1
|
Temane LT, Orasugh JT, Ray SS. Recent Advances and Outlook in 2D Nanomaterial-Based Flame-Retardant PLA Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6046. [PMID: 37687739 PMCID: PMC10488405 DOI: 10.3390/ma16176046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Poly (lactic acid) or polylactide (PLA) has gained widespread use in many industries and has become a commodity polymer. Its potential as a perfect replacement for petrochemically made plastics has been constrained by its extreme flammability and propensity to flow in a fire. Traditional flame-retardants (FRs), such as organo-halogen chemicals, can be added to PLA without significantly affecting the material's mechanical properties. However, the restricted usage of these substances causes them to bioaccumulate and endanger plants and animals. Research on PLA flame-retardants has mostly concentrated on organic and inorganic substances for the past few years. Meanwhile, there has been a significant increase in renewed interest in creating environmentally acceptable flame-retardants for PLA to maintain the integrity of the polymer, which is the current trend. This article reviews recent advancements in novel FRs for PLA. The emphasis is on two-dimensional (2D) nanosystems and the composites made from them that have been used to develop PLA nanocomposite (NCP) systems that are flame retarding. The association between FR loadings and efficiency for different FR-PLA systems is also briefly discussed in the paper, as well as their influence on processing and other material attributes. It is unmistakably established from the literature that adding 2D nanoparticles to PLA matrix systems reduces their flammability by forming an intumescent char/carbonized surface layer. This creates a barrier effect that successfully blocks the filtration of volatiles and oxygen, heat and mass transfer, and the release of combustible gases produced during combustion.
Collapse
Affiliation(s)
- Lesego Tabea Temane
- Department of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa; (L.T.T.); (J.T.O.)
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Jonathan Tersur Orasugh
- Department of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa; (L.T.T.); (J.T.O.)
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Suprakas Sinha Ray
- Department of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa; (L.T.T.); (J.T.O.)
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| |
Collapse
|
2
|
Baochai L, Bakar AA, Mohamad Z. An overview of the recent advances in flame retarded poly(lactic acid). POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.5990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Li Baochai
- Department of Bioprocess and Polymer Engineering Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia Johor Bahru Malaysia
- Department of Applied Chemistry Hengshui University Hengshui China
| | - Aznizam Abu Bakar
- Department of Bioprocess and Polymer Engineering Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia Johor Bahru Malaysia
| | - Zurina Mohamad
- Department of Bioprocess and Polymer Engineering Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia Johor Bahru Malaysia
| |
Collapse
|
3
|
Dong J, Mao Z, Chen Z. Toughening, highly thermostable, and flame retardant polylactic acid enabled by polyphosphazene microsphere. J Appl Polym Sci 2022. [DOI: 10.1002/app.51973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jiaxing Dong
- Key Lab of Science and Technology of Eco‐textile Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai China
| | - Zhiping Mao
- Key Lab of Science and Technology of Eco‐textile Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University Shanghai China
- Innovation Center for Textile Science and Technology of DHU Donghua University Shanghai China
- National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology Taian City China
| | - Zhize Chen
- Key Lab of Science and Technology of Eco‐textile Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai China
| |
Collapse
|
4
|
Yoon S, Chen B. Modulating the Properties of Poly(glycerol sebacate)-Based Polyurethane Hydrogels Using an Organoclay. ACS Biomater Sci Eng 2022; 8:786-800. [PMID: 35006684 DOI: 10.1021/acsbiomaterials.1c01279] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Elastomeric hydrogels are promising in soft tissue applications due to their biomimetic mechanical and physical behaviors. In this study, we design and synthesize a poly(glycerol sebacate)-based polyurethane-clay nanocomposite hydrogel system with controllable mechanical, swelling, drug release, and biodegradation behaviors. The polymer-clay nanocomposites are synthesized by in situ polymerization in the presence of a solvent, which facilitates the dispersion of clay within the polymer matrix and their bonding. The nanocomposite hydrogels exhibit higher water swelling ratios in comparison to the neat polymer. The fully swollen hydrogels are capable of enduring complex mechanical deformations such as stretching and knotting, while the tensile moduli of the hydrogels mimic various soft tissues in human body. The mechanical behavior of hydrogels is significantly enhanced by the addition of no more than 3 phr clay, showing higher stiffness, strength, ductility, and toughness. The drug loading and release behavior of the hydrogels is investigated with three model drugs, showing selective drug loading capacity and sustained release, based on the Coulombic interaction between the clay and drug molecules. Biodegradation tests under a simulated body condition reveal a highly tunable degradation rate by the clay content in the nanocomposite hydrogels. Good cytocompatibility by the cell metabolic assay with mouse fibroblasts in vitro is also demonstrated. Finally, three-dimensional microporous foam is manufactured as a proof-of-concept study.
