1
|
Ravindar L, Hasbullah SA, Rakesh KP, Raheem S, Ismail N, Ling LY, Hassan NI. Pyridine and Pyrimidine hybrids as privileged scaffolds in antimalarial drug discovery: A recent development. Bioorg Med Chem Lett 2024; 114:129992. [PMID: 39426430 DOI: 10.1016/j.bmcl.2024.129992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Malaria continues to pose a significant threat to global health, which is exacerbated by the emergence of drug-resistant strains, necessitating the urgent development of new therapeutic options. Due to their substantial bioactivity in treating malaria, pyridine and pyrimidine have become the focal point of drug research. Hybrids of pyridine and pyrimidine offer a novel and promising avenue for developing effective antimalarial agents. The ability of these hybrids to overcome drug resistance is tinted, offering a potential solution to this critical obstacle in the treatment of malaria. By targeting multiple pathways, these hybrid compounds reduce the likelihood of resistance development, providing a promising strategy for combating drug-resistant strains of malaria. The review focuses on the most recent developments in 2018 in the structural optimization of pyridine and pyrimidine hybrid compounds, highlighting modifications that have been shown to improve antimalarial activity. Structure-activity studies have elucidated the essential characteristics required for potency, selectivity, and pharmacokinetics. Molecular docking and virtual screening expedite the identification of novel compounds with enhanced activity profiles. This analysis could aid in developing the most effective pyridine and pyrimidine hybrids as antimalarial agents.
Collapse
Affiliation(s)
- Lekkala Ravindar
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - K P Rakesh
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Saki Raheem
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, W1W6 UW London, United Kingdom
| | - Norzila Ismail
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Lau Yee Ling
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia.
| |
Collapse
|
2
|
Ostroumova OS, Efimova SS, Zlodeeva PD, Alexandrova LA, Makarov DA, Matyugina ES, Sokhraneva VA, Khandazhinskaya AL, Kochetkov SN. Derivatives of Pyrimidine Nucleosides Affect Artificial Membranes Enriched with Mycobacterial Lipids. Pharmaceutics 2024; 16:1110. [PMID: 39339148 PMCID: PMC11435317 DOI: 10.3390/pharmaceutics16091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
The mechanisms of action of pyrimidine nucleoside derivatives on model lipid membranes of various compositions were studied. A systematic analysis of the tested agents' effects on the membrane physicochemical properties was performed. Differential scanning microcalorimetry data indicated that the ability of nucleoside derivatives to disorder membrane lipids depended on the types of nucleoside bases and membrane-forming lipids. The 5'-norcarbocyclic uracil derivatives were found to be ineffective, while N4-alkylcytidines demonstrated the most pronounced effects, significantly decreasing the dipalmitoylphosphocholine melting temperature and cooperativity of phase transition. The elongation of hydrophobic acyl radicals potentiated the disordering action of N4-alkylcytidines, while an increase in hydrophilicity due to replacing deoxyribose with ribose inhibited this effect. The ability of compounds to form transmembrane pores was also tested. It was found that 5-alkyluridines produced single, ion-permeable pores in phosphatidylglycerol membranes, and that methoxy-mycolic acid and trehalose monooleate potentiated the pore-forming activity of alkyloxymethyldeoxyuridines. The results obtained open up perspectives for the development of innovative highly selective anti-tuberculosis agents, which may be characterized by a low risk of developing drug resistance due to the direct action on the membranes of the pathogen.
Collapse
Affiliation(s)
| | | | | | | | - Dmitry A Makarov
- Engelhardt Institute of Molecular Biology, RAS, Moscow 119991, Russia
| | - Elena S Matyugina
- Engelhardt Institute of Molecular Biology, RAS, Moscow 119991, Russia
| | - Vera A Sokhraneva
- Engelhardt Institute of Molecular Biology, RAS, Moscow 119991, Russia
| | | | | |
Collapse
|
3
|
Makarov DA, Negrya SD, Jasko MV, Karpenko IL, Solyev PN, Chekhov VO, Kaluzhny DN, Efremenkova OV, Vasilyeva BF, Chizhov AO, Avdanina DA, Zhgun AA, Kochetkov SN, Alexandrova LA. 5-Substituted Uridines with Activity against Gram-Positive Bacteria. ChemMedChem 2023; 18:e202300366. [PMID: 37707314 DOI: 10.1002/cmdc.202300366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
The emergence of drug-resistant strains of pathogenic microorganisms necessitates the creation of new drugs. A series of uridine derivatives containing an extended substituent at the C-5 position as well as C-5 alkyloxymethyl, alkylthiomethyl, alkyltriazolylmethyl, alkylsulfinylmethyl and alkylsulfonylmethyl uridines were obtained in order to explore their antimicrobial properties and solubility. It has been shown that new ribonucleoside derivatives have an order of magnitude better solubility in water compared to their 2'-deoxy analogues and effectively inhibit the growth of a number of Gram-positive bacteria, including resistant strains of Mycobacterium smegmatis (MIC=15-200 μg/mL) and Staphylococcus aureus (MIC=25-100 μg/mL). Their activity is comparable to that of some antibiotics used in medicine.
