1
|
Xu Y, Jia B, Li J, Li Q, Luo C. The Interplay between Ferroptosis and Neuroinflammation in Central Neurological Disorders. Antioxidants (Basel) 2024; 13:395. [PMID: 38671843 PMCID: PMC11047682 DOI: 10.3390/antiox13040395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Central neurological disorders are significant contributors to morbidity, mortality, and long-term disability globally in modern society. These encompass neurodegenerative diseases, ischemic brain diseases, traumatic brain injury, epilepsy, depression, and more. The involved pathogenesis is notably intricate and diverse. Ferroptosis and neuroinflammation play pivotal roles in elucidating the causes of cognitive impairment stemming from these diseases. Given the concurrent occurrence of ferroptosis and neuroinflammation due to metabolic shifts such as iron and ROS, as well as their critical roles in central nervous disorders, the investigation into the co-regulatory mechanism of ferroptosis and neuroinflammation has emerged as a prominent area of research. This paper delves into the mechanisms of ferroptosis and neuroinflammation in central nervous disorders, along with their interrelationship. It specifically emphasizes the core molecules within the shared pathways governing ferroptosis and neuroinflammation, including SIRT1, Nrf2, NF-κB, Cox-2, iNOS/NO·, and how different immune cells and structures contribute to cognitive dysfunction through these mechanisms. Researchers' findings suggest that ferroptosis and neuroinflammation mutually promote each other and may represent key factors in the progression of central neurological disorders. A deeper comprehension of the common pathway between cellular ferroptosis and neuroinflammation holds promise for improving symptoms and prognosis related to central neurological disorders.
Collapse
Affiliation(s)
- Yejia Xu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Bowen Jia
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Jing Li
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Qianqian Li
- NHC Key Laboratory of Drug Addiction Medicine, Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
- School of Forensic Medicine, Wannan Medical College, Wuhu 241002, China
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- NHC Key Laboratory of Drug Addiction Medicine, Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
2
|
Zhou P, Yu ZC, Cao C, Cui HR, Ding MC, Yang CX, Liao M. Pyruvate maintains and enhances the pro-inflammatory response of microglia caused by glucose deficiency in early stroke. J Cell Biochem 2024; 125:e30524. [PMID: 38226453 DOI: 10.1002/jcb.30524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Pro-inflammatory microglia mainly rely on glycolysis to maintain cytokine production during ischemia, accompanied by an increase in inducible nitric oxide synthase (iNOS) and monocarboxylate transporter 1 (MCT1). The role of energy metabolism in the pro-inflammatory response of microglia is currently unclear. In this study, we tested the response of microglia in mice after cerebral ischemia and simulated an energy environment in vitro using low glucose culture medium. The research results indicate that the expression levels of iNOS and arginase 1 (ARG1) increase in the ischemic mouse brain, but the upregulation of MCT1 expression is mainly present in iNOS positive microglia. In microglia exposed to low glucose conditions, iNOS and MCT1 levels increased, while ARG1 levels decreased. Under the same conditions, knocking down MCT1 in microglia leads to a decrease in iNOS levels, while overexpression of MCT1 leads to the opposite result. The use of NF-κB inhibitors reduced the expression levels of iNOS and MCT1 in microglia. In summary, our data indicate that pyruvate maintains and enhances the NF-κB regulated pro-inflammatory response of microglia induced by low glucose.
