1
|
Conway PJ, Dao J, Kovalskyy D, Mahadevan D, Dray E. Polyploidy in Cancer: Causal Mechanisms, Cancer-Specific Consequences, and Emerging Treatments. Mol Cancer Ther 2024; 23:638-647. [PMID: 38315992 PMCID: PMC11174144 DOI: 10.1158/1535-7163.mct-23-0578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/19/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Drug resistance is the major determinant for metastatic disease and fatalities, across all cancers. Depending on the tissue of origin and the therapeutic course, a variety of biological mechanisms can support and sustain drug resistance. Although genetic mutations and gene silencing through epigenetic mechanisms are major culprits in targeted therapy, drug efflux and polyploidization are more global mechanisms that prevail in a broad range of pathologies, in response to a variety of treatments. There is an unmet need to identify patients at risk for polyploidy, understand the mechanisms underlying polyploidization, and to develop strategies to predict, limit, and reverse polyploidy thus enhancing efficacy of standard-of-care therapy that improve better outcomes. This literature review provides an overview of polyploidy in cancer and offers perspective on patient monitoring and actionable therapy.
Collapse
Affiliation(s)
- Patrick J Conway
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Immunology & Microbiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Jonathan Dao
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Dmytro Kovalskyy
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas
| | - Daruka Mahadevan
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Immunology & Microbiology, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| | - Eloise Dray
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
2
|
Hu J, Yang X, Ren J, Zhong S, Fan Q, Li W. Identification and verification of characteristic differentially expressed ferroptosis-related genes in osteosarcoma using bioinformatics analysis. Toxicol Mech Methods 2023; 33:781-795. [PMID: 37488941 DOI: 10.1080/15376516.2023.2240879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND This study identified and verified the characteristic differentially expressed ferroptosis-related genes (CDEFRGs) in osteosarcoma (OS). METHODS We extracted ferroptosis-related genes (FRGs), identified differentially expressed FRGs (DEFRGs) in OS, and conducted correlation analysis between DEFRGs. Next, we conducted GO and KEGG analyses to explore the biological functions and pathways of DEFRGs. Furthermore, we used LASSO and SVM-RFE algorithms to screen CDEFRGs, and evaluated its accuracy in diagnosing OS through ROC curves. Then, we demonstrated the molecular function and pathway enrichment of CDEFRGs through GSEA analysis. In addition, we evaluated the differences in immune cell infiltration between OS and NC groups, as well as the correlation between CDEFRGs expressions and immune cell infiltrations. Finally, the expression of CDEFRGs was verified through qRT-PCR, western blotting, and immunohistochemistry experiments. RESULTS We identified 51 DEFRGs and the expression relationship between them. GO and KEGG analysis revealed their key functions and important pathways. Based on four CDEFRGs (PEX3, CPEB1, NOX1, and ALOX5), we built the OS diagnostic model, and verified its accuracy. GSEA analysis further revealed the important functions and pathways of CDEFRGs. In addition, there were differences in immune cell infiltration between OS group and NC group, and CDEFRGs showed significant correlation with certain infiltrating immune cells. Finally, we validated the differential expression levels of four CDEFRGs through external experiments. CONCLUSIONS This study has shed light on the molecular pathological mechanism of OS and has offered novel perspectives for the early diagnosis and immune-targeted therapy of OS patients.