Collapse
Affiliation(s)
- Dmitry A Makarov
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilov str., Moscow, 119991, Russia
| | - Sergey D Negrya
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilov str., Moscow, 119991, Russia
| | - Maxim V Jasko
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilov str., Moscow, 119991, Russia
| | - Inna L Karpenko
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilov str., Moscow, 119991, Russia
| | - Pavel N Solyev
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilov str., Moscow, 119991, Russia
| | - Vladimir O Chekhov
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilov str., Moscow, 119991, Russia
| | - Dmitry N Kaluzhny
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilov str., Moscow, 119991, Russia
| | - Olga V Efremenkova
- Gause Institute of New Antibiotics, 11 Bol'shaya Pirogovskaya, Moscow, 119021, Russia
| | - Byazilya F Vasilyeva
- Gause Institute of New Antibiotics, 11 Bol'shaya Pirogovskaya, Moscow, 119021, Russia
| | - Alexander O Chizhov
- Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Ave., Moscow, 119991, Russia
| | - Darya A Avdanina
- Research Center of Biotechnology RAS, 33 Leninsky Ave., Moscow, 119071, Russia
| | - Alexander A Zhgun
- Research Center of Biotechnology RAS, 33 Leninsky Ave., Moscow, 119071, Russia
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilov str., Moscow, 119991, Russia
| | | |
Collapse
|
4
|
Khandazhinskaya A, Eletskaya B, Mironov A, Konstantinova I, Efremenkova O, Andreevskaya S, Smirnova T, Chernousova L, Kondrashova E, Chizhov A, Seley-Radtke K, Kochetkov S, Matyugina E. New Flexible Analogues of 8-Aza-7-deazapurine Nucleosides as Potential Antibacterial Agents. Int J Mol Sci 2023; 24:15421. [PMID: 37895100 PMCID: PMC10607158 DOI: 10.3390/ijms242015421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
A variety of ribo-, 2'-deoxyribo-, and 5'-norcarbocyclic derivatives of the 8-aza-7-deazahypoxanthine fleximer scaffolds were designed, synthesized, and screened for antibacterial activity. Both chemical and chemoenzymatic methods of synthesis for the 8-aza-7-deazainosine fleximers were compared. In the case of the 8-aza-7-deazahypoxanthine fleximer, the transglycosylation reaction proceeded with the formation of side products. In the case of the protected fleximer base, 1-(4-benzyloxypyrimidin-5-yl)pyrazole, the reaction proceeded selectively with formation of only one product. However, both synthetic routes to realize the fleximer ribonucleoside (3) worked with equal efficiency. The new compounds, as well as some 8-aza-7-deazapurine nucleosides synthesized previously, were studied against Gram-positive and Gram-negative bacteria and M. tuberculosis. It was shown that 1-(β-D-ribofuranosyl)-4-(2-aminopyridin-3-yl)pyrazole (19) and 1-(2',3',4'-trihydroxycyclopent-1'-yl)-4-(pyrimidin-4(3H)-on-5-yl)pyrazole (9) were able to inhibit the growth of M. smegmatis mc2 155 by 99% at concentrations (MIC99) of 50 and 13 µg/mL, respectively. Antimycobacterial activities were revealed for 4-(4-aminopyridin-3-yl)-1H-pyrazol (10) and 1-(4'-hydroxy-2'-cyclopenten-1'-yl)-4-(4-benzyloxypyrimidin-5-yl)pyrazole (6). At concentrations (MIC99) of 40 and 20 µg/mL, respectively, the compounds resulted in 99% inhibition of M. tuberculosis growth.
