1
|
Chen NW, Gao JL, Li HL, Xu H, Wu LF, Meng FG, Chen W, Cao YF, Xie WH, Zhang XQ, Liu SH, Jin J, He Y, Lv JW. The protective effect of manganese superoxide dismutase from thermophilic bacterium HB27 on hydrochloric acid-induced chemical cystitis in rats. Int Urol Nephrol 2021; 54:1681-1691. [PMID: 34783980 PMCID: PMC9184365 DOI: 10.1007/s11255-021-03054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/06/2021] [Indexed: 11/26/2022]
Abstract
Purpose To evaluate the effects of manganese superoxide dismutase (Mn-SOD) from thermophilic bacterium HB27 (name as Tt-SOD) on chemical cystitis. Methods Control and experimental rats were infused by intravesical saline or hydrochloric acid (HCl) on the first day of the experiments. Saline, sodium hyaluronate (SH) or Tt-SOD were infused intravesically once a day for three consequent days. On the fifth day, the rats were weighted and sacrificed following a pain threshold test. The bladder was harvested for histological and biochemical analyses. Results Tt-SOD could reduce the bladder index, infiltration of inflammatory cells in tissues, serum inflammatory factors and SOD levels, mRNA expression of inflammatory factors in tissues, and increase perineal mechanical pain threshold and serum MDA and ROS levels in HCl-induced chemical cystitis. Furthermore, Tt-SOD alleviated inflammation and oxidative stress by the negative regulation of the NF-κB p65 and p38 MAPK signaling pathway. Conclusions Intravesical instillation of Tt-SOD provides protective effects against HCl-induced cystitis.
Collapse
Affiliation(s)
- Nai-Wen Chen
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Jin-Lai Gao
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, Zhejiang, 314001, People's Republic of China
| | - Hai-Long Li
- Redox Medical Center for Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Hong Xu
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Ling-Feng Wu
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Fan-Guo Meng
- Redox Medical Center for Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Wei Chen
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Yi-Fang Cao
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Wen-Hua Xie
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Xiao-Qin Zhang
- Department of Pharmacy, College of Medical, Jiaxing University, Jiaxing, Zhejiang, 314001, People's Republic of China
| | - Shi-Hui Liu
- Department of Pharmacy, College of Medical, Jiaxing University, Jiaxing, Zhejiang, 314001, People's Republic of China
| | - Jing Jin
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China.
| | - Yi He
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China.
| | - Jian-Wei Lv
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
2
|
Kim JH, Jeon JS, Kim JH, Jung EJ, Lee YJ, Gao EM, Syed AS, Son RH, Kim CY. Bioassay-Guided Isolation of Two Eudesmane Sesquiterpenes from Lindera strychnifolia Using Centrifugal Partition Chromatography. Molecules 2021; 26:5269. [PMID: 34500702 PMCID: PMC8433645 DOI: 10.3390/molecules26175269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, a centrifugal partition chromatography (CPC) separation was applied to identify antioxidant-responsive element (ARE) induction molecules from the crude extract of Lindera strychnifolia roots. CPC was operated with a two-phase solvent system composed of n-hexane-methanol-water (10:8.5:1.5, v/v/v) in dual mode (descending to ascending), which provided a high recovery rate (>95.5%) with high resolution. Then, ARE induction activity of obtained CPC fractions was examined in ARE-transfected HepG2 cells according to the weight ratios of the obtained fractions. The fraction exhibiting ARE-inducing activity was further purified by preparative HPLC that led to isolation of two eudesmane type sesquiterpenes as active compounds. The chemical structures were elucidated as linderolide U (1) and a new sesquiterpene named as linderolide V (2) by spectroscopic data. Further bioactivity test demonstrated that compounds 1 and 2 enhanced ARE activity by 22.4-fold and 7.6-fold, respectively, at 100 μM concentration while 5 μM of sulforaphane induced ARE activity 24.8-fold compared to the control.
Collapse
Affiliation(s)
- Ji Hoon Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Korea; (J.H.K.); (J.-S.J.); (J.H.K.); (E.J.J.); (Y.J.L.); (E.M.G.); (R.H.S.)
| | - Je-Seung Jeon
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Korea; (J.H.K.); (J.-S.J.); (J.H.K.); (E.J.J.); (Y.J.L.); (E.M.G.); (R.H.S.)
| | - Jung Hoon Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Korea; (J.H.K.); (J.-S.J.); (J.H.K.); (E.J.J.); (Y.J.L.); (E.M.G.); (R.H.S.)
| | - Eun Ju Jung
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Korea; (J.H.K.); (J.-S.J.); (J.H.K.); (E.J.J.); (Y.J.L.); (E.M.G.); (R.H.S.)
| | - Yun Jung Lee
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Korea; (J.H.K.); (J.-S.J.); (J.H.K.); (E.J.J.); (Y.J.L.); (E.M.G.); (R.H.S.)
| | - En Mei Gao
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Korea; (J.H.K.); (J.-S.J.); (J.H.K.); (E.J.J.); (Y.J.L.); (E.M.G.); (R.H.S.)
| | - Ahmed Shah Syed
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sindh, Jamshoro 76080, Pakistan;
| | - Rak Ho Son
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Korea; (J.H.K.); (J.-S.J.); (J.H.K.); (E.J.J.); (Y.J.L.); (E.M.G.); (R.H.S.)