Collapse
Affiliation(s)
- Sungkwon Yoon
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Stranmillis Road, Belfast BT9 5AH, U.K.,Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K
| | - Biqiong Chen
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Stranmillis Road, Belfast BT9 5AH, U.K
| |
Collapse
|
5
|
Chen Y, He J, Xu L, Xu B, Qian L. Mechanical properties and flame retardancy of PLA composites containing zinc oxide and chain extender. J Appl Polym Sci 2021. [DOI: 10.1002/app.50987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yajun Chen
- School of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China
- China Light Industry Engineering Technology Research Center of Advanced Flame Retardants Beijing China
- Petroleum and Chemical Industry Engineering Laboratory of Non‐halogen Flame Retardants for Polymers, China Petroleum and Chemical Industry Federation Beijing China
| | - Jingxiu He
- School of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China
- China Light Industry Engineering Technology Research Center of Advanced Flame Retardants Beijing China
- Petroleum and Chemical Industry Engineering Laboratory of Non‐halogen Flame Retardants for Polymers, China Petroleum and Chemical Industry Federation Beijing China
| | - Lifeng Xu
- School of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China
- China Light Industry Engineering Technology Research Center of Advanced Flame Retardants Beijing China
- Petroleum and Chemical Industry Engineering Laboratory of Non‐halogen Flame Retardants for Polymers, China Petroleum and Chemical Industry Federation Beijing China
| | - Bo Xu
- School of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China
- China Light Industry Engineering Technology Research Center of Advanced Flame Retardants Beijing China
- Petroleum and Chemical Industry Engineering Laboratory of Non‐halogen Flame Retardants for Polymers, China Petroleum and Chemical Industry Federation Beijing China
| | - Lijun Qian
- School of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China
- China Light Industry Engineering Technology Research Center of Advanced Flame Retardants Beijing China
- Petroleum and Chemical Industry Engineering Laboratory of Non‐halogen Flame Retardants for Polymers, China Petroleum and Chemical Industry Federation Beijing China
| |
Collapse
|
6
|
Discharge Plasma Treatment as an Efficient Tool for Improved Poly(lactide) Adhesive-Wood Interactions. MATERIALS 2021; 14:ma14133672. [PMID: 34209330 PMCID: PMC8269815 DOI: 10.3390/ma14133672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022]
Abstract
Poly(lactide) (PLA) films obtained by thermoforming or solution-casting were modified by diffuse coplanar surface barrier discharge plasma (300 W and 60 s). PLA films were used as hot-melt adhesive in joints in oak wood. It was demonstrated that lap shear strength increased from 3.4 to 8.2 MPa, respectively, for the untreated and plasma-treated series. Pull-off tests performed on particleboard for the untreated and treated PLA films showed 100% cohesive failure. Pull-off strength tests on solid oak demonstrated adhesion enhancement from 3.3 MPa with the adhesion failure mode to 6.6 MPa with the cohesion failure mode for untreated and treated PLA. XPS revealed that carbonyl oxygen content increased by two-to-three-fold, which was confirmed in the Fourier-transform infrared spectroscopy experiments of the treated PLA. The water contact angle decreased from 66.4° for the pristine PLA to 49.8° after treatment. Subsequently, the surface free energy increased from 47.9 to 61.05 mJ/m2. Thus, it was clearly proven that discharge air plasma can be an efficient tool to change surface properties and to strengthen adhesive interactions between PLA and woody substrates.
Collapse
|
7
|
Yue X, Li C, Li Y. Using colloidal lignin intercalated montmorillonite nanosheets as synergistic and reinforced agent for flame‐retardant poly(butylene succinate) composites. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaopeng Yue
- Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper, National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science and Technology Xi'an China
| | - Chaofan Li
- Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper, National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science and Technology Xi'an China
| | - Yu Li
- Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper, National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science and Technology Xi'an China
| |
Collapse
|
8
|
Malkappa K, Bandyopadhyay J, Ray SS. Design of Poly(cyclotriphosphazene)-Functionalized Zirconium Phosphate Nanoplatelets To Simultaneously Enhance the Dynamic Mechanical and Flame Retardancy Properties of Polyamide 6. ACS OMEGA 2020; 5:13867-13877. [PMID: 32566853 PMCID: PMC7301536 DOI: 10.1021/acsomega.0c01247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
To obtain polyamide 6 (PA6) composites with improved flame retardancy and thermomechanical properties, highly cross-linked supramolecular poly(cyclotriphosphazene)-functionalized α-zirconium phosphate (f-ZrP) nanoplatelets were synthesized and melt-blended with PA6 in a twin-screw extruder. The performance enhancements of composites were investigated through measuring the dynamic mechanical property and observing cone calorimeter data, toxic gas evolution, and UL-94 rating. The thermomechanical performance of PA6 was increased by 37.2% after composite formation with f-ZrP. As for the fire retardancy performance, compared to neat PA6, the composite containing 10 wt % f-ZrP showed 41.7 and 30.4% decrease in the peak heat and total heat release rates, respectively, and the UL-94 rating of the composite was V-0. Moreover, the thermogravimetric analysis combined with infrared spectroscopy revealed that the addition of f-ZrP to the PA6 led to decrease in the evolution of the volatile compounds and toxic gases, with the formation of highly cross-linked P-N-containing dense char with microspheres, providing a strong barrier to the inhibition of the heat and flammable volatile components transferring between the flame zone area and substrate during the combustion test. Finally, based on the obtained results, the possible mechanisms for improved mechanical and fire retardancy properties of the composites were proposed.
