1
|
Liu X, Zheng X. Microfluidic-Based Electrical Operation and Measurement Methods in Single-Cell Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:6359. [PMID: 39409403 PMCID: PMC11478560 DOI: 10.3390/s24196359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024]
Abstract
Cellular heterogeneity plays a significant role in understanding biological processes, such as cell cycle and disease progression. Microfluidics has emerged as a versatile tool for manipulating single cells and analyzing their heterogeneity with the merits of precise fluid control, small sample consumption, easy integration, and high throughput. Specifically, integrating microfluidics with electrical techniques provides a rapid, label-free, and non-invasive way to investigate cellular heterogeneity at the single-cell level. Here, we review the recent development of microfluidic-based electrical strategies for single-cell manipulation and analysis, including dielectrophoresis- and electroporation-based single-cell manipulation, impedance- and AC electrokinetic-based methods, and electrochemical-based single-cell detection methods. Finally, the challenges and future perspectives of the microfluidic-based electrical techniques for single-cell analysis are proposed.
Collapse
Affiliation(s)
| | - Xiaolin Zheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
2
|
Chen HH, Nguyen THV, Shih YH, Chang KC, Chiu KC, Hsia SM, Fuh LJ, Shieh TM. Combining microfluidic chip and low-attachment culture devices to isolate oral cancer stem cells. J Dent Sci 2024; 19:560-567. [PMID: 38303836 PMCID: PMC10829749 DOI: 10.1016/j.jds.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/05/2023] [Indexed: 02/03/2024] Open
Abstract
Background/purpose Cancer stem cells (CSCs) are widely recognized as key drivers of cancer initiation, progression, and therapeutic resistance. Microfluidic chip technology offers a promising approach for CSC isolation and study. This study investigated the efficacy of a microfluidic chip-based method for isolating single cells from oral cancer cell lines characterized by high stem-like phenotypes. Specifically, the study focused on examining the sphere-forming capability and the expression of CSC markers, including aldehyde dehydrogenase 1A1 (ALDH1A1), CD44, and CD133, in isolated cell clones from OECM-1 and SAS cell lines. Materials and methods Oral cancer cell lines were subjected to isolation using a microfluidic chip. The captured single cells were cultured to assess their sphere-forming capacity in ultra-low binding culture. Furthermore, the protein expression levels of ALDH1A1, CD44, and CD133 in the isolated cell clones were analyzed using western blotting. Results The microfluidic chip-assisted isolation method significantly enhanced the sphere-forming capability of both OECM-1 and SAS cell clones compared to their parent cell lines. Moreover, the expression levels of CSC markers ALDH1A1, CD44, and CD133 were upregulated in the microfluidic chip-assisted isolated cell clones, indicating a higher stem-like phenotype. Conclusion This study demonstrates the effectiveness of the microfluidic chip-based approach in isolating oral cancer cell clones with elevated stem-like characteristics. This method offers a valuable tool for further investigation of CSCs and their role in cancer progression, as well as future therapy development for oral cancers.
Collapse
Affiliation(s)
- Hsin-Hu Chen
- School of Dentistry, China Medical University, Taichung, Taiwan
| | | | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Kai-Chi Chang
- School of Dentistry, China Medical University, Taichung, Taiwan
| | - Kuo-Chou Chiu
- Division of General Dentistry, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Lih-Jyh Fuh
- School of Dentistry, China Medical University, Taichung, Taiwan
- Department of Dentistry, China Medical University Hospital, Taichung, Taiwan
| | | |
Collapse
|
3
|
Wevers D, Ramautar R, Clark C, Hankemeier T, Ali A. Opportunities and challenges for sample preparation and enrichment in mass spectrometry for single-cell metabolomics. Electrophoresis 2023; 44:2000-2024. [PMID: 37667867 DOI: 10.1002/elps.202300105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 09/06/2023]
Abstract
Single-cell heterogeneity in metabolism, drug resistance and disease type poses the need for analytical techniques for single-cell analysis. As the metabolome provides the closest view of the status quo in the cell, studying the metabolome at single-cell resolution may unravel said heterogeneity. A challenge in single-cell metabolome analysis is that metabolites cannot be amplified, so one needs to deal with picolitre volumes and a wide range of analyte concentrations. Due to high sensitivity and resolution, MS is preferred in single-cell metabolomics. Large numbers of cells need to be analysed for proper statistics; this requires high-throughput analysis, and hence automation of the analytical workflow. Significant advances in (micro)sampling methods, CE and ion mobility spectrometry have been made, some of which have been applied in high-throughput analyses. Microfluidics has enabled an automation of cell picking and metabolite extraction; image recognition has enabled automated cell identification. Many techniques have been used for data analysis, varying from conventional techniques to novel combinations of advanced chemometric approaches. Steps have been set in making data more findable, accessible, interoperable and reusable, but significant opportunities for improvement remain. Herein, advances in single-cell analysis workflows and data analysis are discussed, and recommendations are made based on the experimental goal.