Collapse
Affiliation(s)
- Anastasia Khandazhinskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St. 32, 119991 Moscow, Russia; (A.K.); (E.K.); (S.K.)
| | - Barbara Eletskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (B.E.); (A.M.); (I.K.)
| | - Anton Mironov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (B.E.); (A.M.); (I.K.)
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia Named after Patrice Lumumba, Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Irina Konstantinova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (B.E.); (A.M.); (I.K.)
| | - Olga Efremenkova
- Gause Institute of New Antibiotics, Bol’shaya Pirogovskaya St. 11, 119021 Moscow, Russia;
| | - Sofya Andreevskaya
- Central Tuberculosis Research Institute, 2 Yauzskaya Alley, 107564 Moscow, Russia; (S.A.); (T.S.); (L.C.)
| | - Tatiana Smirnova
- Central Tuberculosis Research Institute, 2 Yauzskaya Alley, 107564 Moscow, Russia; (S.A.); (T.S.); (L.C.)
| | - Larisa Chernousova
- Central Tuberculosis Research Institute, 2 Yauzskaya Alley, 107564 Moscow, Russia; (S.A.); (T.S.); (L.C.)
| | - Evgenia Kondrashova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St. 32, 119991 Moscow, Russia; (A.K.); (E.K.); (S.K.)
| | - Alexander Chizhov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia;
| | - Katherine Seley-Radtke
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA;
| | - Sergey Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St. 32, 119991 Moscow, Russia; (A.K.); (E.K.); (S.K.)
| | - Elena Matyugina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St. 32, 119991 Moscow, Russia; (A.K.); (E.K.); (S.K.)
| |
Collapse
|
5
|
Breijyeh Z, Karaman R. Design and Synthesis of Novel Antimicrobial Agents. Antibiotics (Basel) 2023; 12:628. [PMID: 36978495 PMCID: PMC10045396 DOI: 10.3390/antibiotics12030628] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The necessity for the discovery of innovative antimicrobials to treat life-threatening diseases has increased as multidrug-resistant bacteria has spread. Due to antibiotics' availability over the counter in many nations, antibiotic resistance is linked to overuse, abuse, and misuse of these drugs. The World Health Organization (WHO) recognized 12 families of bacteria that present the greatest harm to human health, where options of antibiotic therapy are extremely limited. Therefore, this paper reviews possible new ways for the development of novel classes of antibiotics for which there is no pre-existing resistance in human bacterial pathogens. By utilizing research and technology such as nanotechnology and computational methods (such as in silico and Fragment-based drug design (FBDD)), there has been an improvement in antimicrobial actions and selectivity with target sites. Moreover, there are antibiotic alternatives, such as antimicrobial peptides, essential oils, anti-Quorum sensing agents, darobactins, vitamin B6, bacteriophages, odilorhabdins, 18β-glycyrrhetinic acid, and cannabinoids. Additionally, drug repurposing (such as with ticagrelor, mitomycin C, auranofin, pentamidine, and zidovudine) and synthesis of novel antibacterial agents (including lactones, piperidinol, sugar-based bactericides, isoxazole, carbazole, pyrimidine, and pyrazole derivatives) represent novel approaches to treating infectious diseases. Nonetheless, prodrugs (e.g., siderophores) have recently shown to be an excellent platform to design a new generation of antimicrobial agents with better efficacy against multidrug-resistant bacteria. Ultimately, to combat resistant bacteria and to stop the spread of resistant illnesses, regulations and public education regarding the use of antibiotics in hospitals and the agricultural sector should be combined with research and technological advancements.
Collapse
Affiliation(s)
- Zeinab Breijyeh
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
6
|
Alexandrova LA, Khandazhinskaya AL, Matyugina ES, Makarov DA, Kochetkov SN. Analogues of Pyrimidine Nucleosides as Mycobacteria Growth Inhibitors. Microorganisms 2022; 10:microorganisms10071299. [PMID: 35889017 PMCID: PMC9322969 DOI: 10.3390/microorganisms10071299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/25/2023] Open
Abstract
Tuberculosis (TB) is the oldest human infection disease. Mortality from TB significantly decreased in the 20th century, because of vaccination and the widespread use of antibiotics. However, about a third of the world’s population is currently infected with Mycobacterium tuberculosis (Mtb) and the death rate from TB is about 1.4–2 million people per year. In the second half of the 20th century, new extensively multidrug-resistant strains of Mtb were identified, which are steadily increasing among TB patients. Therefore, there is an urgent need to develop new anti-TB drugs, which remains one of the priorities of pharmacology and medicinal chemistry. The antimycobacterial activity of nucleoside derivatives and analogues was revealed not so long ago, and a lot of studies on their antibacterial properties have been published. Despite the fact that there are no clinically used drugs based on nucleoside analogues, some progress has been made in this area. This review summarizes current research in the field of the design and study of inhibitors of mycobacteria, primarily Mtb.