Collapse
Affiliation(s)
- Jianhua Hu
- Department of Orthopedic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, P. R. China
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, P. R. China
| | - Xi Yang
- Department of Orthopedic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, P. R. China
- Yunnan Key Laboratory of Digital Orthopaedics, Kunming, P. R. China
| | - Jing Ren
- Department of Spinal Surgery, Qujing No. 1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, Qujing, P. R. China
| | - Shixiao Zhong
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, P. R. China
- Yunnan Key Laboratory of Digital Orthopaedics, Kunming, P. R. China
| | - Qianbo Fan
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, P. R. China
- Yunnan Key Laboratory of Digital Orthopaedics, Kunming, P. R. China
| | - Weichao Li
- Department of Orthopedic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, P. R. China
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, P. R. China
- Yunnan Key Laboratory of Digital Orthopaedics, Kunming, P. R. China
| |
Collapse
|
3
|
Yu L, Qiu W, Gao Y, Sun M, Chen L, Cui Z, Zhu D, Guo P, Tang H, Luo H. JNK1 activated pRb/E2F1 and inhibited p53/p21 signaling pathway is involved in hydroquinone-induced pathway malignant transformation of TK6 cells by accelerating the cell cycle progression. ENVIRONMENTAL TOXICOLOGY 2023; 38:2344-2351. [PMID: 37347496 DOI: 10.1002/tox.23870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Abstract
Hydroquinone (HQ) is an important metabolites of benzene in the body, and it has been found to result in cellular DNA damage, mutation, cell cycle imbalance, and malignant transformation. The JNK1 signaling pathway plays an important role in DNA damage repair. In this study, we focused on whether the JNK1 signaling pathway is involved in the HQ-induced cell cycle abnormalities and the underlying mechanism. The results showed that HQ induced abnormal progression of the cell cycle and initiated the JNK1 signaling pathway. We further confirmed that JNK1 suppression decelerated the cell cycle progression through inhibiting pRb/E2F1 signaling pathway and triggering p53/p21 pathway. Therefore, we concluded that JNK1 might be involved in HQ-induced malignant transformation associated with activating pRb/E2F1 and inhibiting p53/p21 signaling pathway which resulting in accelerating the cell cycle progression.
Collapse
Affiliation(s)
- Lingxue Yu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Weifeng Qiu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yuting Gao
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Mingwei Sun
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
- Faculty of Medicine, Macau University of Science and Technology, Macao, China
| | - Lin Chen
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Zheming Cui
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Delong Zhu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Pu Guo
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Huanwen Tang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Hao Luo
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|
4
|
Li YA, Chen HY, Hsieh CP, Chen CL, Hung SC, Huang YF. Acute generation of reactive oxygen species that induced by doxycycline pretreatment results in rapid cell death in polyphyllin G-treated osteosarcoma cell lines. ENVIRONMENTAL TOXICOLOGY 2023; 38:1174-1184. [PMID: 36773305 DOI: 10.1002/tox.23757] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Polyphyllin G, a pennogenyl saponin extracted from Paris polyphylla, has been shown to possess antitumor effects. In this study, we demonstrated that doxycycline, an antibiotic medicine, could significantly enhance the sensitivities of osteosarcoma cell lines to polyphyllin G. As the cells were pretreated with doxycycline at non-toxic concentrations and then co-exposed to polyphyllin G, this combination could induce a rapid cell death distinct from apoptosis. The non-apoptotic cell death was characterized by a loss of integrity of plasma membrane without externalization of phosphatidyl serine. Furthermore, this combined treatment resulted in suppression of cell viability and colony-forming ability, and increased the level of γ-H2A.X, a critical marker for DNA damage, in osteosarcoma cell lines. When examining the underlying mechanism, it was revealed combination of polyphyllin G and doxycycline triggered an enhanced generation of reactive oxygen species (ROS), and up-regulated mitochondrial oxidative stress within 0.5 h. Co-administration of the ROS inhibitor NAC reversed the suppressed cell viability and colony-forming ability, and abolished the increased level of γ-H2A.X in the cells with the combined treatment, indicating that the enhanced ROS was involved in the anti-proliferative effect of the combined treatment. Overall, the results demonstrated that doxycycline may function as chemosensitizers by inducing an acute and lethal ROS production to enhance cytotoxic of polyphyllin G in osteosarcoma cell lines, and the combined use of drugs may provide an alternative thinking for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Yi-An Li