Collapse
Affiliation(s)
- Dirk Wevers
- Wageningen University and Research, Wageningen, The Netherlands
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Rawi Ramautar
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Charlie Clark
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Ahmed Ali
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| |
Collapse
|
4
|
Akbari Z, Raoufi MA, Mirjalali S, Aghajanloo B. A review on inertial microfluidic fabrication methods. BIOMICROFLUIDICS 2023; 17:051504. [PMID: 37869745 PMCID: PMC10589053 DOI: 10.1063/5.0163970] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
In recent decades, there has been significant interest in inertial microfluidics due to its high throughput, ease of fabrication, and no need for external forces. The focusing efficiency of inertial microfluidic systems relies entirely on the geometrical features of microchannels because hydrodynamic forces (inertial lift forces and Dean drag forces) are the main driving forces in inertial microfluidic devices. In the past few years, novel microchannel structures have been propounded to improve particle manipulation efficiency. However, the fabrication of these unconventional structures has remained a serious challenge. Although researchers have pushed forward the frontiers of microfabrication technologies, the fabrication techniques employed for inertial microfluidics have not been discussed comprehensively. This review introduces the microfabrication approaches used for creating inertial microchannels, including photolithography, xurography, laser cutting, micromachining, microwire technique, etching, hot embossing, 3D printing, and injection molding. The advantages and disadvantages of these methods have also been discussed. Then, the techniques are reviewed regarding resolution, structures, cost, and materials. This review provides a thorough insight into the manufacturing methods of inertial microchannels, which could be helpful for future studies to improve the harvesting yield and resolution by choosing a proper fabrication technique.
Collapse
Affiliation(s)
- Zohreh Akbari
- Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Sheyda Mirjalali
- School of Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Behrouz Aghajanloo
- School of Engineering, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Stutzmann C, Peng J, Wu Z, Savoie C, Sirois I, Thibault P, Wheeler AR, Caron E. Unlocking the potential of microfluidics in mass spectrometry-based immunopeptidomics for tumor antigen discovery. CELL REPORTS METHODS 2023; 3:100511. [PMID: 37426761 PMCID: PMC10326451 DOI: 10.1016/j.crmeth.2023.100511] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The identification of tumor-specific antigens (TSAs) is critical for developing effective cancer immunotherapies. Mass spectrometry (MS)-based immunopeptidomics has emerged as a powerful tool for identifying TSAs as physical molecules. However, current immunopeptidomics platforms face challenges in measuring low-abundance TSAs in a precise, sensitive, and reproducible manner from small needle-tissue biopsies (<1 mg). Inspired by recent advances in single-cell proteomics, microfluidics technology offers a promising solution to these limitations by providing improved isolation of human leukocyte antigen (HLA)-associated peptides with higher sensitivity. In this context, we highlight the challenges in sample preparation and the rationale for developing microfluidics technology in immunopeptidomics. Additionally, we provide an overview of promising microfluidic methods, including microchip pillar arrays, valved-based systems, droplet microfluidics, and digital microfluidics, and discuss the latest research on their application in MS-based immunopeptidomics and single-cell proteomics.
Collapse
Affiliation(s)
| | - Jiaxi Peng
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Zhaoguan Wu
- CHU Sainte Justine Research Center, Montreal, QC, Canada
| | | | | | - Pierre Thibault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
- Department of Chemistry, University of Montreal, Montreal, QC, Canada
| | - Aaron R. Wheeler
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Etienne Caron
- CHU Sainte Justine Research Center, Montreal, QC, Canada
- Department of Pathology and Cellular Biology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
6
|
Grigorev GV, Lebedev AV, Wang X, Qian X, Maksimov GV, Lin L. Advances in Microfluidics for Single Red Blood Cell Analysis. BIOSENSORS 2023; 13:117. [PMID: 36671952 PMCID: PMC9856164 DOI: 10.3390/bios13010117] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/04/2022] [Accepted: 12/23/2022] [Indexed: 05/24/2023]
Abstract
The utilizations of microfluidic chips for single RBC (red blood cell) studies have attracted great interests in recent years to filter, trap, analyze, and release single erythrocytes for various applications. Researchers in this field have highlighted the vast potential in developing micro devices for industrial and academia usages, including lab-on-a-chip and organ-on-a-chip systems. This article critically reviews the current state-of-the-art and recent advances of microfluidics for single RBC analyses, including integrated sensors and microfluidic platforms for microscopic/tomographic/spectroscopic single RBC analyses, trapping arrays (including bifurcating channels), dielectrophoretic and agglutination/aggregation studies, as well as clinical implications covering cancer, sepsis, prenatal, and Sickle Cell diseases. Microfluidics based RBC microarrays, sorting/counting and trapping techniques (including acoustic, dielectrophoretic, hydrodynamic, magnetic, and optical techniques) are also reviewed. Lastly, organs on chips, multi-organ chips, and drug discovery involving single RBC are described. The limitations and drawbacks of each technology are addressed and future prospects are discussed.
