. Evelyn Cordero-Rivera
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5, Mineral de
la Reforma, Hidalgo, Mexico 42090
| | - David Rendón-Nava
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5, Mineral de
la Reforma, Hidalgo, Mexico 42090
| | - Carlos Ángel-Jijón
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5, Mineral de
la Reforma, Hidalgo, Mexico 42090
| | - Oscar R. Suárez-Castillo
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5, Mineral de
la Reforma, Hidalgo, Mexico 42090
| | - Daniel Mendoza-Espinosa
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5, Mineral de
la Reforma, Hidalgo, Mexico 42090
| |
Collapse
|
16
|
The Natural Product Lepidiline A as an N-Heterocyclic Carbene Ligand Precursor in Complexes of the Type [Ir(cod)(NHC)PPh3)]X: Synthesis, Characterisation, and Application in Hydrogen Isotope Exchange Catalysis. Catalysts 2020. [DOI: 10.3390/catal10020161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A range of iridium(I) complexes of the type [Ir(cod)(NHC)PPh3)]X are reported, where the N-heterocyclic carbene (NHC) is derived from the naturally-occurring imidaozlium salt, Lepidiline A (1,3-dibenzyl-4,5-dimethylimidazolium chloride). A range of complexes were prepared, with a number of NHC ligands and counter-ions, and various steric and electronic parameters of these complexes were evaluated. The activity of the [Ir(cod)(NHC)PPh3)]X complexes in hydrogen isotope exchange reactions was then studied, and compared to established iridium(I) complexes.
Collapse
|
17
|
Çevik-Yıldız E, Şahin N, Şahin-Bölükbaşı S. Synthesis, characterization, and investigation of antiproliferative activity of novel Ag (I)-N-Heterocyclic Carbene (NHC) compounds. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.126987] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Chemistry, structure, and biological roles of Au-NHC complexes as TrxR inhibitors. Bioorg Chem 2020; 95:103552. [DOI: 10.1016/j.bioorg.2019.103552] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/23/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022]
|
19
|
Mármol I, Quero J, Rodríguez-Yoldi MJ, Cerrada E. Gold as a Possible Alternative to Platinum-Based Chemotherapy for Colon Cancer Treatment. Cancers (Basel) 2019; 11:cancers11060780. [PMID: 31195711 PMCID: PMC6628079 DOI: 10.3390/cancers11060780] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
Due to the increasing incidence and high mortality associated with colorectal cancer (CRC), novel therapeutic strategies are urgently needed. Classic chemotherapy against CRC is based on oxaliplatin and other cisplatin analogues; however, platinum-based therapy lacks selectivity to cancer cells and leads to deleterious side effects. In addition, tumor resistance to oxaliplatin is related to chemotherapy failure. Gold(I) derivatives are a promising alternative to platinum complexes, since instead of interacting with DNA, they target proteins overexpressed on tumor cells, thus leading to less side effects than, but a comparable antitumor effect to, platinum derivatives. Moreover, given the huge potential of gold nanoparticles, the role of gold in CRC chemotherapy is not limited to gold(I) complexes. Gold nanoparticles have been found to be able to overcome multidrug resistance along with reduced side effects due to a more efficient uptake of classic drugs. Moreover, the use of gold nanoparticles has enhanced the effect of traditional therapies such as radiotherapy, photothermal therapy, or photodynamic therapy, and has displayed a potential role in diagnosis as a consequence of their optic properties. Herein, we have reviewed the most recent advances in the use of gold(I) derivatives and gold nanoparticles in CRC therapy.
Collapse
Affiliation(s)
- Inés Mármol
- Department of Pharmacology and Physiology, University of Zaragoza, CIBERobn, IIS Aragón IA2, 50013 Zaragoza, Spain.
| | - Javier Quero
- Department of Pharmacology and Physiology, University of Zaragoza, CIBERobn, IIS Aragón IA2, 50013 Zaragoza, Spain.
| | - María Jesús Rodríguez-Yoldi
- Department of Pharmacology and Physiology, University of Zaragoza, CIBERobn, IIS Aragón IA2, 50013 Zaragoza, Spain.
| | - Elena Cerrada
- Deparment of Inorganic Chemistry, University of Zaragoza, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, University of Zaragoza-CSIC, 50009 Zaragoza, Spain.
| |
Collapse
|
20
|
Azofra LM, Veenboer RMP, Falivene L, Vummaleti SVC, Poater A, Nolan SP, Cavallo L. Quantifying electronic similarities between NHC–gold(i) complexes and their isolobal imidazolium precursors. Phys Chem Chem Phys 2019; 21:15615-15622. [DOI: 10.1039/c9cp02844g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The σ and π donor/acceptor properties of the carbon–gold bond are manifested by changes in 197Au spectroscopic data.
Collapse
Affiliation(s)
- Luis Miguel Azofra
- CIDIA-FEAM (Unidad Asociada al Consejo Superior de Investigaciones Científicas, CSIC, avalada por el Instituto de Ciencia de Materiales de Sevilla, Universidad de Sevilla)
- Instituto de Estudios Ambientales y Recursos Naturales (i-UNAT)
- Universidad de Las Palmas de Gran Canaria (ULPGC)
- Las Palmas de Gran Canaria
- Spain
| | | | - Laura Falivene
- King Abdullah University of Science and Technology (KAUST)
- KAUST Catalysis Center (KCC)
- Thuwal 23955-6900
- Saudi Arabia
| | - Sai V. C. Vummaleti
- King Abdullah University of Science and Technology (KAUST)
- KAUST Catalysis Center (KCC)
- Thuwal 23955-6900
- Saudi Arabia
| | - Albert Poater
- Institut de Química Computacional i Catàlisi
- Departament de Química, Universitat de Girona
- 17003 Girona
- Spain
| | - Steven P. Nolan
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- 9000 Gent
- Belgium
- Department of Chemistry
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST)
- KAUST Catalysis Center (KCC)
- Thuwal 23955-6900
- Saudi Arabia
| |
Collapse
|