1
|
Huang Z, Zhang S, Qin Z, Ai G, Li M, Gong S, Liu Y, Zeng H, Chen J, Su Z, Lai Z. Supersaturated Drug Delivery System of Oxyberberine Based on Cyclodextrin Nanoaggregates: Preparation, Characterization, and in vivo Application. Int J Nanomedicine 2024; 19:5297-5316. [PMID: 38859955 PMCID: PMC11164094 DOI: 10.2147/ijn.s464994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024] Open
Abstract
Propose Oxyberberine (OBB), one of the main metabolites of berberine derived from intestinal and erythrocyte metabolism, exhibits appreciable anti-hyperuricemic activity. However, the low water solubility and poor plasma concentration-effect relationship of OBB hamper its development and utilization. Therefore, an OBB-hydroxypropyl-β-cyclodextrin (HP-β-CD) supersaturated drug delivery system (SDDS) was prepared and characterized in this work. Methods OBB-HP-β-CD SDDS was prepared using the ultrasonic-solvent evaporation method and characterized. Additionally, the in vitro and in vivo release experiments were conducted to assess the release kinetics of OBB-HP-β-CD SDDS. Subsequently, the therapeutic efficacy of OBB-HP-β-CD SDDS on hyperuricemia (HUA) was investigated by means of histopathological examination and evaluation of relevant biomarkers. Results The results of FT-IR, DSC, PXRD, NMR and molecular modeling showed that the crystallized form of OBB was transformed into an amorphous OBB-HP-β-CD complex. Dynamic light scattering indicated that this system was relatively stable and maintained by formation of nanoaggregates with an average diameter of 23 nm. The dissolution rate of OBB-HP-β-CD SDDS was about 5 times higher than that of OBB raw material. Furthermore, the AUC0-t of OBB-HP-β-CD SDDS (10.882 μg/mL*h) was significantly higher than that of the raw OBB counterpart (0.701 μg/mL*h). The oral relative bioavailability of OBB-HP-β-CD SDDS was also enhanced by 16 times compared to that of the raw material. Finally, in vivo pharmacodynamic assay showed the anti-hyperuricemic potency of OBB-HP-β-CD SDDS was approximately 5-10 times higher than that of OBB raw material. Conclusion Based on our findings above, OBB-HP-β-CD SDDS proved to be an excellent drug delivery system for increasing the solubility, dissolution, bioavailability, and anti-hyperuricemic potency of OBB.
Collapse
Affiliation(s)
- Ziwei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Shanli Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Zehui Qin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Gaoxiang Ai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Minhua Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Shiting Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Huifang Zeng
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Zhengquan Lai
- Department of Pharmacy, Shenzhen University General Hospital/Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
2
|
Xie D, Shen Y, Su E, Du L, Xie J, Wei D. Anti-Hyperuricemic, Nephroprotective, and Gut Microbiota Regulative Effects of Separated Hydrolysate of α-Lactalbumin on Potassium Oxonate- and Hypoxanthine-Induced Hyperuricemic Mice. Mol Nutr Food Res 2023; 67:e2200162. [PMID: 36308034 DOI: 10.1002/mnfr.202200162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/29/2022] [Indexed: 01/19/2023]
Abstract
SCOPE This study aims to investigate the anti-hyperuricemic and nephroprotective effects and the potential mechanisms of the separated gastrointestinal hydrolysates of α-lactalbumin on hyperuricemic mice. METHODS AND RESULTS The gastrointestinal hydrolysate of α-lactalbumin, the hydrolysate fraction with molecular weight (MW) < 3 kDa (LH-3k), and the fragments with smallest MW among LH-3K harvested through dextran gel chromatography (F5) are used. Hyperuricemia mice are induced via daily oral gavage of potassium oxonate and hypoxanthine. F5 displays the highest in vitro xanthine oxidase (XO) inhibition among all the fractions separated from LH-3k. Oral administration of F5 significantly reduces the levels of serum uric acid (UA), creatinine, and urea nitrogen. F5 treatment could ameliorate kidney injury through alleviating oxidative stress and inflammation. F5 alleviates hyperuricemia in mice by inhibiting hepatic XO activity and regulating the expression of renal urate transporters. Gut microbiota analysis illustrates that F5 administration increases the abundance of some SCFAs producers, and inhibits the growth of hyperuricemia and inflammation associated genera. LH-3k exhibits similar effects but does not show significance as those of the F5 fraction. CONCLUSION The anti-hyperuricemia and nephroprotective functions of F5 are mediated by inhibiting hepatic XO activity, ameliorating oxidative stress and inflammation, regulating renal urate transporters, and modulating the gut microbiota in hyperuricemic mice.
