1
|
Wu Y, He Y, Luo H, Jin T, He F. AIEE-Active Flavones as a Promising Tool for the Real-Time Tracking of Uptake and Distribution in Live Zebrafish. Int J Mol Sci 2023; 24:10183. [PMID: 37373329 DOI: 10.3390/ijms241210183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, aggregation-induced emission enhancement (AIEE) molecules have shown great potential for applications in the fields of bio-detection, imaging, optoelectronic devices, and chemical sensing. Based on our previous studies, we investigated the fluorescence properties of six flavonoids and confirmed that compounds 1-3 have good aggregation-induced emission enhancement (AIEE) properties through a series of spectroscopic experiments. Compounds with AIEE properties have addressed the limitation imposed by the aggregation-caused quenching (ACQ) of classic organic dyes owing to their strong fluorescence emission and high quantum yield. Based on their excellent fluorescence properties, we evaluated their performance in the cell and we found that they could label mitochondria specifically by comparing their Pearson correlation coefficients (R) with Mito Tracker Red and Lyso-Tracker Red. This suggests their future application in mitochondrial imaging. Furthermore, studies of uptake and distribution characterization in 48 hpf zebrafish larvae revealed their potential for monitoring real-time drug behavior. The uptake of compounds by larvae varies significantly across different time cycles (between uptake and utilization in the tissue). This observation has important implications for the development of visualization techniques for pharmacokinetic processes and can enable real-time feedback. More interestingly, according to the data presented, tested compounds aggregated in the liver and intestine of 168 hpf larvae. This finding suggests that they could potentially be used for monitoring and diagnosing liver and intestinal diseases.
Collapse
Affiliation(s)
- Yi Wu
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ying He
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Huiqing Luo
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Tingting Jin
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Feng He
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
2
|
Jin T, Li N, Wu Y, He Y, Yang D, He F. Nobiletin with AIEE Characteristics for Targeting Mitochondria and Real-Time Dynamic Tracking in Zebrafish. Molecules 2023; 28:4592. [PMID: 37375147 DOI: 10.3390/molecules28124592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Nobiletin is a natural product with multiple physiological activities and is the main ingredient of Pericarpium Citri Reticulatae. We successfully discovered that nobiletin exhibits aggregation induced emission enhancement (AIEE) properties and it has significant advantages such as a large Stokes shift, good stability and excellent biocompatibility. The increase in methoxy groups endows nobiletin a greater fat-solubility, bioavailability and transport rate than the corresponding unmethoxylated flavones. Ulteriorly, cells and zebrafish were used to explore the application of nobiletin in biological imaging. It emits fluorescence in cells and is specifically targeted at mitochondria. Moreover, it has a noteworthy affinity for the digestive system and liver of zebrafish. Due to the unique AIEE phenomenon and stable optical properties of nobiletin, it paves the way for discovering, modifying and synthesizing more molecules with AIEE characteristics. Furthermore, it has a great prospect with regard to imaging cells and cellular substructures, such as mitochondria, which play crucial roles in cell metabolism and death. Indeed, three-dimensional real-time imaging in zebrafish provides a dynamic and visual tool for studying the absorption, distribution, metabolism and excretion of drugs. In this article, more directions and inspiration can be presented for the exploration of non-invasive pharmacokinetic research and intuitive drug pathways or mechanisms.
Collapse
Affiliation(s)
- Tingting Jin
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Na Li
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Yi Wu
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Ying He
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Depo Yang
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Feng He
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Budziak-Wieczorek I, Kamiński D, Skrzypek A, Ciołek A, Skrzypek T, Janik-Zabrotowicz E, Arczewska M. Naturally Occurring Chalcones with Aggregation-Induced Emission Enhancement Characteristics. Molecules 2023; 28:molecules28083412. [PMID: 37110646 PMCID: PMC10146426 DOI: 10.3390/molecules28083412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
In this paper, the natural chalcones: 2'-hydroxy-4,4',6'-trimethoxychalcone (HCH), cardamonin (CA), xanthohumol (XN), isobavachalcone (IBC) and licochalcone A (LIC) are studied using spectroscopic techniques such as UV-vis, fluorescence spectroscopy, scanning electron microscopy (SEM) and single-crystal X-ray diffraction (XRD). For the first time, the spectroscopic and structural features of naturally occurring chalcones with varying numbers and positions of hydroxyl groups in rings A and B were investigated to prove the presence of the aggregation-induced emission enhancement (AIEE) effect. The fluorescence studies were carried out in the aggregate form in a solution and in a solid state. As to the results of spectroscopic analyses conducted in the solvent media, the selected mixtures (CH3OH:H2O and CH3OH:ethylene glycol), as well as the fluorescence quantum yield (ϕF) and SEM, confirmed that two of the tested chalcones (CA and HCH) exhibited effective AIEE behaviour. On the other hand, LIC showed a large fluorescence quantum yield and Stokes shift in the polar solvents and in the solid state. Moreover, all studied compounds were tested for their promising antioxidant activities via the utilisation of 1,1- diphenyl-2-picrylhydrazyl as a free-radical scavenging reagent as well as potential anti-neurodegenerative agents via their ability to act as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors. Finally, the results demonstrated that licochalcone A, with the most desirable emission properties, showed the most effective antioxidant (DPPH IC50 29%) and neuroprotective properties (AChE IC50 23.41 ± 0.02 μM, BuChE IC50 42.28 ± 0.06 μM). The substitution pattern and the biological assay findings establish some relation between photophysical properties and biological activity that might apply in designing AIEE molecules with the specified characteristics for biological application.
