1
|
Vazhappilly CG, Alsawaf S, Mathew S, Nasar NA, Hussain MI, Cherkaoui NM, Ayyub M, Alsaid SY, Thomas JG, Cyril AC, Ramadan WS, Chelakkot AL. Pharmacodynamics and safety in relation to dose and response of plant flavonoids in treatment of cancers. Inflammopharmacology 2025; 33:11-47. [PMID: 39580755 DOI: 10.1007/s10787-024-01581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/02/2024] [Indexed: 11/26/2024]
Abstract
Despite the recent advancements in developing bioactive nutraceuticals as anticancer modalities, their pharmacodynamics, safety profiles, and tolerability remain elusive, limiting their success in clinical trials. The failure of anticancer drugs in clinical trials can be attributed to the changes in drug clearance, absorption, and cellular responses, which alter the dose-response efficacy, causing adverse health effects. Flavonoids demonstrate a biphasic dose-response phenomenon exerting a stimulatory or inhibitory effect and often follow a U-shaped curve in different preclinical cancer models. A double-edged sword, bioflavonoids' antioxidant or prooxidant properties contribute to their hormetic behavior and facilitate redox homeostasis by regulating the levels of reactive oxygen species (ROS) in cells. Emerging reports suggest a need to discuss the pharmacodynamic broad-spectrum of plant flavonoids to improve their therapeutic efficacy, primarily to determine the ideal dose for treating cancer. This review discusses the dose-response effects of a few common plant flavonoids against some types of cancers and assesses their safety and tolerability when administered to patients. Moreover, we have emphasized the role of dietary-rich plant flavonoids as nutraceuticals in cancer treatment and prevention.
Collapse
Affiliation(s)
- Cijo George Vazhappilly
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE.
| | - Seba Alsawaf
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Shimy Mathew
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, UAE
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, UAE
| | - Noora Ali Nasar
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Maheen Imtiaz Hussain
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Noor Mustapha Cherkaoui
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Mohammed Ayyub
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Serin Yaser Alsaid
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Joshua George Thomas
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Asha Caroline Cyril
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | | |
Collapse
|
2
|
Monadi T, Mohajer Z, Soltani A, Khazeei Tabari MA, Manayi A, Azadbakht M. The influence of apigenin on cellular responses to radiation: From protection to sensitization. Biofactors 2025; 51:e2113. [PMID: 39134426 DOI: 10.1002/biof.2113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/24/2024] [Indexed: 12/29/2024]
Abstract
Apigenin, a dietary flavonoid, has gained increasing attention for its potential therapeutic applications in radiation protection and radiosensitization. Ionizing radiation (IR) can harm healthy cells, but as radiotherapy remains crucial in cancer treatment. Owing to the remarkable application of radiotherapy in the treatment of cancers, it is vital to protect healthy cells from radiation hazards while increasing the sensitivity of cancer cells to radiation. This article reviews the current understanding of apigenin's radioprotective and radiosensitive properties with a focuses on the involved signaling pathways and key molecular targets. When exposed to irradiation, apigenin reduces inflammation via cyclooxygenase-2 inhibition and modulates proapoptotic and antiapoptotic biomarkers. Apigenin's radical scavenging abilities and antioxidant enhancement mitigate oxidative DNA damage. It inhibits radiation-induced mammalian target of rapamycin activation, vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP), and STAT3 expression, while promoting AMPK, autophagy, and apoptosis, suggesting potential in cancer prevention. As a radiosensitizer, apigenin inhibits tumor growth by inducing apoptosis, suppressing VEGF-C, tumor necrosis factor alpha, and STAT3, reducing MMP-2/9 activity, and inhibiting cancer cell glucose uptake. Cellular and animal studies support apigenin's radioprotective and anticancer potential, making it a potential candidate for further research. Investigation into apigenin's therapeutic efficacy in diverse cancer types and radiation damage is essential.
Collapse
Affiliation(s)
- Taha Monadi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Mohajer
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Soltani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Azadbakht
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Medicinal Plants Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
3
|
Pons DG. Roles of Phytochemicals in Cancer Prevention and Therapeutics. Int J Mol Sci 2024; 25:5450. [PMID: 38791488 PMCID: PMC11121644 DOI: 10.3390/ijms25105450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This Special Issue focused on the importance of phytochemicals for their use in the prevention and treatment of cancer [...].
Collapse
Affiliation(s)
- Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain;
- Grupo Multidisciplinar de Oncología Traslacional, Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain
| |
Collapse
|
4
|
Dai Z, Wu Y, Xiong Y, Wu J, Wang M, Sun X, Ding X, Yang L, Sun X, Ge G. CYP1A inhibitors: Recent progress, current challenges, and future perspectives. Med Res Rev 2024; 44:169-234. [PMID: 37337403 DOI: 10.1002/med.21982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/28/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Mammalian cytochrome P450 1A (CYP1A) are key phase I xenobiotic-metabolizing enzymes that play a distinctive role in metabolic activation or metabolic clearance of a variety of procarcinogens, drugs, and endogenous substances. Human CYP1A subfamily contains two members (hCYP1A1 and hCYP1A2), which are known to catalyze the oxidative activation of some environmental procarcinogens into carcinogenic species. Increasing evidence has demonstrated that CYP1A inhibitor therapies are promising strategies for cancer chemoprevention or overcoming CYP1A-associated drug toxicity and resistance. Herein, we reviewed recent advances in the discovery and characterization of hCYP1A inhibitors, from the discovery approaches to structural features and biomedical applications of hCYP1A inhibitors. The inhibition potentials, inhibition modes, and inhibition constants of all reported hCYP1A inhibitors are comprehensively summarized. Meanwhile, the structural features and structure-activity relationships of different classes of hCYP1A1 and hCYP1A2 inhibitors are analyzed and discussed in depth. Furthermore, the major challenges and future directions for this field are presented and highlighted. Collectively, the information and knowledge presented here will strongly facilitate the researchers to discover and develop more efficacious CYP1A inhibitors for specific purposes, such as chemo-preventive agents or as tool molecules in hCYP1A-related fundamental studies.