Collapse
Affiliation(s)
- Peng Zhou
- Institute of Neuroscience, Basic Medical College of Wenzhou Medical University, Wenzhou, China
- Department of Anatomy, Basic Medical College of Wenzhou Medical University, Wenzhou, China
| | - Zhe-Cheng Yu
- Institute of Neuroscience, Basic Medical College of Wenzhou Medical University, Wenzhou, China
| | - Cong Cao
- Institute of Neuroscience, Basic Medical College of Wenzhou Medical University, Wenzhou, China
| | - Huai-Rui Cui
- Department of Anatomy, Basic Medical College of Wenzhou Medical University, Wenzhou, China
| | - Mao-Chao Ding
- Department of Anatomy, Basic Medical College of Wenzhou Medical University, Wenzhou, China
| | - Chao-Xian Yang
- Department of Anatomy, Southwest Medical University, Luzhou, China
| | - Min Liao
- Institute of Neuroscience, Basic Medical College of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Scordino M, Urone G, Frinchi M, Valenza C, Bonura A, Cipollina C, Ciriminna R, Meneguzzo F, Pagliaro M, Mudò G, Di Liberto V. Anti-Apoptotic and Anti-Inflammatory Properties of Grapefruit IntegroPectin on Human Microglial HMC3 Cell Line. Cells 2024; 13:355. [PMID: 38391968 PMCID: PMC10886616 DOI: 10.3390/cells13040355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
In this study, we investigated the beneficial effects of grapefruit IntegroPectin, derived from industrial waste grapefruit peels via hydrodynamic cavitation, on microglia cells exposed to oxidative stress conditions. Grapefruit IntegroPectin fully counteracted cell death and the apoptotic process induced by cell exposure to tert-butyl hydroperoxide (TBH), a powerful hydroperoxide. The protective effects of the grapefruit IntegroPectin were accompanied with a decrease in the amount of ROS, and were strictly dependent on the activation of the phosphoinositide 3-kinase (PI3K)/Akt cascade. Finally, IntegroPectin treatment inhibited the neuroinflammatory response and the basal microglia activation by down-regulating the PI3K- nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB)- inducible nitric oxide synthase (iNOS) cascade. These data strongly support further investigations aimed at exploring IntegroPectin's therapeutic role in in vivo models of neurodegenerative disorders, characterized by a combination of chronic neurodegeneration, oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Miriana Scordino
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (M.S.); (G.U.); (M.F.); (C.V.); (G.M.)
| | - Giulia Urone
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (M.S.); (G.U.); (M.F.); (C.V.); (G.M.)
| | - Monica Frinchi
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (M.S.); (G.U.); (M.F.); (C.V.); (G.M.)
| | - Chiara Valenza
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (M.S.); (G.U.); (M.F.); (C.V.); (G.M.)
- Istituto di Farmacologia Traslazionale, CNR, Via U. La Malfa 153, 90146 Palermo, Italy;
| | - Angela Bonura
- Istituto di Farmacologia Traslazionale, CNR, Via U. La Malfa 153, 90146 Palermo, Italy;
| | | | - Rosaria Ciriminna
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Via U. La Malfa 153, 90146 Palermo, Italy; (R.C.); (M.P.)
| | - Francesco Meneguzzo
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, Sesto Fiorentino, 50019 Florence, Italy;
| | - Mario Pagliaro
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Via U. La Malfa 153, 90146 Palermo, Italy; (R.C.); (M.P.)
| | - Giuseppa Mudò
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (M.S.); (G.U.); (M.F.); (C.V.); (G.M.)
| | - Valentina Di Liberto
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (M.S.); (G.U.); (M.F.); (C.V.); (G.M.)