- R&D Center, Huons Co., Ltd., Ansan 15588, Korea
| | - Chul Young Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Korea; (J.H.K.); (J.-S.J.); (J.H.K.); (E.J.J.); (Y.J.L.); (E.M.G.); (R.H.S.)
| |
Collapse
|
3
|
Abstract
In recent years, food packaging has evolved from an inert and polluting waste that remains after using the product toward an active item that can be consumed along with the food it contains. Edible films and coatings represent a healthy alternative to classic food packaging. Therefore, a significant number of studies have focused on the development of biodegradable enveloping materials based on biopolymers. Animal and vegetal proteins, starch, and chitosan from different sources have been used to prepare adequate packaging for perishable food. Moreover, these edible layers have the ability to carry different active substances such as essential oils—plant extracts containing polyphenols—which bring them considerable antioxidant and antimicrobial activity. This review presents the latest updates on the use of edible films/coatings with different compositions with a focus on natural compounds from plants, and it also includes an assessment of their mechanical and physicochemical features. The plant compounds are essential in many cases for considerable improvement of the organoleptic qualities of embedded food, since they protect the food from different aggressive pathogens. Moreover, some of these useful compounds can be extracted from waste such as pomace, peels etc., which contributes to the sustainable development of this industry.
Collapse
|
4
|
Lin JY, Wu RM. Three Output Membrane Hydrocyclone: Classification and Filtration. Molecules 2019; 24:molecules24061116. [PMID: 30901828 PMCID: PMC6471774 DOI: 10.3390/molecules24061116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022] Open
Abstract
In this study, through simulation and experimental verification, we proposed a novel hydrocyclone in which a tubular ceramic membrane passed through the overflow outlet to the underflow outlet. The centers of overflow and underflow outlets were tubular membranes equipped with an exit of outside-in filtration, and the overflow the underflow outlets were shaped into annular (donut shape) exits. Thus, this novel hydrocyclone has three outlets, namely the overflow dilute liquid, the underflow concentrated liquid, and clear filtrate. This system enabled higher dilution of hydrocyclone overflow concentration than that in the traditional system. Furthermore, underflow was more concentrated, and we obtained a clear filtrate. Therefore, this device can simultaneously perform classification and filtration, which is valuable for special liquid recycling. For instance, in wafer cutting fluid recovery in solar energy processes, the fluid with more silicon can function as the overflow, the fluid with more silicon carbide can function as the underflow, and the polyethylene glycol (PEG) organic solvent can function as the clear filtrate.
Collapse
Affiliation(s)
- Jhao-Yi Lin
- Department of Chemical and Materials Engineering, Tamkang University, 151 Ying-chuan Road, Tamsui, Taipei 25137, Taiwan.
| | - Rome-Ming Wu
- Department of Chemical and Materials Engineering, Tamkang University, 151 Ying-chuan Road, Tamsui, Taipei 25137, Taiwan.
| |
Collapse
|
5
|
Song DH, Kim GJ, Lee KJ, Shin JS, Kim DH, Park BJ, An JH. Mitigation Effects of a Novel Herbal Medicine, Hepad, on Neuroinflammation, Neuroapoptosis, and Neuro-Oxidation. Molecules 2018; 23:molecules23112920. [PMID: 30413118 PMCID: PMC6278430 DOI: 10.3390/molecules23112920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/02/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022] Open
Abstract
Parkinson’s disease (PD), a common adult-onset neurodegenerative disorder with complex pathological mechanisms, is characterized by the degeneration of dopaminergic nigrostriatal neurons. The present study demonstrated that the herbal medicines Hepad 1 and 2 protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity in C57BL/6 mice and SH-SY5Y cells. Hepad 1 and 2 remarkably alleviated the enhanced expression of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6, inducible nitric oxide synthase, cyclooxygenase-2, macrophage-1, and phosphorylated iκB-α) and apoptotic signals (Bcl-2-associated X protein, caspase-3, and poly [ADP-ribose] polymerase-1). Additionally, Hepad reduced MPTP-induced oxidative damage by increasing the expression of anti-oxidant defense enzymes (superoxide dismutase and glutathione S-transferase) and downregulating the levels of nicotinamide adenine dinucleotide phosphate oxidase 4. This study also showed that the neuroprotective effects of Hepad include anti-inflammatory, anti-apoptotic, and anti-oxidative properties, in addition to activation of the protein kinase B, extracellular-signal-regulated kinase, and c-Jun N-terminal kinase signaling pathways. Furthermore, oral administration of Hepad 1 and 2 attenuated the death of tyrosine hydroxylase-positive substantia nigra neurons that was induced by 20 mg/kg MPTP. Therefore, our results suggest that Hepad 1 and 2 are useful for treating PD and other disorders associated with neuro-inflammatory, neuro-apoptotic, and neuro-oxidative damage.
Collapse
Affiliation(s)
- Da Hye Song
- Department of Food Science and Technology, Seoul National University of Science & Technology, Seoul 01811, Korea.
- Division of Food Bioscience, Konkuk University, Chungju 27478, Korea.
| | - Gyeong-Ji Kim
- Division of Food Bioscience, Konkuk University, Chungju 27478, Korea.
- Department of Biomedical Engineering, Sogang University, Seoul 04170, Korea.
| | - Kwon Jai Lee
- Department of Advanced Materials Engineering, Daejeon University, Daejeon 34520, Korea.
| | - Jae Soo Shin
- Department of Advanced Materials Engineering, Daejeon University, Daejeon 34520, Korea.
| | - Dong-Hee Kim
- Department of Pathology, College of Oriental Medicine, Daejeon University, Daejeon 34520, Korea.
| | - Byung-Jun Park
- Department of Pathology, College of Oriental Medicine, Daejeon University, Daejeon 34520, Korea.
| | - Jeung Hee An
- Division of Food Bioscience, Konkuk University, Chungju 27478, Korea.
| |
Collapse
|