Collapse
Affiliation(s)
- Iwona Budziak-Wieczorek
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - Daniel Kamiński
- Institute of Chemical Sciences, Maria Curie-Skłodowska University, Pl. Marii Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| | - Alicja Skrzypek
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - Anna Ciołek
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - Tomasz Skrzypek
- Department of Biomedicine and Environmental Research, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland
| | - Ewa Janik-Zabrotowicz
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Sklodowska University, ul. Akademicka 19, 20-033 Lublin, Poland
| | - Marta Arczewska
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| |
Collapse
|
4
|
Silver@quercetin Nanoparticles with Aggregation-Induced Emission for Bioimaging In Vitro and In Vivo. Int J Mol Sci 2022; 23:ijms23137413. [PMID: 35806418 PMCID: PMC9266968 DOI: 10.3390/ijms23137413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
Fluorescent materials based on aggregation-induced emission luminogens (AIEgens) have unique advantages for in situ and real-time monitoring of biomolecules and biological processes because of their high luminescence intensity and resistance to photobleaching. Unfortunately, many AIEgens require time-consuming and expensive syntheses, and the presence of residual toxic reagents reduces their biocompatibility. Herein, silver@quercetin nanoparticles (Ag@QCNPs), which have a clear core–shell structure, were prepared by redox reaction of quercetin (QC), a polyphenolic compound widely obtained from plants, including those used as foods, and silver ions. Ag@QCNPs show both aggregation-induced luminescence and the distinct plasma scattering of silver nanoparticles, as well as good resistance to photobleaching and biocompatibility. The Ag@QCNPs were successfully used for cytoplasmic labeling of living cells and for computerized tomography imaging in tumor-bearing mice, demonstrating their potential for clinical applications.
Collapse
|
5
|
Wilcke T, Postole A, Krüsmann M, Karg M, Müller TJJ. Amphipolar, Amphiphilic 2,4-diarylpyrano[2,3- b]indoles as Turn-ON Luminophores in Acidic and Basic Media. Molecules 2022; 27:2354. [PMID: 35408766 PMCID: PMC9000430 DOI: 10.3390/molecules27072354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022] Open
Abstract
A versatile amphiphilic pyrano[2,3-b]indole for halochromic turn-ON luminescence in acidic or basic media is accessed by an insertion-coupling-cycloisomerization and adjusting solubilizing and phenolic functionalities. While almost non-emissive in neutral solutions, treatment with acids or bases like trifluoroacetic acid (TFA) or 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) reveals distinct luminescence at wavelengths of 540 nm or 630 nm in propan-2-ol, respectively. Turn-ON emission can be detected at pH values as mild as pH = 5.31 or 8.70. Quantum yields in propan-2-ol are substantial for protonated (Φf = 0.058) and deprotonated (Φf = 0.059) species. Photometrically, pKa1 of 3.5 and pKa2 of 10.5 were determined in propan-2-ol. With lipophilic polyether sidechains and hydrophilic protonation and deprotonation sites the molecule can be regarded as amphipolar, which results in good solubility properties for different organic solvents. In aqueous media, an organic co-solvent like propan-2-ol (35%) or tetrahydrofuran (25%) is needed, and the solution can be diluted with pure water without precipitation of the compound. At higher concentrations of water, a turbid solution is formed, which indicates the formation of micellar structures or clusters. With dynamic light scattering we could show that these clusters increase in size with increasing water content.
Collapse
Affiliation(s)
- Tobias Wilcke
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany; (T.W.); (A.P.)
| | - Alexandru Postole
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany; (T.W.); (A.P.)
| | - Marcel Krüsmann
- Institut für Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany; (M.K.); (M.K.)
| | - Matthias Karg
- Institut für Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany; (M.K.); (M.K.)
| | - Thomas J. J. Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany; (T.W.); (A.P.)