| |
Collapse
|
4
|
Xia J, Dong S, Yang L, Wang F, Xing S, Du J, Li Z. Design, synthesis, and biological evaluation of novel tryptanthrin derivatives as selective acetylcholinesterase inhibitors for the treatment of Alzheimer's disease. Bioorg Chem 2024; 143:106980. [PMID: 38006789 DOI: 10.1016/j.bioorg.2023.106980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
Two novel series of tryptanthrin (TRYP) derivatives were designed and synthesized as multifunctional agents for the treatment of Alzheimer's disease (AD). Inhibition assay against cholinesterase (ChE) indicated that these derivatives can act as acetylcholinesterase (AChE) inhibitors with selectivity over butyrylcholinesterase (BuChE). Among them, n1 exhibited the most excellent ChE inhibitory potency (AChE, IC50 = 12.17 ± 1.50 nM; BuChE, IC50 = 6.29 ± 0.48 μΜ; selectivity index = 517). Molecular docking studies indicated that compound n1 can interact with amino acid residues in the catalytic active site and peripheral anionic site of AChE and the molecular dynamics (MD) simulation studies demonstrated that the AChE-n1 complex had good stability. N1 also exhibited anti-amyloid-β (Aβ) aggregation (63.48 % ± 1.02 %, 100 μΜ) and anti-neuroinflammation activity (NO, IL-1β, TNF-α; IC50 = 2.13 ± 0.54 μΜ, 2.21 ± 0.37 μΜ, 2.47 ± 0.07 μΜ, respectively), and n1 had neuroprotective and metal-chelating properties. Further studies indicated n1 had proper blood-brain barrier permeability in the Parallel artificial membrane permeation assay. In vivo studies found that n1 effectively improved learning and memory impairment in scopolamine-induced AD mouse models. Nissl staining ofmice hippocampaltissue sections revealed that n1 restored neuronal cells in the hippocampus CA3 and CA1 regions. These findings suggested that n1 can be a promising compound for further development of multifunctional agents for AD treatment.
Collapse
Affiliation(s)
- Jucheng Xia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, PR China
| | - Shuanghong Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, PR China
| | - Lili Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, PR China
| | - Fang Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, PR China
| | - Siqi Xing
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, PR China
| | - Jiyu Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, PR China
| | - Zeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, PR China.
| |
Collapse
|
5
|
Elsayed R, Fayez S, Rashed LA, Farghali M, AbdelHamid M, Alkaffas M. Relation between microRNA-155 and inflammatory mediators in multiple sclerosis. J Biochem Mol Toxicol 2024; 38:e23555. [PMID: 37843075 DOI: 10.1002/jbt.23555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Multiple sclerosis (MS) is a complex autoimmune condition affecting the central nervous system characterized by axonal damage, demyelination, and chronic inflammation. Multiple molecular and cellular components mediate neuroinflammation in MS. In human macrophages and microglia, miRNA-155 is an essential proinflammatory noncoding RNA that regulates phenotypic and functional polarization properties. This study was conducted to detect the plasma level of miRNA-155 in RRMS and assess its relationship with inflammatory and anti-inflammatory mediators. The study included 60 MS patients and 30 healthy controls. Real-time quantitative polymerase chain reaction was utilized to detect miRNA-155, iNOS, and SMAD2, whereas ELISA was used to determine TNF-α, IFN-ɣ, TGF-β, and IL-10 levels. There was no significant difference in miRNA-155, SMAD2, and iNOS expression in MS patients compared to control subjects. In addition, there was a statistically significant increase in TNF-α, INF-ɣ, and TGF-β levels. IL-10 levels did not differ significantly between MS patients and healthy controls. There was a positive correlation between miRNA-155 and TNF-α (p < 0.000, r = 0.922), INF-ɣ (p < 0.000, r = 0.81), and iNOS (p < 0.000, r = 0.916) and inverse correlation between miRNA-155 and IL-10 (p < 0.000, r = -0.928), TGF-β (p < 0.000, r = -0.904) and SMAD2 (p < 0.000, r = -0.848). We conclude that expression of miRNA-155 in MS may modulate macrophage/microglia polarization by increasing the secretion of TNF-α, IFN-ɣ & iNOS and decreasing anti-inflammatory mediators IL10 and TGF-β.