Collapse
Affiliation(s)
- Ziru Dai
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Wu
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Xiong
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Min Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, America
| | - Ling Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Solnier J, Chang C, Pizzorno J. Consideration for Flavonoid-Containing Dietary Supplements to Tackle Deficiency and Optimize Health. Int J Mol Sci 2023; 24:ijms24108663. [PMID: 37240008 DOI: 10.3390/ijms24108663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Randomized clinical trials (RCT) and observational studies have highlighted the importance of flavonoid consumption for human health. Several studies have associated a high intake of dietary flavonoids with (a) enhanced metabolic and cardiovascular health, (b) enhanced cognitive and vascular endothelial functions, (c) an improved glycemic response in type 2 diabetes mellitus, and (d) a reduced risk of breast cancer in postmenopausal women. Since flavonoids belong to a broad and diverse family of polyphenolic plant molecules-with more than 6000 compounds interspersed in the human diet-researchers are still uncertain whether the intake of single, individual polyphenols or a large combination of them (i.e., synergistic action) can produce the greatest health benefits for humans. Furthermore, studies have reported a poor bioavailability of flavonoid compounds in humans, which presents a major challenge for determining their optimal dosage, recommended intake, and, consequently, their therapeutic value. Especially because of their scarce bioavailability from foods-along with the overall declining food quality and nutrient density in foods-the role of flavonoid supplementation may become increasingly important for human health. Although research shows that dietary supplements can be a highly useful tool to complement diets that lack sufficient amounts of important nutrients, some caution is warranted regarding possible interactions with prescription and non-prescription drugs, especially when taken concurrently. Herein, we discuss the current scientific basis for using flavonoid supplementation to improve health as well as the limitations related to high intakes of dietary flavonoids.
Collapse
Affiliation(s)
- Julia Solnier
- ISURA, Clinical Research Unit, 101-3680 Bonneville Place, Burnaby, BC V3N 4T5, Canada
| | - Chuck Chang
- ISURA, Clinical Research Unit, 101-3680 Bonneville Place, Burnaby, BC V3N 4T5, Canada
| | | |
Collapse
|
6
|
Duda-Chodak A, Tarko T. Possible Side Effects of Polyphenols and Their Interactions with Medicines. Molecules 2023; 28:molecules28062536. [PMID: 36985507 PMCID: PMC10058246 DOI: 10.3390/molecules28062536] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Polyphenols are an important component of plant-derived food with a wide spectrum of beneficial effects on human health. For many years, they have aroused great interest, especially due to their antioxidant properties, which are used in the prevention and treatment of many diseases. Unfortunately, as with any chemical substance, depending on the conditions, dose, and interactions with the environment, it is possible for polyphenols to also exert harmful effects. This review presents a comprehensive current state of the knowledge on the negative impact of polyphenols on human health, describing the possible side effects of polyphenol intake, especially in the form of supplements. The review begins with a brief overview of the physiological role of polyphenols and their potential use in disease prevention, followed by the harmful effects of polyphenols which are exerted in particular situations. The individual chapters discuss the consequences of polyphenols’ ability to block iron uptake, which in some subpopulations can be harmful, as well as the possible inhibition of digestive enzymes, inhibition of intestinal microbiota, interactions of polyphenolic compounds with drugs, and impact on hormonal balance. Finally, the prooxidative activity of polyphenols as well as their mutagenic, carcinogenic, and genotoxic effects are presented. According to the authors, there is a need to raise public awareness about the possible side effects of polyphenols supplementation, especially in the case of vulnerable subpopulations.
Collapse
|
7
|
Raish M, Ahmad A, Shahid M, Jardan YAB, Ahad A, Kalam MA, Ansari MA, Iqbal M, Ali N, Alkharfy KM, Al-Jenoobi FI. Effects of Apigenin on Pharmacokinetics of Dasatinib and Probable Interaction Mechanism. Molecules 2023; 28:molecules28041602. [PMID: 36838589 PMCID: PMC9964503 DOI: 10.3390/molecules28041602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
Dasatinib (DAS), a narrow-therapeutic index drug, Bcr-Abl, and Src family kinases multitarget inhibitor have been approved for chronic myelogenous leukemia (CML) and Ph-positive acute lymphocytic leukemia (Ph+ ALL). Apigenin (APG) has a long history of human usage in food, herbs, health supplements, and traditional medicine, and it poses low risk of damage. The concomitant use of APG containing herbs/foods and traditional medicine may alter the pharmacokinetics of DAS, that probably lead to possible herb-drug interactions. The pharmacokinetic interaction of APG pretreatment with DAS in rat plasma following single and co-oral dosing was successfully deliberated using the UPLC-MS/MS method. The in vivo pharmacokinetics and protein expression of CYP3A2, Pgp-MDR1, and BCPR/ABCG2 demonstrate that APG pretreatment has potential to drastically changed the DAS pharmacokinetics where escalation in the Cmax, AUC(0-t), AUMC(0-inf_obs), T1/2, Tmax, and MRT and reduction in Kel, Vd, and Cl significantly in rats pretreated with APG 40 mg/kg, thus escalating systemic bioavailability and increasing the rate of absorption via modulation of CYP3A2, Pgp-MDR1, and BCPR/ABCG2 protein expression. Therefore, the concomitant consumption of APG containing food or traditional herb with DAS may cause serious life-threatening drug interactions and more systematic clinical study on herb-drug interactions is required, as well as adequate regulation in herbal safety and efficacy.
Collapse
Affiliation(s)
- Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Abul Kalam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naushad Ali
- Quality Assurance Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid M. Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad I. Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Kondža M, Mandić M, Ivančić I, Vladimir-Knežević S, Brizić I. Artemisia annua L. Extracts Irreversibly Inhibit the Activity of CYP2B6 and CYP3A4 Enzymes. Biomedicines 2023; 11:biomedicines11010232. [PMID: 36672740 PMCID: PMC9855681 DOI: 10.3390/biomedicines11010232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Artemisia annua L. has long been known for its medicinal properties and isolation of ingredients whose derivatives are used for therapeutic purposes. The CYP2B6 and CYP3A4 enzymes belong to a large family of cytochrome P450 enzymes. These enzymes are involved in the metabolism of drugs and other xeonobiotics. It is known that various compounds can induce or inhibit the activity of these enzymes. The aim of this study was to investigate the nature of the inhibitory effect of Artemisia annua extract on CYP2B6 and CYP3A4 enzymes, as well as the type of inhibition, the presence of reversible or pseudo-irreversible inhibition, and the possible heme destruction. The methanolic extract of Artemisia annua showed an inhibitory effect on CYP2B6 (by almost 90%) and CYP3A4 enzymes (by almost 70%). A significant decrease in heme concentration by 46.8% and 38.2% was observed in different assays. These results clearly indicate that the studied plant extracts significantly inhibited the activity of CYP2B6 and CYP3A4 enzymes. Moreover, they showed irreversible inhibition, which is even more important for possible interactions with drugs and dietary supplements.