Collapse
Affiliation(s)
- Dewei Xie
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Erzheng Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Lei Du
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, P. R. China.,Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, P. R. China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, P. R. China.,Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, P. R. China
| |
Collapse
|
3
|
Murphy CA, Lim KS, Woodfield TBF. Next Evolution in Organ-Scale Biofabrication: Bioresin Design for Rapid High-Resolution Vat Polymerization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107759. [PMID: 35128736 DOI: 10.1002/adma.202107759] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/30/2022] [Indexed: 06/14/2023]
Abstract
The field of bioprinting has made significant advancements in recent years and allowed for the precise deposition of biomaterials and cells. However, within this field lies a major challenge, which is developing high resolution constructs, with complex architectures. In an effort to overcome these challenges a biofabrication technique known as vat polymerization is being increasingly investigated due to its high fabrication accuracy and control of resolution (µm scale). Despite the progress made in developing hydrogel precursors for bioprinting techniques, such as extrusion-based bioprinting, there is a major lack in developing hydrogel precursor bioresins for vat polymerization. This is due to the specific unique properties and characteristics required for vat polymerization, from lithography to the latest volumetric printing. This is of major concern as the shortage of bioresins available has a significant impact on progressing this technology and exploring its full potential, including speed, resolution, and scale. Therefore, this review discusses the key requirements that need to be addressed in successfully developing a bioresin. The influence of monomer architecture and bioresin composition on printability is described, along with key fundamental parameters that can be altered to increase printing accuracy. Finally, recent advancements in bioresins are discussed together with future directions.
Collapse
Affiliation(s)
- Caroline A Murphy
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering and Nanomedicine, University of Otago, Christchurch, 8011, New Zealand
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering and Nanomedicine, University of Otago, Christchurch, 8011, New Zealand
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering and Nanomedicine, University of Otago, Christchurch, 8011, New Zealand
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering and Nanomedicine, University of Otago, Christchurch, 8011, New Zealand
| |
Collapse
|
4
|
Zhao L, Li Y, Yao D, Sun R, Liu S, Chen X, Lin C, Huang J, Wang J, Li G. Pharmacological Basis for Use of a Novel Compound in Hyperuricemia: Anti-Hyperuricemic and Anti-Inflammatory Effects. Front Pharmacol 2021; 12:772504. [PMID: 34819865 PMCID: PMC8607230 DOI: 10.3389/fphar.2021.772504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
Background: The prevalence of hyperuricemia is considered high worldwide. Hyperuricemia occurs due to decreased excretion of uric acid, increased synthesis of uric acid, or a combination of both mechanisms. There is growing evidence that hyperuricemia is associated with a decline of renal function. Purpose: This study is aimed at investigating the effects of the novel compound on lowering the serum uric acid level and alleviating renal inflammation induced by high uric acid in hyperuricemic mice. Methods: Hyperuricemic mice model was induced by potassium oxonate and used to evaluate the effects of the novel compound named FxUD. Enzyme-linked immunosorbent assay was used to detect the related biochemical markers. Hematoxylin-eosin (HE) staining was applied to observe pathological changes. The mRNA expression levels were tested by qRT-PCR. The protein levels were determined by Western blot. In parallel, human proximal renal tubular epithelial cells (HK-2) derived from normal kidney was used to further validate the anti-inflammatory effects in vitro. Results: FxUD administration significantly decreased serum uric acid levels, restored the kidney function parameters, and improved the renal pathological injury. Meanwhile, treatment with FxUD effectively inhibited serum and liver xanthine oxidase (XOD) levels. Reversed expression alterations of renal inflammatory cytokines, urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) were observed in hyperuricemic mice. Western blot results illustrated FxUD down-regulated protein levels of inflammasome components. Further studies showed that FxUD inhibited the activation of NF-κB signaling pathway in the kidney of hyperuricemic mice. In parallel, the anti-inflammatory effect of FxUD was also confirmed in HK-2. Conclusion: Our study reveals that FxUD exhibits the anti-hyperuricemic and anti-inflammatory effects through regulating hepatic XOD and renal urate reabsorption transporters, and suppressing NF-κB/NLRP3 pathway in hyperuricemia. The results provide the evidence that FxUD may be potential for the treatment of hyperuricemia with kidney inflammation.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yihang Li
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, China
| | - Dahong Yao
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, China
