1
|
Li L, Guan Y, Du Y, Chen Z, Xie H, Lu K, Kang J, Jin P. Exploiting omic-based approaches to decipher Traditional Chinese Medicine. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118936. [PMID: 39413937 DOI: 10.1016/j.jep.2024.118936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicine (TCM), an ancient health system, faces significant research challenges due to the complexity of its active components and targets, as well as a historical lack of detailed annotation. However, recent advances in omics technologies have begun to unravel these complexities, providing a more informed and nuanced understanding of TCM's therapeutic potential in contemporary healthcare. AIM OF THE REVIEW This review summarizes the application of omics technologies in TCM modernization, emphasizing components analysis, quality control, biomarker discovery, target identification, and treatment optimization. In addition, future perspectives on using omics for precision TCM treatment are also discussed. MATERIALS AND METHODS We have explored several databases (including PubMed, ClinicalTrials, Google Scholar, and Web of Science) to review related articles, focusing on Traditional Chinese Medicine, Omics Strategy, Precision Medicine, Biomarkers, Quality Control, and Molecular Mechanisms. Paper selection criteria involved English grammar, publication date, high citations, and broad applicability, exclusion criteria included low credibility, non-English publications, and those full-text inaccessible ones. RESULTS TCM and the popularity of Chinese herbal medicines (CHMs) are gaining increasing attention worldwide. This is driven, in part, by a large number of technologies, especially omics strategy, which are aiding the modernization of TCM. They contribute to the quality control of CHMs, the identification of cellular targets, discovery of new drugs and, most importantly, the understanding of their mechanisms of action. CONCLUSION To fully integrate TCM into modern medicine, further development of robust omics strategies is essential. This vision includes personalized medicine, backed by advanced computational power and secure data infrastructure, to facilitate global acceptance and seamless integration of TCM practices.
Collapse
Affiliation(s)
- Lei Li
- Department of anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Yueyue Guan
- Department of Encephalopathy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Yongjun Du
- Department of anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Zhen Chen
- School of Clinical Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Haoyang Xie
- School of Clinical Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Kejin Lu
- Yunnan Yunke Cheracteristic Plant Extraction Laboratory, Kunming, Yunnan, 650106, China.
| | - Jian Kang
- Department of anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Ping Jin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China.
| |
Collapse
|
2
|
Wang L, Liu K, Wu T, Chen X, Chen Y, Yue C, Wang Z, Wu H, Tang L. Effective strategy for distinguishing raw and vinegar Schisandrae Chinensis Fructus based on electronic eye and electronic tongue combined with chemometrics. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:156-165. [PMID: 39103224 DOI: 10.1002/pca.3427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024]
Abstract
INTRODUCTION Schisandrae Chinensis Fructus (SCF), a traditional Chinese medicine, has been used in treating virtual injury and strain since ancient times. The Chinese Pharmacopoeia reveals that SCF includes raw (RSCF) and vinegar-processed (VSCF) decoction pieces. OBJECTIVE This study developed an effective method combining the electronic eye (e-eye), electronic tongue (e-tongue), and chemometrics to discriminate RSCF and VSCF from the perspective of chemical composition, color, and taste. MATERIAL AND METHODS First, RSCF were collected and processed into VSCF, and their color parameters, e-tongue sensory properties, high-performance liquid chromatography (HPLC) and ultra-HPLC (UPLC) characteristic fingerprints, and nominal ingredients were determined. Multivariate statistical analyses, including principal component, linear discriminant, similarity, and partial least squares discriminant analyses, were conducted. RESULTS HPLC and UPLC fingerprints were established, demonstrating a > 0.900 similarity. The content determination indicated increased schisantherin A, schisantherin B, and schisandrin A contents in VSCF. The e-eye data demonstrated a > 1.5 total color difference before and after processing ΔE*ab, indicating the significantly changed sample color and appearance before and after processing. The e-tongue technology was used to quantitatively characterize the taste of RSCF and VSCF. The t-test revealed significantly reduced sourness, aftertaste-bitter, and aftertaste-astringent values of SCF after vinegar processing. Principal component and partial least squares discriminant analyses indicated that e-eye and e-tongue realize the rapid RSCF and VSCF identification. CONCLUSION The proposed comprehensive strategy of electronic eye and electronic tongue combined with chemometrics demonstrated satisfactory results with high efficiency, accuracy, and reliability. This can be developed into a novel and accurate method for discriminating RSCF and VSCF.