Collapse
Affiliation(s)
- Georgii V. Grigorev
- Data Science and Information Technology Research Center, Tsinghua Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
- Mechanical Engineering Department, University of California in Berkeley, Berkeley, CA 94720, USA
- School of Information Technology, Cherepovets State University, 162600 Cherepovets, Russia
| | - Alexander V. Lebedev
- Machine Building Department, Bauman Moscow State University, 105005 Moscow, Russia
| | - Xiaohao Wang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiang Qian
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - George V. Maksimov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Physical metallurgy Department, Federal State Autonomous Educational Institution of Higher Education National Research Technological University “MISiS”, 119049 Moscow, Russia
| | - Liwei Lin
- Mechanical Engineering Department, University of California in Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Patra I, Kadhim MM, Mahmood Saleh M, Yasin G, Abdulhussain Fadhil A, Sabah Jabr H, Hameed NM. Aptasensor Based on Microfluidic for Foodborne Pathogenic Bacteria and Virus Detection: A Review. Crit Rev Anal Chem 2022; 54:872-881. [PMID: 35831973 DOI: 10.1080/10408347.2022.2099222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In today's world, which is entangled with numerous foodborne pathogenic bacteria and viruses, it appears to be essential to rethink detection methods of these due to the importance of food safety in our lives. The vast majority of detection methods for foodborne pathogenic bacteria and viruses have suffered from sensitivity and selectivity due to the small size of these pathogens. Besides, these types of sensing approaches can improve on-site detection platforms in the fields of food safety. In recent, microfluidics systems as new emerging types of portable sensing approaches can introduce efficient and simple biodevice by integration with several analytical methods such as electrochemical, optical and colorimetric techniques. Additionally, taking advantage of aptamer as a selective bioreceptor in the sensing of microfluidics system has provided selective, sensitive, portable and affordable sensing approaches. Furthermore, some papers use increased data transferability ability and computational power of these sensing platforms by exploiting smartphones. In this review, we attempted to provide an overview of the current state of the recent aptasensor based on microfluidic for screening of foodborne pathogenic bacteria and viruses. Working strategies, benefits and disadvantages of these sensing approaches are briefly discussed.
Collapse
Affiliation(s)
- Indrajit Patra
- An Independent Researcher, Ex Research Scholar at National Institute of Technology Durgapur, Durgapur, India
| | - Mustafa M Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University Of Anbar, Anbar, Iraq
| | - Ghulam Yasin
- Department of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | - Ali Abdulhussain Fadhil
- College of Medical Technology, Medical Lab Techniques, Al-farahidi University, Baghdad, Iraq
| | - Huda Sabah Jabr
- Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Noora M Hameed
- Anesthesia techniques, Al-Nisour University College, Babylon, Iraq
| |
Collapse
|
8
|
Li XY, Shen Y, Zhang L, Guo X, Wu J. Understanding initiation and progression of hepatocellular carcinoma through single cell sequencing. Biochim Biophys Acta Rev Cancer 2022; 1877:188720. [PMID: 35304295 DOI: 10.1016/j.bbcan.2022.188720] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023]
Abstract
Unsatisfied clinical outcome drives to better understand hepatic carcinogenesis, microenvironment and escape of immune surveillance in hepatocellular carcinoma (HCC). Single cell RNA sequencing (scRNA-Seq) has generated enormous data to pinpoint pathophysiologic alterations in tumor microenvironment (TME) or trace lineage development in cancer stem cells (CSCs), circulating tumor cells (CTCs), and subsets of immune cells, such as exhausting T cells, tumor-associated macrophages (TAMs), dendritic cells or other lineages. New insights have significantly advanced current understanding in progression, poor responses to molecular-targeted therapeutics or immune checkpoint inhibitors, metastasis in both basic research and clinical practice. The present review intends to cover a basic workflow of the scRNA-seq technology, existing limitations and improvement areas. Moreover, in-depth understanding in TME, exhausting T cells, CSCs, CTCs, tumor-associated macrophages, dendritic cells in HCC facilitates implementation of personalized and precise therapy in an era of availability with an array of systemic regimens.