| | - Ran Sun
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shifang Liu
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, China
| | - Xi Chen
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, China
| | - Congcong Lin
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jian Huang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jinhui Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Guang Li
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, China
| |
Collapse
|
5
|
Li Q, Huang Z, Liu D, Zheng J, Xie J, Chen J, Zeng H, Su Z, Li Y. Effect of Berberine on Hyperuricemia and Kidney Injury: A Network Pharmacology Analysis and Experimental Validation in a Mouse Model. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3241-3254. [PMID: 34349501 PMCID: PMC8326381 DOI: 10.2147/dddt.s317776] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/12/2021] [Indexed: 01/04/2023]
Abstract
Purpose Berberine (BBR) is an active component of Phellodendri Cortex (PC), which is a traditional Chinese medicine that has been prescribed clinically for hyperuricemia (HUA) for hundreds of years. Many studies reported the anti-inflammatory and nephroprotective properties of BBR and PC; however, the therapeutic effects of BBR on HUA have not been explored. This study aims to investigate the efficacy and mechanism of BBR for treating HUA. Methods The mechanism of BBR in the treatment of HUA were predicted by network pharmacology. A mouse model of HUA established by potassium oxonate and hypoxanthine was used to verify the prediction. The levels of serum uric acid (UA), urea nitrogen (BUN) and creatinine (CRE) were determined by biochemical test kits. Hematoxylin and eosin staining of kidney tissues was used to observe the kidney damage. ELISA kits were applied to detect the levels of interleukin (IL)-1β and IL-18 in serum and kidney tissues. Quantitative real-time PCR and Western blotting were adopted to analyze the expression of NLRP3, ASC, Caspase1, IL-1β and URAT1. The expressions of URAT1 in the kidney tubules were visualized by immunohistochemical staining. Molecular docking was used to assess the interaction between URAT1 and BBR. Results The network pharmacology screened out 82 genes and several inflammation-related signaling pathways related to the anti-hyperuricemia effect of BBR. In the in vivo experiment, BBR substantially decreased the level of UA, BUN and CRE, and alleviated the kidney damage in mice with HUA. BBR reduced IL-1β and IL-18, and downregulated expressions of NLRP3, ASC, Caspase1 and IL-1β. BBR also inhibited expression of URAT1 and exhibited strong affinity with this target in silico docking. Conclusion BBR exerts anti-HUA and nephroprotective effects via inhibiting activation of NLRP3 inflammasome and correcting the aberrant expression of URAT1 in kidney. BBR might be a novel therapeutic agent for treating HUA.
Collapse
Affiliation(s)
- Qiaoping Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Ziwei Huang
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Defu Liu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Jingna Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Jianhui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510120, People's Republic of China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Huifang Zeng
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
6
|
Zhou X, Zhang B, Zhao X, Lin Y, Wang J, Wang X, Hu N, Wang S. Chlorogenic acid supplementation ameliorates hyperuricemia, relieves renal inflammation, and modulates intestinal homeostasis. Food Funct 2021; 12:5637-5649. [PMID: 34018499 DOI: 10.1039/d0fo03199b] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hyperuricemia (HUA) is induced by abnormal purine metabolism and elevated serum uric acid (UA) concentrations, and it is often accompanied by inflammatory responses and intestinal disorders. This study aims to assess the protective effects of chlorogenic acid (CGA) on HUA in mice. CGA or allopurinol was given to mice with HUA induced by hypoxanthine and potassium oxonate. CGA lowered the levels of UA, blood urea nitrogen (BUN), creatinine (CR), AST, and ALT; inhibited xanthine oxidase (XOD) activity; and downregulated the mRNA expression of UA secretory proteins in HUA mice. Moreover, CGA significantly reduced serum lipopolysaccharides (LPS) levels and the mRNA expression of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, NOD-like receptor superfamily pyrin domain containing 3 (NLRP3), and caspase-1, and it inhibited the activation of the toll-like receptor 4/myeloid differentiation factor 88/nuclear factor kappa B (TLR4/MyD88/NF-κB) signaling pathway in the kidney, resulting in inflammation relief in HUA mice. In addition, CGA treatment increased the production of fecal short-chain fatty acids (SCFAs) in HUA mice. Additional investigations showed that CGA significantly lowered the mRNA expression of ileal IL-1β and IL-6, and it increased the mRNA expression of intestinal tight junction proteins (zonula occludens-1 (ZO-1) and occludin). Also, CGA increased the relative abundance of SCFA-producing bacteria, including Bacteroides, Prevotellaceae UGC-001, and Butyricimonas, and it reversed the purine metabolism and glutamate metabolism functions of gut microbiota. In conclusion, CGA may be a potential candidate for relieving the symptoms of HUA and regulating its associated inflammatory responses and intestinal homeostasis.