Collapse
Affiliation(s)
- Lixia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Kaiyang Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Tong Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Xiaoxu Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Yingying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Chunyu Yue
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Zhuju Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Liying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| |
Collapse
|
3
|
Chen S, Song S, Tan Y, He S, Ren X, Li Z, Liu Y. Optimization of ultrasonic-assisted debittering of Ganoderma lucidum using response surface methodology, characterization, and evaluation of antioxidant activity. PeerJ 2024; 12:e17943. [PMID: 39421421 PMCID: PMC11485051 DOI: 10.7717/peerj.17943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 10/19/2024] Open
Abstract
Background Ganoderma lucidum (G. lucidum) has gained increasing attention as a potential health care product and food source. However, the bitter taste of G. lucidum has limited its development and utilization for the food industry. Methonds The response surface methodology was employed to optimize the inclusion conditions for the debittering of G. lucidum. The effects of 2-hydroxypropyl-β-cyclodextrin concentration (12-14 g/mL), ultrasound temperature (20-40 °C and host-guest ratio (1:1-2:1) on response variables were studied. The physical characteristics of inclusion complexes prepared through spray drying and freeze drying were analyzed. The antioxidant activity of the different treated samples was subsequently investigated. Results Study results showed that, in comparison to the control group, the inclusion solution displayed a significantly enhanced taste profile under optimal processing conditions, exhibiting an 80.74% reduction in bitterness value. Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (NMR) studies indicated the successful formation of inclusion compounds. The moisture content and bulk density of spray-dried powder were found to be significantly superior to those of freeze-dried powder (p < 0.05). In comparison to the diluted solution, the inclusion liquid demonstrated a 20.27%, 30.01% and 36.55% increase in ferric ion reducing antioxidant power (FRAP), hydroxyl radical scavenging and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging respectively. Further, the DPPH clearance of microencapsulated powder was not significantly different from that of tocopherol at a concentration of 25 mg/mL. Conclusions In summary, the study provides theoretical basis and methodological guidance to eliminate the bitterness of G. lucidum, and therefore provide potential options to the use of G. lucidum as a food source.
Collapse
Affiliation(s)
- Shuting Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| | - Shiying Song
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| | - Yumei Tan
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| | - Shengling He
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| | - Xiyi Ren
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| | - Zhu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
| | - Yongxiang Liu
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| |
Collapse
|
4
|
Jin X, Wang Z, Ma J, Liu C, Bai X, Lan Y. Electronic eye and electronic tongue data fusion combined with a GETNet model for the traceability and detection of Astragalus. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5930-5943. [PMID: 38459895 DOI: 10.1002/jsfa.13450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/23/2024] [Accepted: 03/09/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Astragalus is a widely used traditional Chinese medicine material that is easily confused due to its quality, price and other factors derived from different origins. This article describes a novel method for the rapid tracing and detection of Astragalus via the joint application of an electronic tongue (ET) and an electronic eye (EE) combined with a lightweight convoluted neural network (CNN)-transformer model. First, ET and EE systems were employed to measure the taste fingerprints and appearance images, respectively, of different Astragalus samples. Three spectral transform methods - the Markov transition field, short-time Fourier transform and recurrence plot - were utilized to convert the ET signals into 2D spectrograms. Then, the obtained ET spectrograms were fused with the EE image to obtain multimodal information. A lightweight hybrid model, termed GETNet, was designed to achieve pattern recognition for the Astragalus fusion information. The proposed model employed an improved transformer module and an improved Ghost bottleneck as its backbone network, complementarily utilizing the benefits of CNN and transformer architectures for local and global feature representation. Furthermore, the Ghost bottleneck was further optimized using a channel attention technique, which boosted the model's feature extraction effectiveness. RESULTS The experiments indicate that the proposed data fusion strategy based on ET and EE devices has better recognition accuracy than that attained with independent sensing devices. CONCLUSION The proposed method achieved high precision (99.1%) and recall (99.1%) values, providing a novel approach for rapidly identifying the origin of Astragalus, and it holds great promise for applications involving other types of Chinese herbal medicines. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinning Jin