Collapse
Affiliation(s)
- Xin-Yue Li
- Dept. of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Yue Shen
- Dept. of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Li Zhang
- Dept. of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Xiao Guo
- Dept. of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; Pathogenic Research Core Facility, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jian Wu
- Dept. of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; Dept. of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai 200032, China.
| |
Collapse
|
9
|
Franchi-Mendes T, Eduardo R, Domenici G, Brito C. 3D Cancer Models: Depicting Cellular Crosstalk within the Tumour Microenvironment. Cancers (Basel) 2021; 13:4610. [PMID: 34572836 PMCID: PMC8468887 DOI: 10.3390/cancers13184610] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
The tumour microenvironment plays a critical role in tumour progression and drug resistance processes. Non-malignant cell players, such as fibroblasts, endothelial cells, immune cells and others, interact with each other and with the tumour cells, shaping the disease. Though the role of each cell type and cell communication mechanisms have been progressively studied, the complexity of this cellular network and its role in disease mechanism and therapeutic response are still being unveiled. Animal models have been mainly used, as they can represent systemic interactions and conditions, though they face recognized limitations in translational potential due to interspecies differences. In vitro 3D cancer models can surpass these limitations, by incorporating human cells, including patient-derived ones, and allowing a range of experimental designs with precise control of each tumour microenvironment element. We summarize the role of each tumour microenvironment component and review studies proposing 3D co-culture strategies of tumour cells and non-malignant cell components. Moreover, we discuss the potential of these modelling approaches to uncover potential therapeutic targets in the tumour microenvironment and assess therapeutic efficacy, current bottlenecks and perspectives.
Collapse
Affiliation(s)
- Teresa Franchi-Mendes
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (T.F.-M.); (R.E.); (G.D.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Rodrigo Eduardo
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (T.F.-M.); (R.E.); (G.D.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Giacomo Domenici
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (T.F.-M.); (R.E.); (G.D.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Catarina Brito
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (T.F.-M.); (R.E.); (G.D.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
10
|
Xu S, Yang C, Yan X, Liu H. Towards high throughput and high information coverage: advanced single-cell mass spectrometric techniques. Anal Bioanal Chem 2021; 414:219-233. [PMID: 34435209 DOI: 10.1007/s00216-021-03624-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/23/2022]
Abstract
Mass spectrometry (MS) is attractive for single-cell analysis because of its high sensitivity, rich information, and large dynamic ranges, especially for the single-cell metabolome and proteome analysis. Efforts have been made to deal with the throughput and information coverage problems in typical manual single-cell MS techniques. In this review, advanced techniques to improve the automation and throughput for single-cell sampling and single-cell metabolome and proteome MS detection have been discussed. Furthermore, representative MS-based strategies that can increase the in-depth cellular information coverage and achieve the more comprehensive single-cell multiomics information during high throughput detection have been highlighted, providing an ongoing perspective of the MS performance for the single-cell research.
Collapse
Affiliation(s)
- Shuting Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xiuping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China. .,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Huwei Liu
- Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
11
|
Vitorino R, Guedes S, da Costa JP, Kašička V. Microfluidics for Peptidomics, Proteomics, and Cell Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1118. [PMID: 33925983 PMCID: PMC8145566 DOI: 10.3390/nano11051118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022]
Abstract
Microfluidics is the advanced microtechnology of fluid manipulation in channels with at least one dimension in the range of 1-100 microns. Microfluidic technology offers a growing number of tools for manipulating small volumes of fluid to control chemical, biological, and physical processes relevant to separation, analysis, and detection. Currently, microfluidic devices play an important role in many biological, chemical, physical, biotechnological and engineering applications. There are numerous ways to fabricate the necessary microchannels and integrate them into microfluidic platforms. In peptidomics and proteomics, microfluidics is often used in combination with mass spectrometric (MS) analysis. This review provides an overview of using microfluidic systems for peptidomics, proteomics and cell analysis. The application of microfluidics in combination with MS detection and other novel techniques to answer clinical questions is also discussed in the context of disease diagnosis and therapy. Recent developments and applications of capillary and microchip (electro)separation methods in proteomic and peptidomic analysis are summarized. The state of the art of microchip platforms for cell sorting and single-cell analysis is also discussed. Advances in detection methods are reported, and new applications in proteomics and peptidomics, quality control of peptide and protein pharmaceuticals, analysis of proteins and peptides in biomatrices and determination of their physicochemical parameters are highlighted.
