1
|
Csizi K, Reiher M. Universal
QM
/
MM
approaches for general nanoscale applications. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2023. [DOI: 10.1002/wcms.1656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | - Markus Reiher
- Laboratorium für Physikalische Chemie ETH Zürich Zürich Switzerland
| |
Collapse
|
2
|
Jónsson EÖ, Rasti S, Galynska M, Meyer J, Jónsson H. Transferable Potential Function for Flexible H 2O Molecules Based on the Single-Center Multipole Expansion. J Chem Theory Comput 2022; 18:7528-7543. [PMID: 36395502 DOI: 10.1021/acs.jctc.2c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A potential function is presented for describing a system of flexible H2O molecules based on the single-center multipole expansion (SCME) of the electrostatic interaction. The model, referred to as SCME/f, includes the variation of the molecular quadrupole moment as well as the dipole moment with changes in bond length and angle so as to reproduce results of high-level electronic structure calculations. The multipole expansion also includes fixed octupole and hexadecapole moments, as well as anisotropic dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole polarizability tensors. The model contains five adjustable parameters related to the repulsive interaction and damping functions in the electrostatic and dispersion interactions. Their values are adjusted to reproduce the lowest energy isomers of small clusters, (H2O)n with n = 2-6, as well as measured properties of the ice Ih crystal. Subsequent calculations of the energy difference between the various isomer configurations of the clusters show that SCME/f gives good agreement with results of electronic structure calculations and represents a significant improvement over the previously presented rigid SCME potential function. Analysis of the vibrational frequencies of the clusters and structural properties of ice Ih crystal show the importance of accurately describing the variation of the quadrupole moment with molecular structures.
Collapse
Affiliation(s)
- Elvar Örn Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107Reykjavík, Iceland
| | - Soroush Rasti
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RALeiden, The Netherlands
| | - Marta Galynska
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107Reykjavík, Iceland
| | - Jörg Meyer
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RALeiden, The Netherlands
| | - Hannes Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107Reykjavík, Iceland
| |
Collapse
|
3
|
Dong TG, Peng H, He XF, Wang X, Gao J. Hybrid Molecular Dynamics for Elucidating Cooperativity Between Halogen Bond and Water Molecules During the Interaction of p53-Y220C and the PhiKan5196 Complex. Front Chem 2020; 8:344. [PMID: 32457871 PMCID: PMC7221198 DOI: 10.3389/fchem.2020.00344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/02/2020] [Indexed: 12/15/2022] Open
Abstract
The cooperativity between hydrogen and halogen bonds plays an important role in rational drug design. However, mimicking the dynamic cooperation between these bonds is a challenging issue, which has impeded the development of the halogen bond force field. In this study, the Y220C–PhiKan5196 complex of p53 protein was adopted as a model, and the functions of three water molecules that formed hydrogen bonds with halogen atoms were analyzed by the simulation method governed by the hybrid quantum mechanical/molecular mechanical molecular dynamics. A comparison with the water-free model revealed that the strength of the halogen bond in the complex was consistently stronger. This confirmed that the water molecules formed weak hydrogen bonds with the halogen atom and cooperated with the halogen atom to enhance the halogen bond. Further, it was discovered that the roles of the three water molecules were not the same. Therefore, the results obtained herein can facilitate a rational drug design. Further, this work emphasizes on the fact that, in addition to protein pockets and ligands, the role of voids should also be considered with regard to the water molecules surrounding them.
Collapse
Affiliation(s)
- Tian-Ge Dong
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Hui Peng
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xue-Feng He
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xiaocong Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Visscher KM, Geerke DP. Deriving a Polarizable Force Field for Biomolecular Building Blocks with Minimal Empirical Calibration. J Phys Chem B 2020; 124:1628-1636. [PMID: 32073849 PMCID: PMC7061328 DOI: 10.1021/acs.jpcb.9b10903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/23/2020] [Indexed: 12/31/2022]
Abstract
Force field parametrization involves a complex set of linked optimization problems, with the goal of describing complex molecular interactions by using simple classical potential-energy functions that model Coulomb interactions, dispersion, and exchange repulsion. These functions comprise a set of atomic (and molecular) parameters and together with the bonded terms they constitute the molecular mechanics force field. Traditionally, many of these parameters have been fitted in a calibration approach in which experimental measures for thermodynamic and other relevant properties of small-molecule compounds are used for fitting and validation. As these approaches are laborious and time-consuming and represent an underdetermined optimization problem, we study methods to fit and derive an increasing number of parameters directly from electronic structure calculations, in order to greatly reduce possible parameter space for the remaining free parameters. In the current work we investigate a polarizable model with a higher order dispersion term for use in biomolecular simulation. Results for 49 biochemically relevant molecules are presented including updated parameters for hydrocarbon side chains. We show that our recently presented set of QM/MM derived atomic polarizabilities can be used in direct conjunction with partial charges and a higher order dispersion model that are quantum-mechanically determined, to freeze nearly all (i.e., 132 out of 138) nonbonded parameters to their quantum determined values.