- School of Computer Science and Technology, Shandong University of Technology, Zibo, China
| | - Zhiqiang Wang
- School of Computer Science and Technology, Shandong University of Technology, Zibo, China
| | - Jingyu Ma
- School of Computer Science and Technology, Shandong University of Technology, Zibo, China
| | - Chuanzheng Liu
- School of Computer Science and Technology, Shandong University of Technology, Zibo, China
| | - Xuerui Bai
- School of Computer Science and Technology, Shandong University of Technology, Zibo, China
| | - Yubin Lan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| |
Collapse
|
5
|
Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:413-444. [PMID: 38937158 DOI: 10.1016/j.joim.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
The property theory of traditional Chinese medicine (TCM) has been practiced for thousands of years, playing a pivotal role in the clinical application of TCM. While advancements in energy metabolism, chemical composition analysis, machine learning, ion current modeling, and supercritical fluid technology have provided valuable insight into how aspects of TCM property theory may be measured, these studies only capture specific aspects of TCM property theory in isolation, overlooking the holistic perspective inherent in TCM. To systematically investigate the modern interpretation of the TCM property theory from multidimensional perspectives, we consulted the Chinese Pharmacopoeia (2020 edition) to compile a list of Chinese materia medica (CMM). Then, using the Latin names of each CMM and gut microbiota as keywords, we searched the PubMed database for relevant research on gut microbiota and CMM. The regulatory patterns of different herbs on gut microbiota were then summarized from the perspectives of the four natures, the five flavors and the meridian tropism. In terms of the four natures, we found that warm-natured medicines promoted the colonization of specific beneficial bacteria, while cold-natured medicines boosted populations of some beneficial bacteria while suppressing pathogenic bacteria. Analysis of the five flavors revealed that sweet-flavored and bitter-flavored CMMs positively influenced beneficial bacteria while inhibiting harmful bacteria. CMMs with different meridian tropism exhibited complex modulative patterns on gut microbiota, with Jueyin (Liver) and Taiyin (Lung) meridian CMMs generally exerting a stronger effect. The gut microbiota may be a biological indicator for characterizing the TCM property theory, which not only enhances our understanding of classic TCM theory but also contributes to its scientific advancement and application in healthcare. Please cite this article as: Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. J Integr Med 2024; 22(4): 413-445.
Collapse
Affiliation(s)
- Ya-Nan Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jia-Guo Zhan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chong-Ming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
6
|
Lei K, Yuan M, Li S, Zhou Q, Li M, Zeng D, Guo Y, Guo L. Performance evaluation of E-nose and E-tongue combined with machine learning for qualitative and quantitative assessment of bear bile powder. Anal Bioanal Chem 2023:10.1007/s00216-023-04740-5. [PMID: 37199792 DOI: 10.1007/s00216-023-04740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Bear bile powder (BBP) is a valuable animal-derived product with a huge adulteration problem on market. It is a crucially important task to identify BBP and its counterfeit. Electronic sensory technologies are the inheritance and development of traditional empirical identification. Considering that each drug has its own specific odor and taste characteristics, electronic tongue (E-tongue), electronic nose (E-nose) and GC-MS were used to evaluate the aroma and taste of BBP and its common counterfeit. Two active components of BBP, namely tauroursodeoxycholic acid (TUDCA) and taurochenodeoxycholic acid (TCDCA) were measured and linked with the electronic sensory data. The results showed that bitterness was the main flavor of TUDCA in BBP, saltiness and umami were the main flavor of TCDCA. The volatiles detected by E-nose and GC-MS were mainly aldehydes, ketones, alcohols, hydrocarbons, carboxylic acids, heterocyclic, lipids, and amines, mainly earthy, musty, coffee, bitter almond, burnt, pungent odor descriptions. Four different machine learning algorithms (backpropagation neural network, support vector machine, K-nearest neighbor, and random forest) were used to identify BBP and its counterfeit, and the regression performance of these four algorithms was also evaluated. For qualitative identification, the algorithm of random forest has shown the best performance, with 100% accuracy, precision, recall and F1-score. Also, the random forest algorithm has the best R2 and the lowest RMSE in terms of quantitative prediction.