Collapse
Affiliation(s)
- Rui Vitorino
- UnIC, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, 4785-999 Porto, Portugal
- iBiMED, Department of Medical Sciences, University of Aveiro, 00351234 Aveiro, Portugal
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 00351234 Aveiro, Portugal;
| | - Sofia Guedes
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 00351234 Aveiro, Portugal;
| | - João Pinto da Costa
- Department of Chemistry & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 00351234 Aveiro, Portugal;
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemigovo n. 542/2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
12
|
Visualization and Measurements of Blood Cells Flowing in Microfluidic Systems and Blood Rheology: A Personalized Medicine Perspective. J Pers Med 2020; 10:jpm10040249. [PMID: 33256123 PMCID: PMC7712771 DOI: 10.3390/jpm10040249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
Hemorheological alterations in the majority of metabolic diseases are always connected with blood rheology disturbances, such as the increase of blood and plasma viscosity, cell aggregation enhancement, and reduction of the red blood cells (RBCs) deformability. Thus, the visualizations and measurements of blood cells deformability flowing in microfluidic devices (point-of-care devices) can provide vital information to diagnose early symptoms of blood diseases and consequently to be used as a fast clinical tool for early detection of biomarkers. For instance, RBCs rigidity has been correlated with myocardial infarction, diabetes mellitus, hypertension, among other blood diseases. In order to better understand the blood cells behavior in microfluidic devices, rheological properties analysis is gaining interest by the biomedical committee, since it is strongly dependent on the interactions and mechanical cells proprieties. In addition, the development of blood analogue fluids capable of reproducing the rheological properties of blood and mimic the RBCs behavior at in vitro conditions is crucial for the design, performance and optimization of the microfluidic devices frequently used for personalized medicine. By combining the unique features of the hemorheology and microfluidic technology for single-cell analysis, valuable advances in personalized medicine for new treatments and diagnosis approach can be achieved.
Collapse
|
13
|
Ombid RJL, Oyong GG, Cabrera EC, Espulgar WV, Saito M, Tamiya E, Pobre RF. In-vitro study of monocytic THP-1 leukemia cell membrane elasticity with a single-cell microfluidic-assisted optical trapping system. BIOMEDICAL OPTICS EXPRESS 2020; 11:6027-6037. [PMID: 33150003 PMCID: PMC7587289 DOI: 10.1364/boe.402526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
We studied the elastic profile of monocytic THP-1 leukemia cells using a microfluidic-assisted optical trap. A 2-µm fused silica bead was optically trapped to mechanically dent an immobilized single THP-1 monocyte sieved on a 15-µm microfluidic capture chamber. Cells treated with Zeocin and untreated cells underwent RT-qPCR analysis to determine cell apoptosis through gene expression in relation to each cell's deformation profile. Results showed that untreated cells with 43.05 ± 6.68 Pa are more elastic compared to the treated cells with 15.81 ± 2.94 Pa. THP-1 monocyte's elastic modulus is indicative of cell apoptosis shown by upregulated genes after Zeocin treatment. This study clearly showed that the developed technique can be used to distinguish between cells undergoing apoptosis and cells not undergoing apoptosis and which may apply to the study of other cells and other cell states as well.
Collapse
Affiliation(s)
- Ric John L. Ombid
- OPTICS Research Unit, CENSER, De La Salle University (DLSU), Manila, Philippines
- Optics and Instrumentation Physics Laboratory, Physics Department, DLSU, Manila, Philippines
| | - Glenn G. Oyong
- OPTICS Research Unit, CENSER, De La Salle University (DLSU), Manila, Philippines
- Molecular Science Unit Laboratory, CENSER, DLSU, Manila, Philippines
| | - Esperanza C. Cabrera
- Biology Department, DLSU, Manila, Philippines
- Molecular Science Unit Laboratory, CENSER, DLSU, Manila, Philippines
| | - Wilfred V. Espulgar
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Japan
| | - Masato Saito
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Photonics Center, Osaka University, Osaka 565-0871, Japan
| | - Eiichi Tamiya
- Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Photonics Center, Osaka University, Osaka 565-0871, Japan
- The Institute of Scientific and Industrial Research, Osaka University, Japan
| | - Romeric F. Pobre
- OPTICS Research Unit, CENSER, De La Salle University (DLSU), Manila, Philippines
- Optics and Instrumentation Physics Laboratory, Physics Department, DLSU, Manila, Philippines
| |
Collapse
|
14
|
Balistreri CR, De Falco E, Bordin A, Maslova O, Koliada A, Vaiserman A. Stem cell therapy: old challenges and new solutions. Mol Biol Rep 2020; 47:3117-3131. [PMID: 32128709 DOI: 10.1007/s11033-020-05353-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022]
Abstract
Stem cell therapy (SCT), born as therapeutic revolution to replace pharmacological treatments, remains a hope and not yet an effective solution. Accordingly, stem cells cannot be conceivable as a "canonical" drug, because of their unique biological properties. A new reorientation in this field is emerging, based on a better understanding of stem cell biology and use of cutting-edge technologies and innovative disciplines. This will permit to solve the gaps, failures, and long-term needs, such as the retention, survival and integration of stem cells, by employing pharmacology, genetic manipulation, biological or material incorporation. Consequently, the clinical applicability of SCT for chronic human diseases will be extended, as well as its effectiveness and success, leading to long-awaited medical revolution. Here, some of these aspects are summarized, reviewing and discussing recent advances in this rapidly developing research field.
Collapse
Affiliation(s)
- Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy.