| |
Collapse
|
6
|
Luo H, Li N, Liu L, Wang H, He F. Synthesis of New AIEE-Active Chalcones for Imaging of Mitochondria in Living Cells and Zebrafish In Vivo. Int J Mol Sci 2021; 22:8949. [PMID: 34445653 PMCID: PMC8396511 DOI: 10.3390/ijms22168949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/02/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Fluorophores with aggregation-induced emission enhancement (AIEE) properties have attracted increasing interest in recent years. On the basis of our previous research, we successfully designed and synthesized eleven chalcones. Through an optical performance experiment, we confirmed that compounds 1-6 had obvious AIEE properties. As these AIEE molecules had excellent fluorescence properties and a large Stokes shift, we studied their application in living cell imaging, and the results showed that these compounds had low cytotoxicity and good biocompatibility at the experimental concentrations. More importantly, they could specifically label mitochondria. Subsequently, we selected zebrafish as experimental animals to explore the possibilities of these compounds in animal imaging. The fluorescence imaging of zebrafish showed that these AIEE molecules can enter the embryo and can be targeted to aggregate in the digestive tract, which provides a strong foundation for their practical application in the field of biological imaging. Compared with traditional fluorophores, these AIEE molecules have the advantages of possessing a small molecular weight and high flexibility. Therefore, they have excellent application prospects in the field of biological imaging. In addition, the findings of this study have very positive practical significance for the discovery of more AIEE molecules.
Collapse
Affiliation(s)
- Huiqing Luo
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China; (H.L.); (N.L.); (L.L.)
| | - Na Li
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China; (H.L.); (N.L.); (L.L.)
| | - Liyan Liu
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China; (H.L.); (N.L.); (L.L.)
| | - Huaqiao Wang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510006, China;
| | - Feng He
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China; (H.L.); (N.L.); (L.L.)
| |
Collapse
|
7
|
Yang C, Wang X, Ma W, Wang Z, Tan G, Fang W, Jin Y. Improving the photodynamic therapy of pyropheophorbide a through the combination of hypoxia-sensitive molecule and infrared light-excited d-TiO2−X nanoparticles. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Photodynamic therapy (PDT) involving the generation of cytotoxic reactive oxygen species under light in the presence of sufficient oxygen has been widely used in diagnosing and treating cancer. However, the ubiquitous hypoxia in many solid tumors due to their abnormal proliferation and vascularization has greatly compromised the therapeutic effect. We have designed and prepared a tumor therapeutic nanoplatform for improving PDT based on defective TiO[Formula: see text] (d-TiO[Formula: see text] with the consideration that the continuous PDT would cause hypoxic tumor microenvironment (HTM) in which many hypoxia-sensitive drugs might be activated to exert the antitumor activities. The inorganic d-TiO[Formula: see text] nanoparticles (NPs) were firstly prepared and then modified by APTES to obtain the mesoporous d-TiO[Formula: see text]@SiO2NPs. The organic photosensitizer pyropheophorbide-a (PPa) and hypoxic-sensitive agent 6-aminoflavone (AF) were then adsorbed in the mesoporous SiO2, followed by further hydrophilic PEGylation to improve the biocompatibility. Defective d-TiO[Formula: see text] and the PPa could simultaneously consume oxygen after light excitation, while the resulted HTM was utilized to activate the hypoxic-sensitive agent 6-aminoflavone (AF) to trigger anti-cancer effect. The prepared d-TiO[Formula: see text]@SiO2/PPa/AF@PEG NPs were stable in normal physiological environment, and could continuously release PPa and AF under slightly acidic conditions. The in vitro experiments against cancer cells suggested that the combination of PPa and AF displayed significantly enhanced antitumor activities than that of monotherapy. Therefore, this research offered a potential application for 6-aminoflavone in PDT-induced hypoxia to improve the antitumor effects.
Collapse
Affiliation(s)
- Chen Yang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Xingchao Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Wei Ma
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Guanghui Tan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Wen Fang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| |
Collapse
|
8
|
Flavanone-Based Fluorophores with Aggregation-Induced Emission Enhancement Characteristics for Mitochondria-Imaging and Zebrafish-Imaging. Molecules 2020; 25:molecules25143298. [PMID: 32708080 PMCID: PMC7397278 DOI: 10.3390/molecules25143298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 01/06/2023] Open
Abstract
Fluorophores with aggregation-induced emission enhancement (AIEE) characteristics applied in bioimaging have attracted more and more attention in recent years. In this work, a series of flavanone compounds with AIEE characteristics was developed and applied to fluorescence imaging of mitochondria and zebrafish. The compounds were readily prepared by the thermal dehydration of chalcone that was obtained by the reaction of o-hydroxyacetophenone and benzaldehyde. Two of these compounds showed significant AIEE characteristics by fluorescence performance experiments, including optical spectra, fluorescence spectra, fluorescence quantum yield (φF), fluorescence lifetime, and scanning electron microscopy (SEM). Compared with traditional organic fluorescent dyes, these compounds have high fluorescence emission and high fluorescence quantum yield in solid or aggregated state, which overcomes the shortcoming of aggregation-caused quenching (ACQ). More importantly, the two compounds exhibited low cytotoxicity and good cytocompatibility in A549 lung cells at the experimental concentration range and they specifically targeted mitochondria, which make it of great potential use in mitochondria labeling. In addition, they were embryonic membrane permeable and had different affinities for different tissues and organs of zebrafish, but mainly distributed in the digestive system, providing a basis for the application of such compounds in bioimaging. These AIEE compounds with superior properties could be of great potential use in mitochondria imaging and other in vivo studies.
Collapse
|