Collapse
Affiliation(s)
- Kelu Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, China
| | - Minghao Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, China
| | - Sihui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, China
| | - Qiang Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, China
| | - Meifeng Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, China
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dafu Zeng
- Chengdu Jingbo Biotechnology Co., Ltd, No.39 Renhe Street, Chengdu, 611731, China
| | - Yiping Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, China.
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, China.
| |
Collapse
|
7
|
Song M, Cui X, Zhang J, Li Y, Li J, Zang Y, Li Q, Yang Q, Chen Y, Cai W, Weng X, Wang Y, Zhu X. Shenlian extract attenuates myocardial ischaemia-reperfusion injury via inhibiting M1 macrophage polarization by silencing miR-155. PHARMACEUTICAL BIOLOGY 2022; 60:2011-2024. [PMID: 36239618 PMCID: PMC9578494 DOI: 10.1080/13880209.2022.2117828] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Shenlian extract (SL) is a combination of Salvia miltiorrhiza Bge. (Labiatae) and Andrographis paniculata (Burm. F.) Wall. Ex Nees (Acanthaceae) extracts, which promote blood circulation and clear endogenous heat toxins. Myocardial ischaemia-reperfusion injury (MI/RI) is aggravated myocardial tissue damage induced by reperfusion therapy after myocardial infarction. OBJECTIVES This study explores the effect of SL on MI/RI and the underlying mechanism. MATERIALS AND METHODS Primary peritoneal macrophages (pMACs) were treated with LPS and SL (5, 10 or 20 μg/mL) for 24 h. The myocardial ischaemia-reperfusion (MI/R) model was established after administration of different doses of SL (90, 180 or 360 mg/kg). Myocardial tissue injury was assessed by methylthiazolyl tetrazolium (TTC) staining and levels of creatine kinase (CK), lactate dehydrogenase (LDH) and superoxide dismutase (SOD) in mice. The double immunofluorescence staining of iNOS/F4/80 and CD86/F4/80 was used to detect macrophage M1 polarization. The levels of miR-155, inflammatory factors and chemokines were detected by qRT-PCR or ELISA. CD86, iNOS, SOCS3, JAK2, p-JAK2, STAT3 and p-STAT3 proteins expressions in macrophages were analyzed by western blotting. Conditioned medium transfer systems were designed to unite M1 macrophages with H/R cardiomyocytes, and cell apoptosis was detected by TUNEL staining, western blotting or immunohistochemistry. RESULTS SL reduced apoptosis, diminished CK and LDH levels, raised SOD concentration and decreased infarct size in the MI/R model. Meanwhile, SL decreased miR-155 level, inhibited M1 macrophage polarization and inflammation. Furthermore, SL promoted SOCS3 expression and blocked JAK2/STAT3 pathway in vitro. CONCLUSIONS SL may be a promising TCM candidate for MI/RI. The underlying mechanisms could be associated with inhibition of M1 macrophage polarization via down-regulating miR-155.
Collapse
Affiliation(s)
- Min Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Xihe Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Jingjing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Yuanlong Zang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Weiyan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Xiaogang Weng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Yajie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| |
Collapse
|
8
|
|
9
|
Application of Multiple-Source Data Fusion for the Discrimination of Two Botanical Origins of Magnolia Officinalis Cortex Based on E-Nose Measurements, E-Tongue Measurements, and Chemical Analysis. Molecules 2022; 27:molecules27123892. [PMID: 35745013 PMCID: PMC9229508 DOI: 10.3390/molecules27123892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
Magnolia officinalis Rehd. et Wils. and Magnolia officinalis Rehd. et Wils. var. biloba Rehd. et Wils, as the legal botanical origins of Magnoliae Officinalis Cortex, are almost impossible to distinguish according to their appearance traits with respect to medicinal bark. The application of AFLP molecular markers for differentiating the two origins has not yet been successful. In this study, a combination of e-nose measurements, e-tongue measurements, and chemical analyses coupled with multiple-source data fusion was used to differentiate the two origins. Linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) were applied to compare the discrimination results. It was shown that the e-nose system presented a good discriminant ability with a low classification error for both LDA and QDA compared with e-tongue measurements and chemical analyses. In addition, the discriminating capacity of LDA for low-level fusion with original data, similar to a combined system, was superior or equal to that acquired individually with the three approaches. For mid-level fusion, the combination of different principals extracted by PCA and variables obtained on the basis of PLS-VIP exhibited an analogous discrimination ability for LDA (classification error 0.0%) and was significantly superior to QDA (classification error 1.67-3.33%). As a result, the combined e-nose, e-tongue, and chemical analysis approach proved to be a powerful tool for differentiating the two origins of Magnoliae Officinalis Cortex.