- Institute of Translational Medicine and New Drug Development, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Orthopaedic Department, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsuan-Ying Chen
- Orthopedics & Sports Medicine Laboratory, Changhua Christian Hospital, Changhua, Taiwan
| | - Cheng-Pu Hsieh
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua, Taiwan
- Orthopedics & Sports Medicine Laboratory, Changhua Christian Hospital, Changhua, Taiwan
- Department of Kinesiology, Health and Leisure Studies, Chienkuo Technology University, Changhua, Taiwan
| | - Chiu-Liang Chen
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua, Taiwan
- Department of Nursing, Hungkuang University, Taichung, Taiwan
| | - Shih-Chieh Hung
- Drug Development Center, Institute of Translational Medicine and New Drug Development, School of Medicine, China Medical University, Taichung, Taiwan
- Integrative Stem Cell Center, China Medical University Hospital, Taichung, Taiwan
- Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Fu Huang
- Orthopedics & Sports Medicine Laboratory, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|
5
|
Different Cell Responses to Hinokitiol Treatment Result in Senescence or Apoptosis in Human Osteosarcoma Cell Lines. Int J Mol Sci 2022; 23:ijms23031632. [PMID: 35163553 PMCID: PMC8835861 DOI: 10.3390/ijms23031632] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Hinokitiol is a tropolone-related compound isolated from the heartwood of cupressaceous plants. It is known to exhibit various biological functions including antibacterial, antifungal, and antioxidant activities. In the study, we investigated the antitumor activities of hinokitiol against human osteosarcoma cells. The results revealed that hinokitiol treatment inhibited cell viability of human osteosarcoma U-2 OS and MG-63 cells in the MTT assay. Further study revealed that hinokitiol exposure caused cell cycle arrest at the S phase and a DNA damage response with the induction of γ-H2AX foci in both osteosarcoma cell lines. In U-2 OS cells with wild-type tumor suppressor p53, we found that hinokitiol exposure induced p53 expression and cellular senescence, and knockdown of p53 suppressed the senescence. However, in MG-63 cells with mutated p53, a high percentage of cells underwent apoptosis with cleaved-PARP expression and Annexin V staining after hinokitiol treatment. In addition, up-regulated autophagy was observed both in hinokitiol-exposed U-2 OS and MG-63 cells. As the autophagy was suppressed through the autophagy inhibitor chloroquine, hinokitiol-induced senescence in U-2 OS cells was significantly enhanced accompanying more abundant p53 expression. In MG-63 cells, co-treatment of chloroquine increased hinokitiol-induced apoptosis and decreased cell viability of the treated cells. Our data revealed that hinokitiol treatment could result in different cell responses, senescence or apoptosis in osteosarcoma cell lines, and suppression of autophagy could promote these effects. We hypothesize that the analysis of p53 status and co-administration of autophagy inhibitors might provide more precise and efficacious therapies in hinokitiol-related trials for treating osteosarcoma.
Collapse
|
6
|
Hsu YK, Chen HY, Wu CC, Huang YC, Hsieh CP, Su PF, Huang YF. Butein induces cellular senescence through reactive oxygen species-mediated p53 activation in osteosarcoma U-2 OS cells. ENVIRONMENTAL TOXICOLOGY 2021; 36:773-781. [PMID: 33325610 DOI: 10.1002/tox.23079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Butein is a flavonoid isolated from various medicinal plants. It is known to have different biological activities including anti-inflammation, anti-adipogenesis, and anti-angiogenesis. In the study, we demonstrated the anti-proliferative effect of butein in human osteosarcoma U-2 OS cells. Our data showed that butein significantly suppressed the viability and colony formation ability of U-2 OS cells. Further experiments revealed butein exposure resulted in a cell cycle arrest at S and G2/M phase in U-2 OS cells. Importantly, we found that butein activated the tumor suppressor p53, and trigged a p53-dependent senescence in U-2 OS cells. Knockdown of p53 suppressed the senescence and rescued the viability in butein-treated U-2 OS cells. Furthermore, we observed that butein exposure significantly enhanced reactive oxygen species (ROS) levels in U-2 OS cells. Co-administration of the ROS inhibitor NAC largely abolished the up-regulated p53 protein level, and rescued the suppressed viability and colony formation ability in butein-exposed U-2 OS cells. Taken together, our data proposed the increased ROS by butein exposure activated p53, and the activated p53 was involved in the anti-proliferative effect of butein via inducing senescence in U-2 OS cells. This report suggests that butein is a promising candidate for cancer therapy against osteosarcoma.