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Napoli, Italy
| | - Antonella Bordin
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Olga Maslova
- National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | | | | |
Collapse
|
15
|
Chen S, Wu D, Liu Y, Huang Y, Xu H, Gao W, Zhang J, Sun J, Zhuang J. Optimal scaling analysis of polymeric microneedle length and its effect on transdermal insulin delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101547] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
He X, Sun J, Zhuang J, Xu H, Liu Y, Wu D. Microneedle System for Transdermal Drug and Vaccine Delivery: Devices, Safety, and Prospects. Dose Response 2019; 17:1559325819878585. [PMID: 31662709 PMCID: PMC6794664 DOI: 10.1177/1559325819878585] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022] Open
Abstract
Microneedle (MN) delivery system has been greatly developed to deliver drugs into the skin painlessly, noninvasively, and safety. In the past several decades, various types of MNs have been developed by the newer producing techniques. Briefly, as for the morphologically, MNs can be classified into solid, coated, dissolved, and hollow MN, based on the transdermal drug delivery methods of "poke and patch," "coat and poke," "poke and release," and "poke and flow," respectively. Microneedles also have other characteristics based on the materials and structures. In addition, various manufacturing techniques have been well-developed based on the materials. In this review, the materials, structures, morphologies, and fabricating methods of MNs are summarized. A separate part of the review is used to illustrate the application of MNs to deliver vaccine, insulin, lidocaine, aspirin, and other drugs. Finally, the review ends up with a perspective on the challenges in research and development of MNs, envisioning the future development of MNs as the next generation of drug delivery system.
Collapse
Affiliation(s)
- Xiaoxiang He
- College of Mechanical and Electrical Engineering, Beijing University
of Chemical Technology, Beijing, China
| | - Jingyao Sun
- College of Mechanical and Electrical Engineering, Beijing University
of Chemical Technology, Beijing, China
| | - Jian Zhuang
- College of Mechanical and Electrical Engineering, Beijing University
of Chemical Technology, Beijing, China
| | - Hong Xu
- College of Mechanical and Electrical Engineering, Beijing University
of Chemical Technology, Beijing, China
| | - Ying Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing
University of Chemical Technology, Beijing, China
| | - Daming Wu
- College of Mechanical and Electrical Engineering, Beijing University
of Chemical Technology, Beijing, China
- State Key Laboratory of Organic-Inorganic Composites, Beijing
University of Chemical Technology, Beijing, China
| |
Collapse
|
17
|
Su F, Zhao Z, Liu Y, Si W, Leng C, Du Y, Sun J, Wu D. Efficient preparation of PDMS-based conductive composites using self-designed automatic equipment and an application example. JOURNAL OF POLYMER ENGINEERING 2019. [DOI: 10.1515/polyeng-2019-0086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
In this paper, the fabrication process of polydimethylsiloxane (PDMS)-based microstructured conductive composites via differential temperature hot embossing was proposed based on the spatial confining forced network assembly theory. The mold temperature was kept constant throughout the whole embossing cycle in this method, whereas the setting temperatures of the upper and lower molds were different. To solve the problem of poor conveying performance, a double-station automatic hot embossing equipment was designed and developed. A “bullet-filled” accurate feeding system was designed aiming at the high viscosity and feeding difficulty of blended PDMS-based composites before curing. Dispersion mold and semifixed compression mold were designed according to different functional requirements of different workstations. The developed automatic hot embossing equipment had already been successfully applied to the continuous preparation of conductive composites with greatly improved processing precision and efficiency. Furthermore, the conductive composites with and without microstructures can be used as flexible sensors for pressure measurements.
Collapse
Affiliation(s)
- Fengchun Su
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology , Beijing 100029 , China
| | - Zhongli Zhao
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology , Beijing 100029 , China
| | - Ying Liu
- State Key Laboratory of Organic-Inorganic Composites , Beijing 100029 , China
| | - Wuyan Si
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology , Beijing 100029 , China
| | - Chong Leng
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology , Beijing 100029 , China
| | - Yu Du
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology , Beijing 100029 , China
| | - Jingyao Sun
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology , Beijing 100029 , China
| | - Daming Wu
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology , Beijing 100029 , China
- State Key Laboratory of Organic-Inorganic Composites , Beijing 100029 , China
| |
Collapse
|
18
|
Liu H, Jian R, Chen H, Tian X, Sun C, Zhu J, Yang Z, Sun J, Wang C. Application of Biodegradable and Biocompatible Nanocomposites in Electronics: Current Status and Future Directions. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E950. [PMID: 31261962 PMCID: PMC6669760 DOI: 10.3390/nano9070950] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023]
Abstract
With the continuous increase in the production of electronic devices, large amounts of electronic waste (E-waste) are routinely being discarded into the environment. This causes serious environmental and ecological problems because of the non-degradable polymers, released hazardous chemicals, and toxic heavy metals. The appearance of biodegradable polymers, which can be degraded or dissolved into the surrounding environment with no pollution, is promising for effectively relieving the environmental burden. Additionally, biodegradable polymers are usually biocompatible, which enables electronics to be used in implantable biomedical applications. However, for some specific application requirements, such as flexibility, electric conductivity, dielectric property, gas and water vapor barrier, most biodegradable polymers are inadequate. Recent research has focused on the preparation of nanocomposites by incorporating nanofillers into biopolymers, so as to endow them with functional characteristics, while simultaneously maintaining effective biodegradability and biocompatibility. As such, bionanocomposites have broad application prospects in electronic devices. In this paper, emergent biodegradable and biocompatible polymers used as insulators or (semi)conductors are first reviewed, followed by biodegradable and biocompatible nanocomposites applied in electronics as substrates, (semi)conductors and dielectrics, as well as electronic packaging, which is highlighted with specific examples. To finish, future directions of the biodegradable and biocompatible nanocomposites, as well as the challenges, that must be overcome are discussed.