Collapse
Affiliation(s)
- Martin Kondža
- Faculty of Pharmacy, University of Mostar, Matice Hrvatske bb, 88000 Mostar, Bosnia and Herzegovina
- Correspondence: ; Tel.: +387-36-312-791
| | - Marta Mandić
- Faculty of Pharmacy, University of Mostar, Matice Hrvatske bb, 88000 Mostar, Bosnia and Herzegovina
| | - Ivona Ivančić
- Faculty of Pharmacy, University of Mostar, Matice Hrvatske bb, 88000 Mostar, Bosnia and Herzegovina
| | - Sanda Vladimir-Knežević
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Trg Marka Marulića 20, 10000 Zagreb, Croatia
| | - Ivica Brizić
- Faculty of Pharmacy, University of Mostar, Matice Hrvatske bb, 88000 Mostar, Bosnia and Herzegovina
- University Clinical Hospital Mostar, Kralja Tvrtka bb, 88000 Mostar, Bosnia and Herzegovina
| |
Collapse
|
9
|
Why Do Dietary Flavonoids Have a Promising Effect as Enhancers of Anthracyclines? Hydroxyl Substituents, Bioavailability and Biological Activity. Int J Mol Sci 2022; 24:ijms24010391. [PMID: 36613834 PMCID: PMC9820151 DOI: 10.3390/ijms24010391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Anthracyclines currently play a key role in the treatment of many cancers, but the limiting factor of their use is the widespread phenomenon of drug resistance and untargeted toxicity. Flavonoids have pleiotropic, beneficial effects on human health that, apart from antioxidant activity, are currently considered small molecules-starting structures for drug development and enhancers of conventional therapeutics. This paper is a review of the current and most important data on the participation of a selected series of flavonoids: chrysin, apigenin, kaempferol, quercetin and myricetin, which differ in the presence of an additional hydroxyl group, in the formation of a synergistic effect with anthracycline antibiotics. The review includes a characterization of the mechanism of action of flavonoids, as well as insight into the physicochemical parameters determining their bioavailability in vitro. The crosstalk between flavonoids and the molecular activity of anthracyclines discussed in the article covers the most important common areas of action, such as (1) disruption of DNA integrity (genotoxic effect), (2) modulation of antioxidant response pathways, and (3) inhibition of the activity of membrane proteins responsible for the active transport of drugs and xenobiotics. The increase in knowledge about the relationship between the molecular structure of flavonoids and their biological effect makes it possible to more effectively search for derivatives with a synergistic effect with anthracyclines and to develop better therapeutic strategies in the treatment of cancer.
Collapse
|
10
|
Mitrasinovic PM. On the inhibition of cytochrome P450 3A4 by structurally diversified flavonoids. J Biomol Struct Dyn 2022; 40:9713-9723. [PMID: 34060409 DOI: 10.1080/07391102.2021.1932603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytochrome P450 3A4 (CYP3A4) is the most versatile enzyme involved in drug metabolism. The time-dependent inhibition of CYP3A4 by acacetin, apigenin, chrysin, and pinocembrin was experimentally detected, but not entirely elaborated so far. Thus, a two-level QM/MM (Quantum Mechanics/Molecular Mechanics) model is developed to yield insights into the receptor-flavonoid recognition at the molecular scale. Active site residues and the flavonoid are modelled using SCC-DFTB-D (QM level), while the rest of the complex is treated using AMBER force field (MM level). QM/MM binding free energies are well correlated with experimental data, indicating the largest inhibitory effect of chrysin on enzyme activity at a submicromolar concentration. Consequently, quercetin (QUE) and flavopiridol (FLP) are observed as representative examples of structurally different flavonoids. The inhibition parameters for QUE and FLP are evaluated using the well-calibrated QM/MM strategy, thereby aiding to quantitatively conceive the functional behavior of the whole family of flavonoids. A kinetic threshold for further assessment of the drug-drug interactions underlying the time-dependent inhibition of CYP3A4 by flavonoids is explored.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Petar M Mitrasinovic
- Center for Biophysical and Chemical Research, Belgrade Institute of Science and Technology, Belgrade, Serbia
| |
Collapse
|
11
|
Lü J, Zhang D, Zhang X, Sa R, Wang X, Wu H, Lin Z, Zhang B. Network Analysis of the Herb-Drug Interactions of Citrus Herbs Inspired by the "Grapefruit Juice Effect". ACS OMEGA 2022; 7:35911-35923. [PMID: 36249376 PMCID: PMC9558717 DOI: 10.1021/acsomega.2c04579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
This study was performed to investigate the herb-drug interactions (HDIs) of citrus herbs (CHs), which was inspired by the "grapefruit (GF) juice effect". Based on network analysis, a total of 249 components in GF and 159 compounds in CHs exhibited great potential as active ingredients. Moreover, 360 GF-related genes, 422 CH-related genes, and 111 genes associated with drug transport and metabolism were collected, while 25 and 26 overlapping genes were identified. In compound-target networks, the degrees of naringenin, isopimpinellin, apigenin, sinensetin, and isoimperatorin were higher, and the results of protein-protein interaction indicated the hub role of UGT1A1 and CYP3A4. Conventional drugs such as erlotinib, nilotinib, tamoxifen, theophylline, venlafaxine, and verapamil were associated with GF and CHs via multiple drug transporters and drug-metabolizing enzymes. Remarkably, GF and CHs shared 48 potential active compounds, among which naringenin, tangeretin, nobiletin, and apigenin possessed more interactions with targets. Drug metabolism by cytochrome P450 stood out in the mutual mechanism of GF and CHs. Molecular docking was utilized to elevate the protein-ligand binding potential of naringenin, tangeretin, nobiletin, and apigenin with UGT1A1 and CYP3A4. Furthermore, in vitro experiments demonstrated their regulating effect. Overall, this approach provided predictions on the HDIs of CHs, and they were tentatively verified through molecular docking and cell tests. Moreover, there is a demand for clinical and experimental evidence to support the prediction.