Collapse
|
7
|
Yadav TT, Moin Shaikh G, Kumar MS, Chintamaneni M, YC M. A Review on Fused Pyrimidine Systems as EGFR Inhibitors and Their Structure–Activity Relationship. Front Chem 2022; 10:861288. [PMID: 35769445 PMCID: PMC9234326 DOI: 10.3389/fchem.2022.861288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/28/2022] [Indexed: 01/05/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) belongs to the family of tyrosine kinase that is activated when a specific ligand binds to it. The EGFR plays a vital role in the cellular proliferation process, differentiation, and apoptosis. In the case of cancer, EGFR undergoes uncontrolled auto-phosphorylation that results in increased cellular proliferation and decreased apoptosis, causing cancer promotion. From the literature, it shows that pyrimidine is one of the most commonly studied heterocycles for its antiproliferative activity against EGFR inhibition. The authors have collated some interesting results in the heterocycle-fused pyrimidines that have been studied using different cell lines (sensitive and mutational) and in animal models to determine their activity and potency. It is quite clear that the fused systems are highly effective in inhibiting EGFR activity in cancer cells. Therefore, the structure–activity relationship (SAR) comes into play in determining the nature of the heterocycle and the substituents that are responsible for the increased activity and toxicity. Understanding the SAR of heterocycle-fused pyrimidines will help in getting a better overview of the molecules concerning their activity and potency profile as future EGFR inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Mayur YC
- *Correspondence: Mayur YC, mayur
| |
Collapse
|
8
|
Khandazhinskaya AL, Mercurio V, Maslova AA, Ñahui Palomino RA, Novikov MS, Matyugina ES, Paramonova MP, Kukhanova MK, Fedorova NE, Yurlov KI, Kushch AA, Tarasova O, Margolis L, Kochetkov SN, Vanpouille C. Dual-targeted anti-CMV/anti-HIV-1 heterodimers. Biochimie 2021; 189:169-180. [PMID: 34197866 DOI: 10.1016/j.biochi.2021.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
Despite the development of efficient anti-human immunodeficiency virus-1 (HIV-1) therapy, HIV-1 associated pathogens remain a major clinical problem. Human cytomegalovirus (CMV) is among the most common HIV-1 copathogens and one of the main causes of persistent immune activation associated with dysregulation of the immune system, cerebrovascular and cardiovascular pathologies, and premature aging. Here, we report on the development of dual-targeted drugs with activity against both HIV-1 and CMV. We synthesized seven compounds that constitute conjugates of molecules that suppress both pathogens. We showed that all seven compounds exhibit low cytotoxicity and efficiently inhibited both viruses in cell lines. Furthermore, we chose a representative compound and demonstrated that it efficiently suppressed replication of HIV-1 and CMV in human lymphoid tissue ex vivo coinfected with both viruses. Further development of such compounds may lead to the development of dual-targeted anti-CMV/HIV-1 drugs.