Collapse
Affiliation(s)
- Yung-Ken Hsu
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsuan-Ying Chen
- Orthopedics and Sports Medicine Laboratory, Changhua Christian Hospital, Changhua, Taiwan
| | - Chia-Chieh Wu
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ying-Chih Huang
- Department of Research, Changhua Christian Hospital, Changhua, Taiwan
| | - Cheng-Pu Hsieh
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua, Taiwan
- Orthopedics and Sports Medicine Laboratory, Changhua Christian Hospital, Changhua, Taiwan
| | - Po-Feng Su
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Fu Huang
- Orthopedics and Sports Medicine Laboratory, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|
7
|
Zhang J, Qiao Q, Xu H, Zhou R, Liu X. Human cell polyploidization: The good and the evil. Semin Cancer Biol 2021; 81:54-63. [PMID: 33839294 DOI: 10.1016/j.semcancer.2021.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
Therapeutic resistance represents a major cause of death for most lethal cancers. However, the underlying mechanisms of such resistance have remained unclear. The polyploid cells are due to an increase in DNA content, commonly associated with cell enlargement. In human, they play a variety of roles in physiology and pathologic conditions and perform the specialized functions during development, inflammation, and cancer. Recent work shows that cancer cells can be induced into polyploid giant cancer cells (PGCCs) that leads to reprogramming of surviving cancer cells to acquire resistance. In this article, we will review the polyploidy involved in development and inflammation, and the process of PGCCs formation and propagation that benefits to cell survival. We will discuss the potential opportunities in fighting resistant cancers. The increased knowledge of PGCCs will offer a completely new paradigm to explore the therapeutic intervention for lethal cancers.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Qing Qiao
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Hong Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ru Zhou
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xinzhe Liu
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
8
|
Modulating effect of Coronarin D in 5-fluorouracil resistance human oral cancer cell lines induced apoptosis and cell cycle arrest through JNK1/2 signaling pathway. Biomed Pharmacother 2020; 128:110318. [PMID: 32502840 DOI: 10.1016/j.biopha.2020.110318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 12/24/2022] Open
Abstract
Coronarin D (CD) is one of the main components of Hedychium coronarium rhizome, which has therapeutic potential by reducing cell proliferation in cancer cells. However, the mechanism of CD to 5-fluorouracil (5FU) oral cancer cell remain unclearly. This study discusses the CD to 5FU chemoresistance oral squamous cell carcinoma (OSCC) biochemical mechanisms and possibly pathways to inhibit multiplication in oral cancer. The effect of CD-treated 5FU-chemoresistance human oral cancer cell lines were subjected to MTT assay, cell cycle assay, DAPI assay, annexin-V/PI double staining assay and mitochondrial membrane potential measurement. Furthermore, western blotting was performed to assess the effect of CD on the expression levels of apoptosis related protein and MAPK signaling pathway. The results of the study evidenced that CD reduced viability of 5FU cancer cells in a dose- and time-dependent manner compared with control. The cytotoxic effect of CD lead to cell cycle arrest in the G2/M phase and induced apoptosis in both internal and external pathways. CD induces apoptosis by enhancing phosphorylation of JNK, further exploring the combination of CD and SP600125 reduced the overexpression of phosphate JNK levels. The mechanism of action of CD in 5FU on human oral cancer cells is reported for the first time and can hopeful to be a potential therapeutic agent for 5FU against human oral cancer cells.