Collapse
Affiliation(s)
- Jintao Lü
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dan Zhang
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaomeng Zhang
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rina Sa
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
- Gansu
Province Hospital, Lanzhou 730000, China
| | - Xiaofang Wang
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huanzhang Wu
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhijian Lin
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Bing Zhang
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
12
|
Chen X, Chen Y, Liu Y, Zou L, McClements DJ, Liu W. A review of recent progress in improving the bioavailability of nutraceutical-loaded emulsions after oral intake. Compr Rev Food Sci Food Saf 2022; 21:3963-4001. [PMID: 35912644 DOI: 10.1111/1541-4337.13017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/27/2022] [Accepted: 07/08/2022] [Indexed: 01/28/2023]
Abstract
Increasing awareness of the health benefits of specific constituents in fruits, vegetables, cereals, and other whole foods has sparked a broader interest in the potential health benefits of nutraceuticals. Many nutraceuticals are hydrophobic substances, which means they must be encapsulated in colloidal delivery systems. Oil-in-water emulsions are one of the most widely used delivery systems for improving the bioavailability and bioactivity of these nutraceuticals. The composition and structure of emulsions can be designed to improve the water dispersibility, physicochemical stability, and bioavailability of the encapsulated nutraceuticals. The nature of the emulsion used influences the interfacial area and properties of the nutraceutical-loaded oil droplets in the gastrointestinal tract, which influences their digestion, as well as the bioaccessibility, metabolism, and absorption of the nutraceuticals. In this article, we review recent in vitro and in vivo studies on the utilization of emulsions to improve the bioavailability of nutraceuticals. The findings from this review should facilitate the design of more efficacious nutraceutical-loaded emulsions with increased bioactivity.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Yan Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yikun Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - David Julian McClements
- Biopolymers & Colloids Research Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Cytochrome P450 3A2 and PGP-MDR1-Mediated Pharmacokinetic Interaction of Sinapic Acid with Ibrutinib in Rats: Potential Food/Herb–Drug Interaction. Processes (Basel) 2022. [DOI: 10.3390/pr10061066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Ibrutinib (IBR) metabolism (primarily by CYP3A enzyme) is the main route of excretion for IBR, which could lead to drug–drug/herb–drug interactions with herbal medicines, nutritional supplements, and other foods. Sinapic acid (SA) is a bioactive phytonutrient that is used as a dietary supplement to treat a variety of illnesses. Pharmacokinetic interactions may occur when IBR interacts with SA, which influences the pharmacokinetic processes such as absorption, distribution, metabolism, and excretion. Therefore, it is obligatory to investigate the safety apprehensions of such parallel usage and to evaluate the possible impact of SA on the pharmacokinetics of IBR and propose a possible interaction mechanism in an animal model. The IBR concentration in plasma samples was determined using a validated UHPLC-MS/MS method after administration of a single oral dosage of IBR (50 mg/kg) in rats with or without SA pretreatment (40 mg/kg p.o. each day for 7 days, n = 6). The co-administration of IBR with SA displayed significant increases in Cmax ~18.77%, AUC0–T ~28.07%, MRT ~16.87%, and Kel ~24.76%, and a significant decrease in the volume of distribution Vz/F_obs ~37.66%, the rate of clearance (Cl/F) ~21.81%, and T½ ~20.43%, respectively, were observed as compared to rats that were administered IBR alone, which may result in increased bioavailability of IBR. The metabolism of IBR in the liver and intestines is significantly inhibited when SA is given, which may lead to an increase in the absorption rate of IBR. These findings need to be investigated further before they can be used in clinical practice.
Collapse
|
14
|
Wu Y, Li M, Guo Y, Liu T, Zhong L, Huang C, Ye C, Liu Q, Ren Z, Wang Y. The Effects of AT-533 and AT-533 gel on Liver Cytochrome P450 Enzymes in Rats. Eur J Drug Metab Pharmacokinet 2022; 47:345-352. [PMID: 35137361 DOI: 10.1007/s13318-022-00757-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVES AT-533 is a novel heat shock protein 90 inhibitor, which exhibits various biological activities in vitro and in vivo. Cytochrome P450 (CYP) enzymes in the liver are involved in the biotransformation of drugs and considered to be essential indicators of liver toxicity. The aim of this study was to assess the effect of AT-533, either as active pharmaceutical ingredient or in gel form, on liver CYP enzymes. METHODS The effect of AT-533 or AT-533 gel on rat liver cytochrome P450 enzymes, including CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, was analyzed using LC-MS/MS. RESULTS AT-533 and AT-533 gel did not significantly increase or reduce the enzymatic activity of CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 at any treatment dose. CONCLUSIONS AT-533 and AT-533 gel did not have any effect on CYP activity and may be considered safe for external use in gel form, as an alternative to conventional treatment.
Collapse
Affiliation(s)
- Yanting Wu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China
| | - Menghe Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China
| | - Yuying Guo
- Department of Cell Biology, Guangzhou Jinan Biomedicine Research and Development Center Co. Ltd, Guangzhou, People's Republic of China
| | - Tao Liu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China
| | - Lishan Zhong
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China
| | - Chen Huang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China
| | - Cuifang Ye
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China
| | - Qiuying Liu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China.,Department of pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhe Ren
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China
| | - Yifei Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China. .,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China. .,Department of Cell Biology, Guangzhou Jinan Biomedicine Research and Development Center Co. Ltd, Guangzhou, People's Republic of China.
| |
Collapse
|
15
|
Yan P, Tze UY, Jagadish PAR, Hon LK, Chowdhury LNS, Tao S, Eng OC. In Vitro Inhibitory Effects of Agarwood Tea ( Aquilaria malaccensis Lamk) Aqueous Extract on Human Cytochrome P450 (CYP) Enzyme Activities. DRUG METABOLISM AND BIOANALYSIS LETTERS 2022; 15:178-191. [PMID: 36508274 DOI: 10.2174/1872312815666220707114744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Agarwood tea derived from Aquilaria malaccensis Lamk is becoming an increasingly popular herbal drink that is said to have multiple health benefits. Co-administration of this tea and clinical used drugs is possible, but it increases the risk of drug-herb interactions. OBJECTIVE This in vitro study investigated the inhibitory effects of agarwood tea aqueous extract on the eight major human drug-metabolising cytochrome P450 (CYP) enzyme activities. METHODS High-throughput fluorescence-based Vivid® CYP450 screening kits were employed to obtain the enzyme activities before and after incubation with agarwood tea aqueous extract. RESULTS Agarwood aqueous extract potently inhibited CYP2C9, CYP2D6, and CYP3A4 activities with Ki values of 5.1, 34.5, and 20.3μg/ml, respectively. The most likely inhibition mode responsible for these inhibitions was non-competitive inhibition. On the other hand, at 1000μg/ml, agarwood tea aqueous extract negligibly inhibited CYP1A2, CYP2B6, CYP2C19, CYP2E1, and CYP3A5 activities. CONCLUSION These findings can be used to design additional in vitro investigations using clinical relevant drug substrates for CYP2C9, CYP2D6, and CYP3A4. Subsequently, future studies can be conducted to determine potential interactions between agarwood tea aqueous extract and CYP using in vivo models.