Collapse
Affiliation(s)
| | - Vincenzo Mercurio
- Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anna A Maslova
- Engelhardt Institute of Molecular Biology, Vavilova Str., 32, Moscow, 119991, Russia
| | - Rogers Alberto Ñahui Palomino
- Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mikhail S Novikov
- Department of Pharmaceutical & Toxicological Chemistry, Volgograd State Medical University, Pavshikh Bortsov Sq., 1, Volgograd, 400131, Russia
| | - Elena S Matyugina
- Engelhardt Institute of Molecular Biology, Vavilova Str., 32, Moscow, 119991, Russia
| | - Maria P Paramonova
- Department of Pharmaceutical & Toxicological Chemistry, Volgograd State Medical University, Pavshikh Bortsov Sq., 1, Volgograd, 400131, Russia
| | - Marina K Kukhanova
- Engelhardt Institute of Molecular Biology, Vavilova Str., 32, Moscow, 119991, Russia
| | - Natalya E Fedorova
- Ivanovsky Institute of Virology, Gamaleya National Research Center of Epidemiology and Microbiology, Gamaleya Str., 16, Moscow, 123098, Russia
| | - Kirill I Yurlov
- Ivanovsky Institute of Virology, Gamaleya National Research Center of Epidemiology and Microbiology, Gamaleya Str., 16, Moscow, 123098, Russia
| | - Alla A Kushch
- Ivanovsky Institute of Virology, Gamaleya National Research Center of Epidemiology and Microbiology, Gamaleya Str., 16, Moscow, 123098, Russia
| | - Olga Tarasova
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10, Moscow, 119121, Russia
| | - Leonid Margolis
- Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology, Vavilova Str., 32, Moscow, 119991, Russia
| | - Christophe Vanpouille
- Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
Negrya SD, Jasko MV, Makarov DA, Solyev PN, Karpenko IL, Shevchenko OV, Chekhov OV, Glukhova AA, Vasilyeva BF, Efimenko TA, Sumarukova IG, Efremenkova OV, Kochetkov SN, Alexandrova LA. Glycol and Phosphate Depot Forms of 4- and/or 5-Modified Nucleosides Exhibiting Antibacterial Activity. Mol Biol 2021. [DOI: 10.1134/s002689332101012x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Alexandrova LA, Jasko MV, Negrya SD, Solyev PN, Shevchenko OV, Solodinin AP, Kolonitskaya DP, Karpenko IL, Efremenkova OV, Glukhova AA, Boykova YV, Efimenko TA, Kost NV, Avdanina DA, Nuraeva GK, Volkov IA, Kochetkov SN, Zhgun AA. Discovery of novel N 4-alkylcytidines as promising antimicrobial agents. Eur J Med Chem 2021; 215:113212. [PMID: 33582576 DOI: 10.1016/j.ejmech.2021.113212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/18/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
The emergence of drug-resistant strains of pathogenic microorganisms necessitates the creation of new drugs. In order to find new compounds that effectively inhibit the growth of pathogenic bacteria and fungi, we synthesized a set of N4-derivatives of cytidine, 2'-deoxycytidine and 5-metyl-2'-deoxycytidine bearing extended N4-alkyl and N4-phenylalkyl groups. The derivatives demonstrate activity against a number of Gram-positive bacteria, including Mycobacterium smegmatis (MIC = 24-200 μM) and Staphylococcus aureus (MIC = 50-200 μM), comparable with the activities of some antibiotics in medical use. The most promising compound appeared to be N4-dodecyl-5-metyl-2'-deoxycytidine 4h with activities of 24 and 48 μM against M. smegmatis and S. aureus, respectively, and high inhibitory activity of 0.5 mM against filamentous fungi that can, among other things, damage works of art, such as tempera painting. Noteworthy, some of other synthesized compounds are active against fungal growth with the inhibitory concentration in the range of 0.5-3 mM.
Collapse
Affiliation(s)
| | - Maxim V Jasko
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilova St., 119991, Moscow, Russia
| | - Sergey D Negrya
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilova St., 119991, Moscow, Russia
| | - Pavel N Solyev
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilova St., 119991, Moscow, Russia.