Collapse
Affiliation(s)
- Rania Elsayed
- Department of Medical Biochemistry, Unit of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Salwa Fayez
- Department of Medical Biochemistry, Unit of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila Ahmed Rashed
- Department of Medical Biochemistry, Unit of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Marwa Farghali
- Department of Neurology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Marwa AbdelHamid
- Department of Medical Biochemistry, Unit of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Marwa Alkaffas
- Department of Medical Biochemistry, Unit of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Zheng Y, Zhang X, Zhang R, Wang Z, Gan J, Gao Q, Yang L, Xu P, Jiang X. Inflammatory signaling pathways in the treatment of Alzheimer's disease with inhibitors, natural products and metabolites (Review). Int J Mol Med 2023; 52:111. [PMID: 37800614 PMCID: PMC10558228 DOI: 10.3892/ijmm.2023.5314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
The intricate nature of Alzheimer's disease (AD) pathogenesis poses a persistent obstacle to drug development. In recent times, neuroinflammation has emerged as a crucial pathogenic mechanism of AD, and the targeting of inflammation has become a viable approach for the prevention and management of AD. The present study conducted a comprehensive review of the literature between October 2012 and October 2022, identifying a total of 96 references, encompassing 91 distinct pharmaceuticals that have been investigated for their potential impact on AD by inhibiting neuroinflammation. Research has shown that pharmaceuticals have the potential to ameliorate AD by reducing neuroinflammation mainly through regulating inflammatory signaling pathways such as NF‑κB, MAPK, NLRP3, PPARs, STAT3, CREB, PI3K/Akt, Nrf2 and their respective signaling pathways. Among them, tanshinone IIA has been extensively studied for its anti‑inflammatory effects, which have shown significant pharmacological properties and can be applied clinically. Thus, it may hold promise as an effective drug for the treatment of AD. The present review elucidated the inflammatory signaling pathways of pharmaceuticals that have been investigated for their therapeutic efficacy in AD and elucidates their underlying mechanisms. This underscores the auspicious potential of pharmaceuticals in ameliorating AD by impeding neuroinflammation.
Collapse
Affiliation(s)
| | | | - Ruifeng Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Qing Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Lin Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Pengjuan Xu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
7
|
Sancheti SP, Mondal DJ, Patil NT. Fluorination of α-Imino Gold Carbenes to Access C 3-Fluorinated Aza-Heterocycles. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Shashank P. Sancheti
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Dibya Jyoti Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Nitin T. Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| |
Collapse
|
8
|
Bailly C. Ruta angustifolia Pers. (Narrow-Leaved Fringed Rue): Pharmacological Properties and Phytochemical Profile. PLANTS (BASEL, SWITZERLAND) 2023; 12:827. [PMID: 36840175 PMCID: PMC9959652 DOI: 10.3390/plants12040827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 06/12/2023]
Abstract
The genus Ruta in the family Rutaceae includes about 40 species, such as the well-known plants R. graveolens L. (common rue) or R. chalepensis L. (fringed rue), but also much lesser-known species such as R. angustifolia Pers. (narrow-leaved fringed rue). This rue specie, originating from the Mediterranean region, is well-distributed in Southeast Asia, notably in the Indo-Chinese peninsula and other territories. In some countries, such as Malaysia, the plant is used to treat liver diseases and cancer. Extracts of R. angustifolia display antifungal, antiviral and antiparasitic effects. Diverse bioactive natural products have been isolated from the aerial parts of the plant, notably quinoline alkaloids and furocoumarins, which present noticeable anti-inflammatory, antioxidant and/or antiproliferative properties. The present review discusses the main pharmacological properties of the plant and its phytoconstituents, with a focus on the anticancer activities evidenced with diverse alkaloids and terpenoids isolated from the aerial parts of the plant. Quinoline alkaloids such as graveoline, kokusaginine, and arborinine have been characterized and their mode of action defined. Arborinine stands as a remarkable inhibitor of histone demethylase LSD1, endowed with promising anticancer activities. Other anticancer compounds, such as the furocoumarins chalepin and rutamarin, have revealed antitumor effects. Their mechanism of action is discussed together with that of other bioactive natural products, including angustifolin and moskachans. Altogether, R. angustifolia Pers. presents a rich phytochemical profile, fully consistent with the traditional use of the plant to treat cancer. This rue species, somewhat neglected, warrant further investigations as a medicinal plant and a source of inspiration for drug discovery and design.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Wasquehal, F-59290 Lille, France
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, 3 rue du Professeur Laguesse, BP-83, F-59006 Lille, France
- CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, F-59000 Lille, France
| |
Collapse
|
9
|
Du P, Du C, Wang R, Zhu H, Hua H, Cheng Y, Guo Y, Qian H. Caffeine combined with taurine improves cognitive function and locomotor performance in sleep-deprived mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
10
|
Tran VTA, Lee LP, Cho H. Neuroinflammation in neurodegeneration via microbial infections. Front Immunol 2022; 13:907804. [PMID: 36052093 PMCID: PMC9425114 DOI: 10.3389/fimmu.2022.907804] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Recent epidemiological studies show a noticeable correlation between chronic microbial infections and neurological disorders. However, the underlying mechanisms are still not clear due to the biological complexity of multicellular and multiorgan interactions upon microbial infections. In this review, we show the infection leading to neurodegeneration mediated by multiorgan interconnections and neuroinflammation. Firstly, we highlight three inter-organ communications as possible routes from infection sites to the brain: nose-brain axis, lung-brain axis, and gut-brain axis. Next, we described the biological crosstalk between microglia and astrocytes upon pathogenic infection. Finally, our study indicates how neuroinflammation is a critical player in pathogen-mediated neurodegeneration. Taken together, we envision that antibiotics targeting neuro-pathogens could be a potential therapeutic strategy for neurodegeneration.