Collapse
Affiliation(s)
- Pan Yan
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Ung Yee Tze
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Premika A/P R Jagadish
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Lim Kuan Hon
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Lamia Noushin Sadeque Chowdhury
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Shang Tao
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Ong Chin Eng
- Department of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Zhang D, Wu G, Hao H, Chang L, Cao X. Effect of total flavonoids of Hippophae rhamnoides L. on the activity and mRNA expression of CYP450 in rats. Pharmacogn Mag 2022. [DOI: 10.4103/pm.pm_214_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
17
|
Wang X, Yang Y, Martínez MA, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Ares I. Interaction Between Florfenicol and Doxycycline Involving Cytochrome P450 3A in Goats ( Capra hricus). Front Vet Sci 2021; 8:759716. [PMID: 34733909 PMCID: PMC8558239 DOI: 10.3389/fvets.2021.759716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/21/2021] [Indexed: 01/18/2023] Open
Abstract
When two drugs are combined, drug-drug interactions (DDI) often occur. Metabolic DDI usually occur due to inhibition of the metabolism of one drug by the other. This leads to an increase in the plasma concentration of the drug whose metabolism is inhibited. The objective of this research study was to verify the DDI risk of two antibacterial, florfenicol (FF) and doxycycline (DOX) due to metabolism. Because food containing residues of any pharmacologically active substance could potentially constitute a public health hazard, we selected a food producing animal, goat, goat liver microsomes and recombinant metabolic enzymes, for in vivo and in vitro metabolism studies. In vitro experiments showed that CYP3A was the key enzyme subfamily in FF metabolism, DOX slowed down FF metabolism and R440 was possibly the key amino acid in the metabolic interaction between FF and DOX. In vivo studies in the goats showed that DOX inhibited up-regulation of CYP3A24 gene expression produced by FF; in liver and kidney, DOX slightly slowed down FF metabolism. Quantitative prediction of DDI risk suggest that when DOX is used in combination with FF in veterinary medicine, may result in a clinical significant increase of FF plasma and tissue concentrations, resulting a prevalence of harmful tissue residues of medicinal products in the food chain. Through our experimentation, when DOX is used in combination with FF, the withdrawal period of FF in the kidney was extended by 1 day. Otherwise, an appropriate withdrawal period (20 days) of FF was established for FF and DOX combined use to ensure that the animal can be safely slaughtered for food.
Collapse
Affiliation(s)
- Xiaojing Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Yaqin Yang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
18
|
Kondža M, Bojić M, Tomić I, Maleš Ž, Rezić V, Ćavar I. Characterization of the CYP3A4 Enzyme Inhibition Potential of Selected Flavonoids. Molecules 2021; 26:molecules26103018. [PMID: 34069400 PMCID: PMC8158701 DOI: 10.3390/molecules26103018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/03/2022] Open
Abstract
Acacetin, apigenin, chrysin, and pinocembrin are flavonoid aglycones found in foods such as parsley, honey, celery, and chamomile tea. Flavonoids can act as substrates and inhibitors of the CYP3A4 enzyme, a heme containing enzyme responsible for the metabolism of one third of drugs on the market. The aim of this study was to investigate the inhibitory effect of selected flavonoids on the CYP3A4 enzyme, the kinetics of inhibition, the possible covalent binding of the inhibitor to the enzyme, and whether flavonoids can act as pseudo-irreversible inhibitors. For the determination of inhibition kinetics, nifedipine oxidation was used as a marker reaction. A hemochromopyridine test was used to assess the possible covalent binding to the heme, and incubation with dialysis was used in order to assess the reversibility of the inhibition. All the tested flavonoids inhibited the CYP3A4 enzyme activity. Chrysin was the most potent inhibitor: IC50 = 2.5 ± 0.6 µM, Ki = 2.4 ± 1.0 µM, kinact = 0.07 ± 0.01 min−1, kinact/Ki = 0.03 min−1 µM−1. Chrysin caused the highest reduction of heme (94.5 ± 0.5% residual concentration). None of the tested flavonoids showed pseudo-irreversible inhibition. Although the inactivation of the CYP3A4 enzyme is caused by interaction with heme, inhibitor-heme adducts could not be trapped. These results indicate that flavonoids have the potential to inhibit the CYP3A4 enzyme and interact with other drugs and medications. However, possible food–drug interactions have to be assessed clinically.
Collapse
Affiliation(s)
- Martin Kondža
- Faculty of Pharmacy, University of Mostar, Matice Hrvatske bb, 88000 Mostar, Bosnia and Herzegovina; (M.K.); (I.T.)
| | - Mirza Bojić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-1-4818-304
| | - Ivona Tomić
- Faculty of Pharmacy, University of Mostar, Matice Hrvatske bb, 88000 Mostar, Bosnia and Herzegovina; (M.K.); (I.T.)
| | - Željan Maleš
- University of Zagreb Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia;
| | - Valentina Rezić
- Farmavita d.o.o., Igmanska 5A, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Ivan Ćavar
- Faculty of Medicine, University of Mostar, Zrinskog Frankopana 34, 88000 Mostar, Bosnia and Herzegovina;
| |
Collapse
|
19
|
Descriptors of Cytochrome Inhibitors and Useful Machine Learning Based Methods for the Design of Safer Drugs. Pharmaceuticals (Basel) 2021; 14:ph14050472. [PMID: 34067565 PMCID: PMC8156202 DOI: 10.3390/ph14050472] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 11/16/2022] Open
Abstract
Roughly 2.8% of annual hospitalizations are a result of adverse drug interactions in the United States, representing more than 245,000 hospitalizations. Drug-drug interactions commonly arise from major cytochrome P450 (CYP) inhibition. Various approaches are routinely employed in order to reduce the incidence of adverse interactions, such as altering drug dosing schemes and/or minimizing the number of drugs prescribed; however, often, a reduction in the number of medications cannot be achieved without impacting therapeutic outcomes. Nearly 80% of drugs fail in development due to pharmacokinetic issues, outlining the importance of examining cytochrome interactions during preclinical drug design. In this review, we examined the physiochemical and structural properties of small molecule inhibitors of CYPs 3A4, 2D6, 2C19, 2C9, and 1A2. Although CYP inhibitors tend to have distinct physiochemical properties and structural features, these descriptors alone are insufficient to predict major cytochrome inhibition probability and affinity. Machine learning based in silico approaches may be employed as a more robust and accurate way of predicting CYP inhibition. These various approaches are highlighted in the review.