Collapse
Affiliation(s)
- Haichao Liu
- Academic Division of Engineering, Qingdao University of Science & Technology, Qingdao 266061, China
| | - Ranran Jian
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongbo Chen
- College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China
| | - Xiaolong Tian
- College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China
| | - Changlong Sun
- College of Sino-German Science and Technology, Qingdao University of Science & Technology, Qingdao 266061, China
| | - Jing Zhu
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Zhaogang Yang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Jingyao Sun
- Academic Division of Engineering, Qingdao University of Science & Technology, Qingdao 266061, China.
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chuansheng Wang
- Academic Division of Engineering, Qingdao University of Science & Technology, Qingdao 266061, China.
- College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China.
| |
Collapse
|
19
|
Millet M, Ben Messaoud R, Luthold C, Bordeleau F. Coupling Microfluidic Platforms, Microfabrication, and Tissue Engineered Scaffolds to Investigate Tumor Cells Mechanobiology. MICROMACHINES 2019; 10:E418. [PMID: 31234497 PMCID: PMC6630383 DOI: 10.3390/mi10060418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/15/2019] [Accepted: 06/19/2019] [Indexed: 12/11/2022]
Abstract
The tumor microenvironment (TME) is composed of dynamic and complex networks composed of matrix substrates, extracellular matrix (ECM), non-malignant cells, and tumor cells. The TME is in constant evolution during the disease progression, most notably through gradual stiffening of the stroma. Within the tumor, increased ECM stiffness drives tumor growth and metastatic events. However, classic in vitro strategies to study the TME in cancer lack the complexity to fully replicate the TME. The quest to understand how the mechanical, geometrical, and biochemical environment of cells impacts their behavior and fate has been a major force driving the recent development of new technologies in cell biology research. Despite rapid advances in this field, many challenges remain in order to bridge the gap between the classical culture dish and the biological reality of actual tissue. Microfabrication coupled with microfluidic approaches aim to engineer the actual complexity of the TME. Moreover, TME bioengineering allows artificial modulations with single or multiple cues to study different phenomena occurring in vivo. Some innovative cutting-edge tools and new microfluidic approaches could have an important impact on the fields of biology and medicine by bringing deeper understanding of the TME, cell behavior, and drug effects.
Collapse
Affiliation(s)
- Martial Millet
- CHU de Québec-Université Laval Research Center (Oncology division), Université Laval Cancer Research Center and Faculty of Medicine, Université Laval, Québec, QC G1R 3S3, Canada.
| | - Raoua Ben Messaoud
- CHU de Québec-Université Laval Research Center (Oncology division), Université Laval Cancer Research Center and Faculty of Medicine, Université Laval, Québec, QC G1R 3S3, Canada.
| | - Carole Luthold
- CHU de Québec-Université Laval Research Center (Oncology division), Université Laval Cancer Research Center and Faculty of Medicine, Université Laval, Québec, QC G1R 3S3, Canada.
| | - Francois Bordeleau
- CHU de Québec-Université Laval Research Center (Oncology division), Université Laval Cancer Research Center and Faculty of Medicine, Université Laval, Québec, QC G1R 3S3, Canada.