Collapse
Affiliation(s)
- Van Thi Ai Tran
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, South Korea
| | - Luke P. Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Harvard Institute of Medicine, Harvard University, Boston, MA, United States
- *Correspondence: Hansang Cho, ; Luke P. Lee,
| | - Hansang Cho
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
- *Correspondence: Hansang Cho, ; Luke P. Lee,
| |
Collapse
|
11
|
Li Y, Piao X, Xu T, Zhang B, Shen X, Cheng XW, Zheng S. Granulocyte colony-stimulating factor protected against brain injury in a rat cerebral hemorrhage model by modulating inflammation. Exp Anim 2022; 71:193-203. [PMID: 34853239 PMCID: PMC9130042 DOI: 10.1538/expanim.21-0137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/01/2021] [Indexed: 11/04/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) has been reported to exert a protective effect against secondary brain damage, but the underlying mechanisms remain unknown. We explored the ability of G-CSF to protect the brain from injury in a rat autologous blood-induced model of intracerebral hemorrhage (ICH), with a special focus on the anti-inflammation effect. An ICH was induced in 8-week-old male rats by an infusion of autologous blood, and the rats were then randomly assigned to five treatment groups: sham, ICH, and ICH+ low-dose (25 µg/kg), middle-dose (50 µg/kg), and high-dose (75 µg/kg) G-CSF. We then evaluated the levels of brain inflammation-related genes and proteins. The levels of tumor-necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) mRNA increased between days 1 and 14 post-ICH, with the highest expression on day 3. These changes were rectified by G-CSF in a dose-dependent manner. At day 3 post-injury, an elevation of the nuclear factor-kappa B (NF-κB) p65 protein level and a reduction of the inhibitor of NF-κB alpha (IκBα) protein level were observed; G-CSF treatment exerted a beneficial effect on both protein expressions. The expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins were increased; these changes were rectified by the highest dose of G-CSF. The brain-protecting effects of G-CSF are likely to be attributable, at least in part, to attenuation of the TNF-α, IL-6, iNOS, and COX-2 expressions induced by NF-κB activation in the brain tissues of this autologous blood-induced ICH rat model.