Collapse
|
20
|
Amaeze O, Eng H, Horlbogen L, Varma MVS, Slitt A. Cytochrome P450 Enzyme Inhibition and Herb-Drug Interaction Potential of Medicinal Plant Extracts Used for Management of Diabetes in Nigeria. Eur J Drug Metab Pharmacokinet 2021; 46:437-450. [PMID: 33844145 PMCID: PMC11774566 DOI: 10.1007/s13318-021-00685-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVE The use of herbal medicines is common in Africa, and patients often use a combination of herbs and drugs. Concurrent herbal and pharmaceuticals treatments can cause adverse effects through herb-drug interactions (HDI). This study evaluated the potential risk of HDI for five medicinal plants, Vernonia amygdalina, Ocimum gratissimum, Moringa oleifera, Azadirachta indica, and Picralima nitida, using in vitro assays. Patients with diabetes and some other disease conditions commonly use these medicinal plants in Nigeria, and little is known regarding their potential for drug interaction, despite their enormous use. METHODS Crude extracts of the medicinal plants were evaluated for reversible and time-dependent inhibition (TDI) activity of six cytochrome P450 (CYP) enzymes using pooled human liver microsomes and cocktail probe-based assays. Enzyme activity was determined by quantifying marker metabolites' formation using liquid chromatography-mass spectrometry/mass spectrometry. The drug interaction potential was predicted for each herbal extract using the in vitro half-maximal inhibitory concentration (IC50) values and the percentage yield. RESULTS O. gratissimum methanol extracts reversibly inhibited CYP 1A2, 2C8, 2C9 and 2C19 enzymes (IC50: 6.21 µg/ml, 2.96 µg/ml, 3.33 µg/ml and 1.37 µg/ml, respectively). Additionally, V. amygdalina methanol extract inhibited CYP2C8 activity (IC50: 5.71 µg/ml); P. nitida methanol and aqueous extracts inhibited CYP2D6 activity (IC50: 1.99 µg/ml and 2.36 µg/ml, respectively) while A. indica methanol extract inhibited CYP 3A4/5, 2C8 and 2C9 activity (IC50: 7.31 µg/ml, 9.97 µg/ml and 9.20 µg/ml, respectively). The extracts showed a potential for TDI of the enzymes when incubated at 200 µg/ml; V. amygdalina and A. indica methanol extracts exhibited TDI potential for all the major CYPs. CONCLUSIONS The medicinal plants inhibited CYP activity in vitro, with the potential to cause in vivo HDI. Clinical risk assessment and proactive monitoring are recommended for patients who use these medicinal plants concurrently with drugs that are cleared through CYP metabolism.
Collapse
Affiliation(s)
- Ogochukwu Amaeze
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI, 02881, USA
- Department of Clinical Pharmacy and Biopharmacy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Heather Eng
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT, USA
| | - Lauren Horlbogen
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT, USA
| | | | - Angela Slitt
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI, 02881, USA.
| |
Collapse
|
21
|
Vazhappilly CG, Amararathna M, Cyril AC, Linger R, Matar R, Merheb M, Ramadan WS, Radhakrishnan R, Rupasinghe HPV. Current methodologies to refine bioavailability, delivery, and therapeutic efficacy of plant flavonoids in cancer treatment. J Nutr Biochem 2021; 94:108623. [PMID: 33705948 DOI: 10.1016/j.jnutbio.2021.108623] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/21/2021] [Accepted: 02/28/2021] [Indexed: 02/06/2023]
Abstract
Over the last two decades, several advancements have been made to improve the therapeutic efficacy of plant flavonoids, especially in cancer treatment. Factors such as low bioavailability, poor flavonoid stability and solubility, ineffective targeted delivery, and chemo-resistance hinder the application of flavonoids in anti-cancer therapy. Many anti-cancer compounds failed in the clinical trials because of unexpected altered clearance of flavonoids, poor absorption after administration, low efficacy, and/or adverse effects. Hence, the current research strategies are focused on improving the therapeutic efficacy of plant flavonoids, especially by enhancing their bioavailability through combination therapy, engineering gut microbiota, regulating flavonoids interaction with adenosine triphosphate binding cassette efflux transporters, and efficient delivery using nanocrystal and encapsulation technologies. This review aims to discuss different methodologies with examples from reported dietary flavonoids that showed an enhanced anti-cancer efficacy in both in vitro and in vivo models. Further, the review discusses the recent progress in biochemical modifications of flavonoids to improve bioavailability, solubility, and therapeutic efficacy.
Collapse
Affiliation(s)
| | - Madumani Amararathna
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Asha Caroline Cyril
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Rebecca Linger
- Department of Pharmaceutical and Administrative Sciences, University of Charleston, Charleston, West Virginia, USA
| | - Rachel Matar
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Maxime Merheb
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Wafaa S Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE; College of Medicine, University of Sharjah, Sharjah, UAE
| | - Rajan Radhakrishnan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada; Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
22
|
Auxtero MD, Chalante S, Abade MR, Jorge R, Fernandes AI. Potential Herb-Drug Interactions in the Management of Age-Related Cognitive Dysfunction. Pharmaceutics 2021; 13:124. [PMID: 33478035 PMCID: PMC7835864 DOI: 10.3390/pharmaceutics13010124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Late-life mild cognitive impairment and dementia represent a significant burden on healthcare systems and a unique challenge to medicine due to the currently limited treatment options. Plant phytochemicals have been considered in alternative, or complementary, prevention and treatment strategies. Herbals are consumed as such, or as food supplements, whose consumption has recently increased. However, these products are not exempt from adverse effects and pharmacological interactions, presenting a special risk in aged, polymedicated individuals. Understanding pharmacokinetic and pharmacodynamic interactions is warranted to avoid undesirable adverse drug reactions, which may result in unwanted side-effects or therapeutic failure. The present study reviews the potential interactions between selected bioactive compounds (170) used by seniors for cognitive enhancement and representative drugs of 10 pharmacotherapeutic classes commonly prescribed to the middle-aged adults, often multimorbid and polymedicated, to anticipate and prevent risks arising from their co-administration. A literature review was conducted to identify mutual targets affected (inhibition/induction/substrate), the frequency of which was taken as a measure of potential interaction. Although a limited number of drugs were studied, from this work, interaction with other drugs affecting the same targets may be anticipated and prevented, constituting a valuable tool for healthcare professionals in clinical practice.
Collapse
Affiliation(s)
- Maria D. Auxtero
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Susana Chalante
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Mário R. Abade
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Rui Jorge
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
- Polytechnic Institute of Santarém, School of Agriculture, Quinta do Galinheiro, 2001-904 Santarém, Portugal
- CIEQV, Life Quality Research Centre, IPSantarém/IPLeiria, Avenida Dr. Mário Soares, 110, 2040-413 Rio Maior, Portugal
| | - Ana I. Fernandes
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| |
Collapse
|
23
|
Dymarska M, Janeczko T, Kostrzewa-Susłow E. The Callus of Phaseolus coccineus and Glycine max Biotransform Flavanones into the Corresponding Flavones. Molecules 2020; 25:E5767. [PMID: 33297500 PMCID: PMC7730475 DOI: 10.3390/molecules25235767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 12/05/2020] [Indexed: 01/10/2023] Open
Abstract
In vitro plant cultures are gaining in industrial importance, especially as biocatalysts and as sources of secondary metabolites used in pharmacy. The idea that guided us in our research was to evaluate the biocatalytic potential of newly obtained callus tissue towards flavonoid compounds. In this publication, we describe new ways of using callus cultures in the biotransformations. In the first method, the callus cultures grown on a solid medium are transferred to the water, the reaction medium into which the substrate is introduced. In the second method, biotransformation is carried out on a solid medium by growing callus cultures. In the course of the research, we have shown that the callus obtained from Phaseolus coccineus and Glycine max is capable of converting flavanone, 5-methoxyflavanone and 6-methoxyflavanone into the corresponding flavones.