| |
Collapse
|
20
|
Zhang Y, Zhao Y, Chen D, Wang K, Wei Y, Xu Y, Huang C, Wang J, Chen J. Crossing constriction channel-based microfluidic cytometry capable of electrically phenotyping large populations of single cells. Analyst 2019; 144:1008-1015. [PMID: 30648705 DOI: 10.1039/c8an02100g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper presents a crossing constriction channel-based microfluidic system for high-throughput characterization of specific membrane capacitance (Csm) and cytoplasm conductivity (σcy) of single cells. In operations, cells in suspension were forced through the major constriction channel and instead of invading the side constriction channel, they effectively sealed the side constriction channel, which led to variations in impedance data. Based on an equivalent circuit model, these raw impedance data were translated into Csm and σcy. As a demonstration, the developed microfluidic system quantified Csm (3.01 ± 0.92 μF cm-2) and σcy (0.36 ± 0.08 S m-1) of 100 000 A549 cells, which could generate reliable results by properly controlling cell positions during their traveling in the crossing constriction channels. Furthermore, the developed microfluidic impedance cytometry was used to distinguish paired low- and high-metastatic carcinoma cell types of SACC-83 (ncell = ∼100 000) and SACC-LM cells (ncell = ∼100 000), distinguishing significant differences in both Csm (3.16 ± 0.90 vs. 2.79 ± 0.67 μF cm-2) and σcy (0.36 ± 0.06 vs.0.41 ± 0.08 S m-1). As high-throughput microfluidic impedance cytometry, this technique may add a new marker-free dimension to flow cytometry in single-cell analysis.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Azarmanesh M, Dejam M, Azizian P, Yesiloz G, Mohamad AA, Sanati-Nezhad A. Passive microinjection within high-throughput microfluidics for controlled actuation of droplets and cells. Sci Rep 2019; 9:6723. [PMID: 31040307 PMCID: PMC6491429 DOI: 10.1038/s41598-019-43056-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/10/2019] [Indexed: 01/30/2023] Open
Abstract
Microinjection is an effective actuation technique used for precise delivery of molecules and cells into droplets or controlled delivery of genes, molecules, proteins, and viruses into single cells. Several microinjection techniques have been developed for actuating droplets and cells. However, they are still time-consuming, have shown limited success, and are not compatible with the needs of high-throughput (HT) serial microinjection. We present a new passive microinjection technique relying on pressure-driven fluid flow and pulsative flow patterns within an HT droplet microfluidic system to produce serial droplets and manage rapid and highly controlled microinjection into droplets. A microneedle is secured within the injection station to confine droplets during the microinjection. The confinement of droplets on the injection station prevents their movement or deformation during the injection process. Three-dimensional (3D) computational analysis is developed and validated to model the dynamics of multiphase flows during the emulsion generation. We investigate the influence of pulsative flows, microneedle parameters and synchronization on the efficacy of microinjection. Finally, the feasibility of implementing our microinjection model is examined experimentally. This technique can be used for tissue engineering, cells actuation and drug discovery as well as developing new strategies for drug delivery.
Collapse
Affiliation(s)
- Milad Azarmanesh
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.,Center for Bioengineering Research and Education, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Morteza Dejam
- Department of Petroleum Engineering, College of Engineering and Applied Science, University of Wyoming, 1000 E. University Avenue, Laramie, Wyoming, 82071-2000, USA
| | - Pooya Azizian
- Department of Mechanical Engineering, Babol Noshirvani University of Technology, Shariati St., Babol, 4714871167, Iran
| | - Gurkan Yesiloz
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.,Center for Bioengineering Research and Education, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Abdulmajeed A Mohamad
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| | - Amir Sanati-Nezhad
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada. .,Center for Bioengineering Research and Education, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
22
|
Huang Y, Kormakov S, He X, Gao X, Zheng X, Liu Y, Sun J, Wu D. Conductive Polymer Composites from Renewable Resources: An Overview of Preparation, Properties, and Applications. Polymers (Basel) 2019; 11:E187. [PMID: 30960171 PMCID: PMC6418900 DOI: 10.3390/polym11020187] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/12/2019] [Accepted: 01/19/2019] [Indexed: 12/13/2022] Open
Abstract
This article reviews recent advances in conductive polymer composites from renewable resources, and introduces a number of potential applications for this material class. In order to overcome disadvantages such as poor mechanical properties of polymers from renewable resources, and give renewable polymer composites better electrical and thermal conductive properties, various filling contents and matrix polymers have been developed over the last decade. These natural or reusable filling contents, polymers, and their composites are expected to greatly reduce the tremendous pressure of industrial development on the natural environment while offering acceptable conductive properties. The unique characteristics, such as electrical/thermal conductivity, mechanical strength, biodegradability and recyclability of renewable conductive polymer composites has enabled them to be implemented in many novel and exciting applications including chemical sensors, light-emitting diode, batteries, fuel cells, heat exchangers, biosensors etc. In this article, the progress of conductive composites from natural or reusable filling contents and polymer matrices, including (1) natural polymers, such as starch and cellulose, (2) conductive filler, and (3) preparation approaches, are described, with an emphasis on potential applications of these bio-based conductive polymer composites. Moreover, several commonly-used and innovative methods for the preparation of conductive polymer composites are also introduced and compared systematically.
Collapse
Affiliation(s)
- Yao Huang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Semen Kormakov
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoxiang He
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaolong Gao
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiuting Zheng
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ying Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing 100029, China.
| | - Jingyao Sun
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Daming Wu
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
- State Key Laboratory of Organic-Inorganic Composites, Beijing 100029, China.
| |
Collapse
|