Collapse
Affiliation(s)
- Yanglong Li
- Department of Neurology, Yanbian University Hospital, Yanjin 133000, Jilin, P.R. China
- Department of Oncology, Yanbian University Hospital, Yanjin 133000, Jilin, P.R. China
| | - Xianji Piao
- Department of ICU, Yanbian University Hospital, Yanjin 133000, Jilin, P.R. China
| | - Tiance Xu
- Department of Neurology, Yanbian University Hospital, Yanjin 133000, Jilin, P.R. China
| | - Binbin Zhang
- Department of Neurology, Yanbian University Hospital, Yanjin 133000, Jilin, P.R. China
| | - Xionghu Shen
- Department of Oncology, Yanbian University Hospital, Yanjin 133000, Jilin, P.R. China
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanjin 133000, Jilin, P.R. China
| | - Shengzhe Zheng
- Department of Neurology, Yanbian University Hospital, Yanjin 133000, Jilin, P.R. China
| |
Collapse
|
12
|
Lima E, Medeiros J. Marine Organisms as Alkaloid Biosynthesizers of Potential Anti-Alzheimer Agents. Mar Drugs 2022; 20:75. [PMID: 35049930 PMCID: PMC8780771 DOI: 10.3390/md20010075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
The incidence of neurodegenerative diseases, such as Alzheimer's disease (AD), increases continuously demanding the urgent development of anti-Alzheimer's agents. Marine organisms (MO) have to create their own defenses due to the adverse environment where they live and so synthesize several classes of compounds, such as akaloids, to defend themselves. Therefore, the identification of marine natural products with neuroprotective effects is a necessity. Being that AD is not only a genetic but also an environmental complex disease, a treatment for AD remains to discover. As the major clinical indications (CI) of AD are extracellular plaques formed by β-amyloid (Aβ) protein, intracellular neurofibrillary tangles (NFTs) formed by hyper phosphorylated τ-protein, uncommon inflammatory response and neuron apoptosis and death caused by oxidative stress, alkaloids that may decrease CI, might be used against AD. Most of the alkalolids with those properties are derivatives of the amino acid tryptophan mainly with a planar indole scaffold. Certainly, alkaloids targeting more than one CI, multitarget-directed ligands (MTDL), have the potential to become a lead in AD treatment. Alkaloids to have a maximum of activity against CI, should be planar and contain halogens and amine quaternization.
Collapse
Affiliation(s)
- Elisabete Lima
- Faculty of Science and Technology (FCT), Institute of Agricultural and Environmental Research and Technology (IITAA), University of Azores, 9500-321 Ponta Delgada, São Miguel, Açores, Portugal;
| | - Jorge Medeiros
- Faculty of Science and Technology (FCT), Biotechnology Centre of Azores (CBA), University of Azores, 9500-321 Ponta Delgada, São Miguel, Açores, Portugal
| |
Collapse
|
13
|
Park J, Lim EY, Kim YT. The inhibitory effects of Aster yomena extract on microglial activation-mediated inflammatory response and pain by modulation of the NF-κB and MAPK signaling pathways. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
Bacterial Alkyl-4-quinolones: Discovery, Structural Diversity and Biological Properties. Molecules 2020; 25:molecules25235689. [PMID: 33276615 PMCID: PMC7731028 DOI: 10.3390/molecules25235689] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022] Open
Abstract
The alkyl-4-quinolones (AQs) are a class of metabolites produced primarily by members of the Pseudomonas and Burkholderia genera, consisting of a 4-quinolone core substituted by a range of pendant groups, most commonly at the C-2 position. The history of this class of compounds dates back to the 1940s, when a range of alkylquinolones with notable antibiotic properties were first isolated from Pseudomonas aeruginosa. More recently, it was discovered that an alkylquinolone derivative, the Pseudomonas Quinolone Signal (PQS) plays a key role in bacterial communication and quorum sensing in Pseudomonas aeruginosa. Many of the best-studied examples contain simple hydrocarbon side-chains, but more recent studies have revealed a wide range of structurally diverse examples from multiple bacterial genera, including those with aromatic, isoprenoid, or sulfur-containing side-chains. In addition to their well-known antimicrobial properties, alkylquinolones have been reported with antimalarial, antifungal, antialgal, and antioxidant properties. Here we review the structural diversity and biological activity of these intriguing metabolites.