Collapse
Affiliation(s)
- Monika Dymarska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (T.J.); (E.K.-S.)
| | | | | |
Collapse
|
24
|
Zhang T, Rao J, Li W, Wang K, Qiu F. Mechanism-based inactivation of cytochrome P450 enzymes by natural products based on metabolic activation. Drug Metab Rev 2020; 52:501-530. [PMID: 33043714 DOI: 10.1080/03602532.2020.1828910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cytochrome P450 enzymes (P450 enzymes) are the most common and important phase I metabolic enzymes and are responsible for the majority of the metabolism of clinical drugs and other xenobiotics. Drug-drug interactions (DDIs) can occur when the activities of P450 enzymes are inhibited. In particular, irreversible inhibition of P450 enzymes may lead to severe adverse interactions, compared to reversible inhibition. Many natural products have been shown to be irreversible inhibitors of P450 enzymes. The risks for intake of naturally occurring irreversible P450 enzyme inhibitors have been rising due to the rapid growth of the global consumption of natural products. Irreversible inhibition is usually called mechanism-based inactivation, which is time-, concentration- and NADPH- dependent. Generally, the formation of electrophilic intermediates is fundamental for the inactivation of P450 enzymes. This review comprehensively classifies natural P450 enzyme inactivators, including terpenoids, phenylpropanoids, flavonoids, alkaloids, and quinones obtained from herbs or foods. Moreover, the structure - activity correlations according to the IC50 (or Ki) values reported in the literature as well as the underlying mechanisms based on metabolic activation are highlighted in depth.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Jinqiu Rao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Wei Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China.,Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Kai Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| |
Collapse
|
25
|
Nobiletin, sinensetin, and tangeretin are the main perpetrators in clementines provoking food-drug interactions in vitro. Food Chem 2020; 319:126578. [DOI: 10.1016/j.foodchem.2020.126578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/18/2020] [Accepted: 03/08/2020] [Indexed: 12/30/2022]
|
26
|
Fang SQ, Huang J, Zhang F, Ni HM, Chen QL, Zhu JR, Fu ZC, Zhu L, Hao WW, Ge GB. Pharmacokinetic interaction between a Chinese herbal formula Huosu Yangwei oral liquid and apatinib in vitro and in vivo. J Pharm Pharmacol 2020; 72:979-989. [PMID: 32285478 DOI: 10.1111/jphp.13268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/14/2020] [Indexed: 12/11/2022]
Abstract
Abstract
Objectives
This study aimed to evaluate the inhibitory effects of Huosu Yangwei oral liquid (HSYW) on cytochrome P450 enzymes (CYPs) and to investigate whether this herbal medicine could modulate the pharmacokinetic behaviour of the co-administered CYP-substrate drug apatinib.
Methods
Cytochrome P450 enzymes inhibition assays were conducted in human liver microsomes (HLM) by a LC-MS/MS method for simultaneous determination of the oxidative metabolites of eight probe substrates for hepatic CYPs. The modulatory effects of HSYW on the oxidative metabolism of apatinib were investigated in both HLM and rat liver microsomes (RLM). The influences of HSYW on the pharmacokinetic behaviour of apatinib were investigated in rats.
Key findings
Huosu Yangwei oral liquid inhibited all tested CYPs in human liver preparations, with the IC50 values ranged from 0.3148 to 2.642 mg/ml. HSYW could also inhibit the formation of two major oxidative metabolites of apatinib in liver microsomes from both human and rat. In-vivo assays demonstrated that HSYW could significantly prolong the plasma half-life of apatinib by 7.4-fold and increase the AUC0–inf (nm·h) of apatinib by 43%, when HSYW (10 ml/kg) was co-administered with apatinib (10 mg/kg) in rats.
Conclusions
Huosu Yangwei oral liquid could inhibit mammalian CYPs and modulated the metabolic half-life of apatinib both in vitro and in vivo.
Collapse
Affiliation(s)
- Sheng-Quan Fang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Huang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Pharmacology and Toxicology Division, Shanghai Institute of Food and Drug Control, Shanghai, China
| | - Feng Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Mei Ni
- Department of Basic Theory of Traditional Chinese Medicine, College of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi-Long Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun-Ran Zhu
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi-Chao Fu
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Zhu
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Qinghai Hospital of Traditional Chinese Medicine, Xining, China
| | - Wei-Wei Hao
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Qinghai Hospital of Traditional Chinese Medicine, Xining, China
| |
Collapse
|
27
|
Application of an Inter-Species Extrapolation Method for the Prediction of Drug Interactions between Propolis and Duloxetine in Humans. Int J Mol Sci 2020; 21:ijms21051862. [PMID: 32182820 PMCID: PMC7084906 DOI: 10.3390/ijms21051862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 11/16/2022] Open
Abstract
Duloxetine (DLX) is a potent drug investigated for the treatment of depression and urinary incontinence. DLX is extensively metabolized in the liver by two P450 isozymes, CYP2D6 and CYP1A2. Propolis (PPL) is one of the popular functional foods known to have effects on activities of CYPs, including CYP1A2. Due to the high probability of using DLX and PPL simultaneously, the present study was designed to investigate the potent effect of PPL on pharmacokinetics (PKs) of DLX after co-administration in humans. A PK study was first conducted in 18 rats (n = 6/group), in which the plasma concentration of DLX and its major metabolite 4-hydroxy duloxetine (4-HD) with or without administration of PPL was recorded. Population PKs and potential effects of PPL were then analyzed using NONMEM software. Lastly, these results were extrapolated from rats to humans using the allometric scaling and the liver blood flow method. PPL (15,000 mg/day) exerts a statistically significant increase in DLX exposures at steady state, with a 20.2% and 24.6% increase in DLX C m a x , s s and the same 28.0% increase in DLX A U C s s when DLX (40 or 60 mg) was administered once or twice daily, respectively. In conclusion, safety issues are required to be attended to when individuals simultaneously use DLX and PPL at high doses, and the possibility of interactions between DLX and PPL might be noted.