Collapse
Affiliation(s)
- Kuruma Malkappa
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| | - Jayita Bandyopadhyay
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| | - Suprakas Sinha Ray
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
- Department
of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South
Africa
| |
Collapse
|
9
|
Evaluation of thermal degradation and melt crystallization behavior of taro mucilage and its graft copolymer with poly(lactide). SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1490-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
10
|
Intumescent flame retardant behavior of charring agents with different aggregation of piperazine/triazine groups in polypropylene. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.108982] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Tan LC, He Y, Qu JP. Structure and properties of Polylactide/Poly(butylene succinate)/Organically Modified Montmorillonite nanocomposites with high-efficiency intercalation and exfoliation effect manufactured via volume pulsating elongation flow. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121656] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
A New Approach to the Assessment of the Reduction in Visibility Caused by Fires of Electrical Cables. SAFETY 2019. [DOI: 10.3390/safety5030044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Electricity is the most important form of household energy and one of the most important forms of energy for industry and transport. Electrical distribution in construction and transport is almost exclusively implemented using electrical cables. One of the unresolved problems associated with electrical cables is the release of smoke and the resulting reduction of visibility in case of fire in the area. In this study, a new approach was developed to assess the reduction of visibility in an area affected by an electrical cable fire. This approach is based on the determination of the critical ratio of smoke volume (in the smoke layer and exhausted from the fire compartment) to the length of the burning cable, through which the visibility of reflective and illuminated signs was reduced to a lower limit value (a standard of 10 m). The input data for this approach was the extinction area of the smoke released from one meter of burning cable and the length of the cables in the area. This approach was used to test two power cables (CHKE-V J3x1.5 and CHKE-R J3x1.5) and one signal cable J-H(St)H 1 × 2 × 0.8 with the B2ca, s1, d1, a1 fire reaction class. The smoke extinction area of the examined cables was determined using a cone calorimeter at a heat flux of 50 kW/m2. The obtained data showed that in order to maintain a visibility of 10 m for reflective signs, the critical ratio of smoke volume to length of burning cable was 7.5 m3/m. For illuminated signs, the critical ratio was 2.8 m3/m. The relationship between burning length and visibility allows the calculation of visibility in the fire compartment affected by cable fire only from cables length.
Collapse
|
13
|
Malkappa K, Ray SS. Thermal Stability, Pyrolysis Behavior, and Fire-Retardant Performance of Melamine Cyanurate@Poly(cyclotriphosphazene- co-4,4'-sulfonyl diphenol) Hybrid Nanosheet-Containing Polyamide 6 Composites. ACS OMEGA 2019; 4:9615-9628. [PMID: 31460052 PMCID: PMC6648528 DOI: 10.1021/acsomega.9b00346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/18/2019] [Indexed: 05/24/2023]
Abstract
A novel halogen-free highly cross-linked supramolecular poly(cyclotriphosphazene-co-4,4'-sulfonyl diphenol) (PZS)-functionalized melamine cyanurate (MCA) (MCA@PZS) hybrid nanosheet fire-retardant (FR) was synthesized and thoroughly characterized using scanning electron microscopy, Fourier-transform infrared (FTIR), X-ray diffraction, and X-ray photoelectron spectroscopy analyses. The polyamide 6 (PA6) composites comprising MCA, PZS, and the MCA@PZS hybrids were prepared via the melt-blending technique. The thermogravimetric analysis combined with FTIR and mass spectroscopy revealed that during thermal degradation, the PA6/MCA@PZS composites released less toxic gases and small organic volatile compounds than the neat PA6 and composites containing MCA or PZS solely. Moreover, compared to neat PA6, the PA6 composite with a 5 wt % MCA@PZS hybrid exhibited enhanced fire retardation properties, with a 29.4 and 32.1% decrease in the peak heat and total heat release rates, respectively. Besides, the PA6 composites with MCA@PZS-5% content achieved a V-0 rating in the UL-94 test. Finally, based on the obtained results from gaseous and condensed phases, the possible mechanism responsible for improved FR properties of the PA6/MCA@PZS composites was proposed.
Collapse
Affiliation(s)
- Kuruma Malkappa
- DST-CSIR
National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Suprakas Sinha Ray
- DST-CSIR
National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
- Department
of Applied Chemistry, University of Johannesburg, Doornfontein, 2028 Johannesburg, South Africa
| |
Collapse
|