Collapse
Affiliation(s)
- Koen M. Visscher
- AIMMS Division of Molecular
Toxicology, De Boelelaan
1108, 1081 HV Amsterdam, The Netherlands
| | - Daan P. Geerke
- AIMMS Division of Molecular
Toxicology, De Boelelaan
1108, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
5
|
Dohn AO, Jónsson EÖ, Jónsson H. Polarizable Embedding with a Transferable H 2O Potential Function II: Application to (H 2O) n Clusters and Liquid Water. J Chem Theory Comput 2019; 15:6578-6587. [PMID: 31692344 DOI: 10.1021/acs.jctc.9b00778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The incorporation of polarization in multiscale quantum-mechanics/molecular-mechanics (QM/MM) simulations is important for a variety of applications, for example, charge-transfer reactions. A recently developed formalism based on a density functional theory description of the QM region and a potential energy function for H2O molecules that includes quadrupole as well as dipole polarizability of the MM region is used to simulate liquid water and water clusters. Analysis of the energy, atomic forces, MM polarization, and structure is presented. A quantitative assessment of the QM/MM-MM/MM interaction energy differences of all possible QM/MM configurations of (H2O)n clusters shows that the interquartile range of the distributions of the QM/MM binding energies is never more than 20 meV/molecule higher or lower than the binding energies produced with either of the single-model results. Comparing these interaction energy differences with the QM/MM induction differences show that they are not systematically caused by the induced MM moments of our polarizable embedding scheme. Optimized hexamer geometries as well as the liquid water structure are shown to be improved in comparison with results obtained using point-charge based embedding models neglecting polarization.
Collapse
Affiliation(s)
- Asmus Ougaard Dohn
- Science Institute and Faculty of Physical Sciences , University of Iceland , Reykjavík 107 , Iceland
| | - Elvar Örn Jónsson
- Science Institute and Faculty of Physical Sciences , University of Iceland , Reykjavík 107 , Iceland
| | - Hannes Jónsson
- Science Institute and Faculty of Physical Sciences , University of Iceland , Reykjavík 107 , Iceland
| |
Collapse
|
6
|
Jónsson EÖ, Dohn AO, Jónsson H. Polarizable Embedding with a Transferable H 2O Potential Function I: Formulation and Tests on Dimer. J Chem Theory Comput 2019; 15:6562-6577. [PMID: 31689104 DOI: 10.1021/acs.jctc.9b00777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The incorporation of mutual polarization in multiscale simulations where different regions of the system are treated at different level of theory is important in studies of, for example, electronic excitations and charge transfer processes. We present here an energy functional for describing a quantum mechanics/molecular mechanics (QM/MM) scheme that includes reciprocal polarization between the two subsystems. The inclusion of polarization alleviates shortcomings inherent in electrostatic embedding QM/MM models based on point-charge force fields. A density functional theory (DFT) description of the QM subsystem is coupled to a single center multipole expansion (SCME) description of H2O molecules in the MM subsystem that includes anisotropic dipole and quadrupole polarizability as well as static multipoles up to and including the hexadecapole. The energy functional and the coupling scheme is general and can be extended to arbitrary order in terms of both the static and induced moments. Tests of the energy surface for the H2O dimer show that the QM/MM results lie in between the pure DFT and pure SCME values. The consistency of the many-body contributions to the energy and analytical forces is demonstrated for an H2O pentamer.
Collapse
Affiliation(s)
- Elvar Örn Jónsson
- Science Institute and Faculty of Physical Sciences, VR-III , University of Iceland , Reykjavík 107 , Iceland
| | - Asmus Ougaard Dohn
- Science Institute and Faculty of Physical Sciences, VR-III , University of Iceland , Reykjavík 107 , Iceland
| | - Hannes Jónsson
- Science Institute and Faculty of Physical Sciences, VR-III , University of Iceland , Reykjavík 107 , Iceland
| |
Collapse
|
7
|
Maurer M, Oostenbrink C. Water in protein hydration and ligand recognition. J Mol Recognit 2019; 32:e2810. [PMID: 31456282 PMCID: PMC6899928 DOI: 10.1002/jmr.2810] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/16/2022]
Abstract
This review describes selected basics of water in biomolecular recognition. We focus on a qualitative understanding of the most important physical aspects, how these change in magnitude between bulk water and protein environment, and how the roles that water plays for proteins arise from them. These roles include mechanical support, thermal coupling, dielectric screening, mass and charge transport, and the competition with a ligand for the occupation of a binding site. The presence or absence of water has ramifications that range from the thermodynamic binding signature of a single ligand up to cellular survival. The large inhomogeneity in water density, polarity and mobility around a solute is hard to assess in experiment. This is a source of many difficulties in the solvation of protein models and computational studies that attempt to elucidate or predict ligand recognition. The influence of water in a protein binding site on the experimental enthalpic and entropic signature of ligand binding is still a point of much debate. The strong water‐water interaction in enthalpic terms is counteracted by a water molecule's high mobility in entropic terms. The complete arrest of a water molecule's mobility sets a limit on the entropic contribution of a water displacement process, while the solvent environment sets limits on ligand reactivity.
Collapse
Affiliation(s)
- Manuela Maurer
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
8
|
Qiu Y, Nerenberg PS, Head-Gordon T, Wang LP. Systematic Optimization of Water Models Using Liquid/Vapor Surface Tension Data. J Phys Chem B 2019; 123:7061-7073. [DOI: 10.1021/acs.jpcb.9b05455] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yudong Qiu
- Chemistry Department, University of California, Davis, Davis, California 95616, United States
| | - Paul S. Nerenberg
- Departments of Physics & Astronomy and Biological Sciences, California State University, Los Angeles, California 90032, United States
| | - Teresa Head-Gordon
- Pitzer Theory Center and Departments of Chemistry, Bioengineering and Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Lee-Ping Wang
- Chemistry Department, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|