Collapse
|
28
|
Bai J, Li L, Zhao S, Fan X, Zhang J, Hu M, Chen Y, Sun Y, Wang B, Jin J, Wang X, Zhang D, Hu J, Li Y. Heterotropic activation of flavonoids on cytochrome P450 3A4: A case example of alleviating dronedarone-induced cytotoxicity. Toxicol Lett 2020; 319:187-196. [DOI: 10.1016/j.toxlet.2019.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022]
|
29
|
Feltrin C, Oliveira Simões CM. Reviewing the mechanisms of natural product-drug interactions involving efflux transporters and metabolic enzymes. Chem Biol Interact 2019; 314:108825. [PMID: 31553897 DOI: 10.1016/j.cbi.2019.108825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/28/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022]
Abstract
The World Health Organization (WHO) and other worldwide health agencies have recently taken initiatives to encourage the use of traditional medicine and/or complementary/alternative medicine in order to promote well-being and public health. In this way, one of the WHO's concerns is the safe use of these therapies. Phytotherapy is a strategy consisting of the use of medicinal plants (MP) and/or herbal medicinal products (HMP) for medicinal purposes. The use of phytotherapy concomitantly with drugs may cause interactions compromising the expected pharmacological action or generating toxic effects. These interactions are complex processes that may occur with multiple medications targeting different metabolic pathways, and involving different compounds present in MP and HMP. Thus, the aim of this review was to summarize the main MP- and HMP-drug interactions that involve specific transporters (P-glycoprotein and BCRP) and CYP450 enzymes (CYP3A4 and CYP2D6), which play relevant roles in the mechanisms of interactions. Firstly, multiple databases were used to search studies describing in vitro or in vivo MP and HMP-drug interactions and, after that, a systematic note-taking and appraisal of the literature was conducted. It was observed that several MP and HMP, metabolic pathways and transcription factors are involved in the transporters and enzymes expression or in the modulation of their activity having the potential to provide such interactions. Thus, the knowledge of MP- and HMP-drug interaction mechanisms could contribute to prevent harmful interactions and can ensure the safe use of these products to help the establishment of the therapeutic planning in order to certify the best treatment strategy to be used.
Collapse
Affiliation(s)
- Clarissa Feltrin
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Cláudia Maria Oliveira Simões
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
30
|
Bojić M, Kondža M, Rimac H, Benković G, Maleš Ž. The Effect of Flavonoid Aglycones on the CYP1A2, CYP2A6, CYP2C8 and CYP2D6 Enzymes Activity. Molecules 2019; 24:E3174. [PMID: 31480528 PMCID: PMC6749521 DOI: 10.3390/molecules24173174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/25/2019] [Accepted: 08/31/2019] [Indexed: 12/16/2022] Open
Abstract
Cytochromes P450 are major metabolic enzymes involved in the biotransformation of xenobiotics. The majority of xenobiotics are metabolized in the liver, in which the highest levels of cytochromes P450 are expressed. Flavonoids are natural compounds to which humans are exposed through everyday diet. In the previous study, selected flavonoid aglycones showed inhibition of CYP3A4 enzyme. Thus, the objective of this study was to determine if these flavonoids inhibit metabolic activity of CYP1A2, CYP2A6, CYP2C8, and CYP2D6 enzymes. For this purpose, the O-deethylation reaction of phenacetin was used for monitoring CYP1A2 enzyme activity, coumarin 7-hydroxylation for CYP2A6 enzyme activity, 6-α-hydroxylation of paclitaxel for CYP2C8 enzyme activity, and dextromethorphan O-demethylation for CYP2D6 enzyme activity. The generated metabolites were monitored by high-performance liquid chromatography coupled with diode array detection. Hesperetin, pinocembrin, chrysin, isorhamnetin, and morin inhibited CYP1A2 activity; apigenin, tangeretin, galangin, and isorhamnetin inhibited CYP2A6 activity; and chrysin, chrysin-dimethylether, and galangin inhibited CYP2C8. None of the analyzed flavonoids showed inhibition of CYP2D6. The flavonoids in this study were mainly reversible inhibitors of CYP1A2 and CYP2A6, while the inhibition of CYP2C8 was of mixed type (reversible and irreversible). The most prominent reversible inhibitor of CYP1A2 was chrysin, and this was confirmed by the docking study.
Collapse
Affiliation(s)
- Mirza Bojić
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia.
| | - Martin Kondža
- Matice hrvatske, Faculty of Pharmacy, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Hrvoje Rimac
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Goran Benković
- Agency for Medicinal Products and Medical Devices, Ksaverska cesta 4, 10000 Zagreb, Croatia
| | - Željan Maleš
- Department of Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry, University of Zagreb, Schrottova 39, 10000 Zagreb, Croatia
| |
Collapse
|
31
|
Advances in Biosynthesis, Pharmacology, and Pharmacokinetics of Pinocembrin, a Promising Natural Small-Molecule Drug. Molecules 2019; 24:molecules24122323. [PMID: 31238565 PMCID: PMC6631290 DOI: 10.3390/molecules24122323] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/18/2019] [Accepted: 06/23/2019] [Indexed: 12/13/2022] Open
Abstract
Pinocembrin is one of the most abundant flavonoids in propolis, and it may also be widely found in a variety of plants. In addition to natural extraction, pinocembrin can be obtained by biosynthesis. Biosynthesis efficiency can be improved by a metabolic engineering strategy and a two-phase pH fermentation strategy. Pinocembrin poses an interest for its remarkable pharmacological activities, such as neuroprotection, anti-oxidation, and anti-inflammation. Studies have shown that pinocembrin works excellently in treating ischemic stroke. Pinocembrin can reduce nerve damage in the ischemic area and reduce mitochondrial dysfunction and the degree of oxidative stress. Given its significant efficacy in cerebral ischemia, pinocembrin has been approved by China Food and Drug Administration (CFDA) as a new treatment drug for ischemic stroke and is currently in progress in phase II clinical trials. Research has shown that pinocembrin can be absorbed rapidly in the body and easily cross the blood-brain barrier. In addition, the absorption/elimination process of pinocembrin occurs rapidly and shows no serious accumulation in the body. Pinocembrin has also been found to play a role in Parkinson's disease, Alzheimer's disease, and specific solid tumors, but its mechanisms of action require in-depth studies. In this review, we summarized the latest 10 years of studies on the biosynthesis, pharmacological activities, and pharmacokinetics of pinocembrin, focusing on its effects on certain diseases, aiming to explore its targets, explaining possible mechanisms of action, and finding potential therapeutic applications.
Collapse
|