Collapse
|
9
|
Bailly C. Anticancer activities and mechanism of action of the labdane diterpene coronarin D. Pathol Res Pract 2020; 216:152946. [DOI: 10.1016/j.prp.2020.152946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
|
10
|
Antitumoral Properties of Natural Products. Molecules 2020; 25:molecules25030650. [PMID: 32028725 PMCID: PMC7037154 DOI: 10.3390/molecules25030650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/20/2022] Open
|
11
|
Yuan B, Hao J, Zhang Q, Wang Y, Zhu Y. Role of Bcl-2 on drug resistance in breast cancer polyploidy-induced spindle poisons. Oncol Lett 2020; 19:1701-1710. [PMID: 32194662 PMCID: PMC7039128 DOI: 10.3892/ol.2020.11256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Spindle poisons are chemotherapeutic drugs used in the treatment of malignant tumors; however, numerous patients develop resistance following chemotherapy. The present study aimed to induce polyploidy in breast cancer cells using the spindle poison nocodazole to investigate the mechanism of polyploid-induced tumor resistance. It was revealed that the spindle poison nocodazole induced apoptosis in HCC1806 cells but also induced polyploidy in MDA-MB-231 cells. The drug sensitivities of the polyploid MDA-MB-231 cells to paclitaxel, docetaxel, epirubicin, 5-fluorouracil and oxaliplatin were lower than those of the original tumor cells; however, the polyploid MDA-MB-231 cells were more sensitive to etoposide than the original tumor cells. The expression of F-box and WD repeat domain containing 7 (FBW7) was decreased, while the expression of MCL1 apoptosis regulator BCL2 family member (MCL-1) and Bcl-2 was increased, and caspase-3/9 and Bax were not expressed in MDA-MB-231 cells. The resistance to docetaxel and etoposide was reversed, but the sensitivity of paclitaxel was not changed following Bcl-2 silencing. The formation of polyploidy in tumors may be one of the molecular mechanisms underlying tumor resistance to spindle poisons. Expression of the Bcl-2 family members, for example FBW7 and MCL-1, plays a key role in apoptosis and the cell escape process that forms polyploid cells. However, Bcl-2 silencing has different reversal effects on different anti-tumor drugs, which requires further investigation.
Collapse
Affiliation(s)
- Bibo Yuan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Juan Hao
- Department of Gynecology and Obstetrics, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Qian Zhang
- Department of Gynecology and Obstetrics, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yan Wang
- Department of Gynecology and Obstetrics, Tianjin Jinghai Hospital, Tianjin 301600, P.R. China
| | - Yu Zhu
- Department of Clinical Laboratory, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
| |
Collapse
|
12
|
Isopsoralen Enhanced Osteogenesis by Targeting AhR/ERα. Molecules 2018; 23:molecules23102600. [PMID: 30314280 PMCID: PMC6222341 DOI: 10.3390/molecules23102600] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022] Open
Abstract
Isopsoralen (IPRN), one of the main effective ingredients in Psoralea corylifolia Linn, has a variety of biological effects, including antiosteoporotic effects. In vivo studies show that IPRN can increase bone strength and trabecular bone microstructure in a sex hormone deficiency-induced osteoporosis model. However, the mechanism underlying this osteogenic potential has not been investigated in detail. In the present study, we investigated the molecular mechanism of IPRN-induced osteogenesis in MC3T3-E1 cells. Isopsoralen promoted osteoblast differentiation and mineralization, increased calcium nodule levels and alkaline phosphatase (ALP) activity and upregulated osteoblast markers, including ALP, runt-related transcription factor 2 (RUNX2), and collagen type I alpha 1 chain (COL1A1). Furthermore, IPRN limited the nucleocytoplasmic shuttling of aryl hydrocarbon receptor (AhR) by directly binding to AhR. The AhR target gene cytochrome P450 family 1 subfamily A member 1 (CYP1A1) was also inhibited in vitro and in vivo. This effect was inhibited by the AhR agonists indole-3-carbinol (I3C) and 3-methylcholanthrene (3MC). Moreover, IPRN also increased estrogen receptor alpha (ERα) expression in an AhR-dependent manner. Taken together, these results suggest that IPRN acts as an AhR antagonist and promotes osteoblast differentiation via the AhR/ERα axis.
Collapse
|