| | - Oleg V Shevchenko
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilova St., 119991, Moscow, Russia
| | - Andrei P Solodinin
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilova St., 119991, Moscow, Russia
| | - Daria P Kolonitskaya
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilova St., 119991, Moscow, Russia
| | - Inna L Karpenko
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilova St., 119991, Moscow, Russia
| | - Olga V Efremenkova
- Gause Institute of New Antibiotics, 11 Bol'shaya Pirogovskaya St., 119021, Moscow, Russia
| | - Alla A Glukhova
- Gause Institute of New Antibiotics, 11 Bol'shaya Pirogovskaya St., 119021, Moscow, Russia
| | - Yuliya V Boykova
- Gause Institute of New Antibiotics, 11 Bol'shaya Pirogovskaya St., 119021, Moscow, Russia
| | - Tatiana A Efimenko
- Gause Institute of New Antibiotics, 11 Bol'shaya Pirogovskaya St., 119021, Moscow, Russia
| | - Natalya V Kost
- Federal State Budgetary Scientific Institution "Mental Health Research Centre", 34 Kashirskoe Highway, 115522, Moscow, Russia
| | - Darya A Avdanina
- Research Center of Biotechnology RAS, 33 Leninsky Ave, 119071, Moscow, Russia
| | - Gulgina K Nuraeva
- Moscow Institute of Physics and Technology (National Research University), 9 Institutsky Alley, 141700, Dolgoprudny, Russia
| | - Ivan A Volkov
- Moscow Institute of Physics and Technology (National Research University), 9 Institutsky Alley, 141700, Dolgoprudny, Russia
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilova St., 119991, Moscow, Russia
| | - Alexander A Zhgun
- Research Center of Biotechnology RAS, 33 Leninsky Ave, 119071, Moscow, Russia
| |
Collapse
|
11
|
Antibacterial Prodrugs to Overcome Bacterial Resistance. Molecules 2020; 25:molecules25071543. [PMID: 32231026 PMCID: PMC7180472 DOI: 10.3390/molecules25071543] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022] Open
Abstract
Bacterial resistance to present antibiotics is emerging at a high pace that makes the development of new treatments a must. At the same time, the development of novel antibiotics for resistant bacteria is a slow-paced process. Amid the massive need for new drug treatments to combat resistance, time and effort preserving approaches, like the prodrug approach, are most needed. Prodrugs are pharmacologically inactive entities of active drugs that undergo biotransformation before eliciting their pharmacological effects. A prodrug strategy can be used to revive drugs discarded due to a lack of appropriate pharmacokinetic and drug-like properties, or high host toxicity. A special advantage of the use of the prodrug approach in the era of bacterial resistance is targeting resistant bacteria by developing prodrugs that require bacterium-specific enzymes to release the active drug. In this article, we review the up-to-date implementation of prodrugs to develop medications that are active against drug-resistant bacteria.
Collapse
|
12
|
Negrya SD, Makarov DA, Solyev PN, Karpenko IL, Chekhov OV, Glukhova AA, Vasilyeva BF, Sumarukova IG, Efremenkova OV, Kochetkov SN, Alexandrova LA. 5-Alkylthiomethyl Derivatives of 2'-Deoxyuridine: Synthesis and Antibacterial Activity. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Ding Y, Ma R, Hider RC, Ma Y. Acid‐Catalyzed Pseudo Five‐Component Annulation for a General One‐Pot Synthesis of 2,4,6‐Triaryl Pyrimidines. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.201900700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuxin Ding
- School of Pharmaceutical and Chemical EngineeringTaizhou University Taizhou 318000 P. R. China
- School of Pharmaceutical ScienceZhejiang Chinese Medical University Hangzhou 310053 P R China
| | - Renchao Ma
- School of Pharmaceutical and Chemical EngineeringTaizhou University Taizhou 318000 P. R. China
| | - Robert C. Hider
- Institute of Pharmaceutical ScienceKing's College London Franklin-Wilkins Building Stamford Street London SE1 9NH UK
| | - Yongmin Ma
- School of Pharmaceutical and Chemical EngineeringTaizhou University Taizhou 318000 P. R. China
- School of Pharmaceutical ScienceZhejiang Chinese Medical University Hangzhou 310053 P R China
| |
Collapse
|
14
|
Negrya SD, Jasko MV, Solyev PN, Karpenko IL, Efremenkova OV, Vasilyeva BF, Sumarukova IG, Kochetkov SN, Alexandrova LA. Synthesis of water-soluble prodrugs of 5-modified 2ʹ-deoxyuridines and their antibacterial activity. J Antibiot (Tokyo) 2020; 73:236-246. [DOI: 10.1038/s41429-019-0273-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/09/2019] [Accepted: 12/15/2019] [Indexed: 12/14/2022]
|
15
|
Negrya SD, Efremenkova OV, Solyev PN, Chekhov VO, Ivanov MA, Sumarukova IG, Karpenko IL, Kochetkov SN, Alexandrova LA. Novel 5-substituted derivatives of 2’-deoxy-6-azauridine with antibacterial activity. J Antibiot (Tokyo) 2019; 72:535-544. [DOI: 10.1038/s41429-019-0158-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/15/2019] [Accepted: 01/27/2019] [Indexed: 01/13/2023]
|