Collapse
|
15
|
Zhai X, Liu J, Ni A, Ye J. MiR-497 promotes microglia activation and proinflammatory cytokines production in chronic unpredictable stress-induced depression via targeting FGF2. J Chem Neuroanat 2020; 110:101872. [PMID: 33068702 DOI: 10.1016/j.jchemneu.2020.101872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 10/10/2020] [Indexed: 12/15/2022]
Abstract
Depression is one of important prevalent psychiatric disorders worldwide. MiR-497 is considered as a diagnostic biomarker and a promising therapeutic target in cancers. However, the role of miR-497 in depression remains unknown. In this study, we demonstrated that CUS induced depression-like behaviors and overexpression of miR-497 in rats. Interestingly, knockdown miR-497 ameliorated CUS-induced depressive-like behavior in rats. Moreover, knockdown of miR-497 inhibited the activation of microglia and the production of proinflammatory cytokines including IL-6, IL-1β, MCP-1 and TNF-α in CUS-induced rats. Luciferase activity assay proved that Fibroblast Growth Factor-2 (FGF2) was a direct target of miR-497 and modulated by miR-497 in microglia. In rescue experiments, overexpression of FGF2 inhibited miR-497-induced proinflammatory cytokines and iNOS expression. These results showed that miR-497 aggravated hippocampal microglial activation in CUS-induced depression in rat via targeting FGF2, providing a novel potential target for treatment of depression.
Collapse
Affiliation(s)
- Xiaoyan Zhai
- Department of Clinical Psychology, Hebei General Hospital, Shijiazhuang City, Hebei Province, 050051, China
| | - Jing Liu
- Department of Clinical Psychology, Hebei General Hospital, Shijiazhuang City, Hebei Province, 050051, China
| | - Aihua Ni
- Department of Clinical Psychology, Hebei General Hospital, Shijiazhuang City, Hebei Province, 050051, China
| | - Jun Ye
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| |
Collapse
|
16
|
Liu W, Song Z, Wang H, Yang X, Joubert E, Zhang J, Li S, Tuerhong M, Abudukeremu M, Jin J, Xu J, Lee D, Guo Y. Diterpenoids as potential anti-inflammatory agents from Ajuga pantantha. Bioorg Chem 2020; 101:103966. [DOI: 10.1016/j.bioorg.2020.103966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/04/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022]
|
17
|
Yang Y, Li S, Huang H, Lv J, Chen S, Pires Dias AC, Li Y, Liu X, Wang Q. Comparison of the Protective Effects of Ginsenosides Rb1 and Rg1 on Improving Cognitive Deficits in SAMP8 Mice Based on Anti-Neuroinflammation Mechanism. Front Pharmacol 2020; 11:834. [PMID: 32587516 PMCID: PMC7298198 DOI: 10.3389/fphar.2020.00834] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/20/2020] [Indexed: 12/31/2022] Open
Abstract
This present study was designed to investigate the different effects of ginsenosides Rb1 and Rg1 on improving cognitive deficits in 4-month-old SAMP8 mice. Mice were divided into six groups, including the SAMP8 group, the SAMP8 + Donepezil (1.6 mg/kg) group, the SAMP8 + Rb1 (30 and 60 µmol/kg), and SAMP8 + Rg1 (30 and 60 µmol/kg) groups. SAMR1 mice of the same age were used as the control group. Ginsenosides and donepezil were administrated orally to animals for 8 weeks, then the learning and memory ability of mice were measured by using Morris water maze (MWM) test, object recognition test and passive avoidance experiments. The possible mechanisms were studied including the anti-glial inflammation of Rb1 and Rg1 using HE staining, immunohistochemistry and western blot experiments. Results revealed that Rb1 and Rg1 treatment significantly improved the discrimination index of SAMP8 mice in the object recognition test. Rb1 (60 µmol/kg) and Rg1 (30, 60 µmol/kg) could significantly shorten the escape latency in the acquisition test of the MWM test in SAMP8 mice. Furthermore, Rb1 and Rg1 treatments effectively reduced the number of errors in the passive avoidance task in SAMP8 mice. Western blot experiments revealed that Rb1 showed higher effect than Rg1 in decreasing protein expression levels of ASC, caspase-1 and Aβ in the hippocampus of SAMP8 mice, while Rg1 was more effective than Rb1 in decreasing the protein levels of iNOS. In addition, although Rb1 and Rg1 treatments showed significant protective effects in repairing neuronal cells loss and inhibiting the activation of astrocyte and microglia in hippocampus of SAMP8 mice, Rb1 was more effective than Rg1. These results suggest that Rb1 and Rg1 could improve the cognitive impairment in SAMP8 mice, and they have different mechanisms for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yujie Yang