Collapse
Affiliation(s)
- Xiaofei Zhou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Xiuli Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yongxi Lin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Nan Hu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China. and Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
7
|
Effects of Tart Cherry Powder on Serum Uric Acid in Hyperuricemia Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1454305. [PMID: 32774405 PMCID: PMC7396008 DOI: 10.1155/2020/1454305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 11/18/2022]
Abstract
Hyperuricemia, as a critical risk factor for various adverse clinical outcomes, shows a trend of increasing prevalence among young-aged population. Dietary adjuvant therapy by function foods, such as tart cherry, is promising. Thus, effects of tart cherry powder specialized in hyperuricemia were explored via establishing a hyperuricemia model in Sprague Dawley rats by cotreatment with oteracil potassium and adenine. The results indicated that low dose of tart cherry powder (0.17 g/kg·bw) showed effects on hyperuricemia by slightly decreasing serum uric acid and improving kidney injury, whereas high dose of tart cherry powder (0.50 g/kg·bw) could merely alleviate kidney injury. Meanwhile, adenosine deaminase activity rather than xanthine oxidase activity was affected at low dose, which reveals low dose of tarty cherry powder may be beneficial to hyperuricemia through reduction of ADA activity, and its reported potentials on antioxidation or anti-inflammation provide clues for further study.
Collapse
|
8
|
Abdizadeh R, Heidarian E, Hadizadeh F, Abdizadeh T. Investigation of pyrimidine analogues as xanthine oxidase inhibitors to treat of hyperuricemia and gout through combined QSAR techniques, molecular docking and molecular dynamics simulations. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
From Xanthine Oxidase Inhibition to In Vivo Hypouricemic Effect: An Integrated Overview of In Vitro and In Vivo Studies with Focus on Natural Molecules and Analogues. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9531725. [PMID: 32184901 PMCID: PMC7060854 DOI: 10.1155/2020/9531725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/10/2019] [Accepted: 12/24/2019] [Indexed: 01/05/2023]
Abstract
Hyperuricemia is characterized by elevated uric acid (UA) levels on blood, which can lead to gout, a common pathology. These high UA levels are associated with increased purine ingestion and metabolization and/or its decreased excretion. In this field, xanthine oxidase (XO), by converting hypoxanthine and xanthine to UA, plays an important role in hyperuricemia control. Based on limitations and adverse effects associated with the use of allopurinol and febuxostat, the most known approved drugs with XO inhibitory effect, the search for new molecules with XO activity is growing. However, despite the high number of studies, it was found that the majority of tested products with relevant XO inhibition were left out, and no further pharmacological evaluation was performed. Thus, in the present review, available information published in the past six years concerning isolated molecules with in vitro XO inhibition complemented with cytotoxicity evaluation as well as other relevant studies, including in vivo hypouricemic effect, and pharmacokinetic/pharmacodynamic profile was compiled. Interestingly, the analysis of data collected demonstrated that molecules from natural sources or their mimetics and semisynthetic derivatives constitute the majority of compounds being explored at the moment by means of in vitro and in vivo animal studies. Therefore, several of these molecules can be useful as lead compounds and some of them can even have the potential to be considered in the future clinical candidates for the treatment of hyperuricemia.
Collapse
|