- Affiliated TCM Hospital, School of Pharmacy, Sino-Portugal TCM International Cooperation Center, Southwest Medical University, Luzhou, China
| | - Shanshan Li
- Affiliated TCM Hospital, School of Pharmacy, Sino-Portugal TCM International Cooperation Center, Southwest Medical University, Luzhou, China
| | - Hong Huang
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingwei Lv
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanguang Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Alberto Carlos Pires Dias
- Centre of Molecular and Environmental Biology (CBMA), SINO-PT Research Center, Department of Biology, University of Minho, Braga, Portugal
| | - Yujiao Li
- Affiliated TCM Hospital, School of Pharmacy, Sino-Portugal TCM International Cooperation Center, Southwest Medical University, Luzhou, China
| | - Xinmin Liu
- Affiliated TCM Hospital, School of Pharmacy, Sino-Portugal TCM International Cooperation Center, Southwest Medical University, Luzhou, China.,Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiong Wang
- Affiliated TCM Hospital, School of Pharmacy, Sino-Portugal TCM International Cooperation Center, Southwest Medical University, Luzhou, China.,Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
18
|
Singh S, Nerella S, Pabbaraja S, Mehta G. Access to 2-Alkyl/Aryl-4-(1 H)-Quinolones via Orthogonal "NH 3" Insertion into o-Haloaryl Ynones: Total Synthesis of Bioactive Pseudanes, Graveoline, Graveolinine, and Waltherione F. Org Lett 2020; 22:1575-1579. [PMID: 32013447 DOI: 10.1021/acs.orglett.0c00172] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An efficient one-pot synthesis of 4-(1H)-quinolones through an orthogonal engagement of diverse o-haloaryl ynones with ammonia in the presence of Cu(I), involving tandem Michael addition and ArCsp2-N coupling, is presented. The substrate scope of this convenient protocol, wherein ammonium carbonate acts as both an in situ ammonia source and a base toward diverse 2-substituted 4-(1H)-quinolones, has been mapped and its efficacy validated through concise total synthesis of bioactive natural products pseudanes (IV, VII, VIII, and XII), graveoline, graveolinine, and waltherione F.
Collapse
Affiliation(s)
- Shweta Singh
- Department of Organic Synthesis and Process Chemistry , CSIR-Indian Institute of Chemical Technology , Hyderabad 500007 , India.,School of Chemistry , University of Hyderabad , Hyderabad 500046 , India
| | - Sharanya Nerella
- Department of Organic Synthesis and Process Chemistry , CSIR-Indian Institute of Chemical Technology , Hyderabad 500007 , India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry , CSIR-Indian Institute of Chemical Technology , Hyderabad 500007 , India
| | - Goverdhan Mehta
- School of Chemistry , University of Hyderabad , Hyderabad 500046 , India
| |
Collapse
|
19
|
NO inhibitory diterpenoids as potential anti-inflammatory agents from Euphorbia antiquorum. Bioorg Chem 2019; 92:103237. [PMID: 31536954 DOI: 10.1016/j.bioorg.2019.103237] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 12/17/2022]
Abstract
Two new ent-atisane-type diterpenoids (1 and 2), three new lathyrane-type diterpenoids (3-5), and seven known analogues (6-12) were isolated from Euphorbia antiquorum. The structures of these diterpenoids were established by analysis of their NMR, MS, and electronic circular dichroism data. The anti-inflammatory activities were evaluated biologically and compounds 1, 4, 7, 8, and 10 displayed strong NO inhibitory effects with IC50 values less than 40 μM. The potential anti-inflammatory mechanism was also investigated using molecular docking and Western blotting.
Collapse
|