Collapse
|
10
|
Wu C, Xu B, Li Z, Song P, Chao Z. Gender discrimination of Populus tomentosa barks by HPLC fingerprint combined with multivariate statistics. PLANT DIRECT 2021; 5:e00311. [PMID: 33748656 PMCID: PMC7963124 DOI: 10.1002/pld3.311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 05/08/2023]
Abstract
A high-performance liquid chromatography (HPLC) fingerprint method with multivariate statistical analyses was applied to discriminate the male and female barks of Populus tomentosa for the first time. The samples of 11 male and 13 female barks of mature P. tomentosa were collected in Beijing. The chemical fingerprint of methanol extract was established by HPLC method with diode array detector (DAD). The principal component analysis (PCA), hierarchical clustering analysis (HCA), and supervised orthogonal partial least squares discriminant analysis (OPLS-DA) were applied to discriminate male and female barks based on the area of common peaks identified in HPLC fingerprints. A clear grouping trend (R 2 X, 0.83; Q 2, 0.595) among the male and female samples was exhibited by PCA score plot. Two groups were clearly divided into male and female samples by HCA. Both male and female samples were well discriminated with OPLS-DA (R 2 X, 0.775; Q 2, 0.795). Seven potential chemical markers were screened by variable importance in projection (VIP values >1.0) of OPLS-DA model and four of them were identified as micranthoside, siebolside B, sakuranin, and isosakuranin. The HPLC fingerprint combined with multivariate statistical analyses could be used to discriminate the gender of barks of P. tomentosa and revealed the differences in chemical components, which enriched the basic studies on dioecious plant.
Collapse
Affiliation(s)
- Cui Wu
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingPR China
| | - Bo Xu
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingPR China
| | - Zhuojun Li
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingPR China
| | - Pingping Song
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingPR China
| | - Zhimao Chao
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingPR China
| |
Collapse
|
11
|
Ciampi E, Uribe-San-Martin R, Cárcamo C, Cruz JP, Reyes A, Reyes D, Pinto C, Vásquez M, Burgos RA, Hancke J. Efficacy of andrographolide in not active progressive multiple sclerosis: a prospective exploratory double-blind, parallel-group, randomized, placebo-controlled trial. BMC Neurol 2020; 20:173. [PMID: 32380977 PMCID: PMC7203851 DOI: 10.1186/s12883-020-01745-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/23/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic immune mediated disease and the progressive phase appears to have significant neurodegenerative mechanisms. The classification of the course of progressive MS (PMS) has been re-organized into categories of active vs. not active inflammatory disease and the presence vs. absence of gradual disease progression. Clinical trial experience to date in PMS with anti-inflammatory medications has shown limited effect. Andrographolide is a new class of anti-inflammatory agent, that has been proposed as a potential drug for autoimmune disorders, including MS. In the present trial, we perform an exploratory pilot study on the efficacy and safety of andrographolide (AP) compared to placebo in not active PMS. METHODS A pilot clinical trial using 140 mg oral AP or placebo twice daily for 24 months in patients with not active primary or secondary progressive MS was conducted. The primary efficacy endpoint was the mean percentage brain volume change (mPBVC). Secondary efficacy endpoints included 3-month confirmed disability progression (3-CDP) and mean EDSS change. RESULTS Forty-four patients were randomized: 23 were assigned to the AP group, and 21 were assigned to the placebo group. The median baseline EDSS of both groups was 6.0. Annualized mPBVC was - 0.679% for the AP group and - 1.069% for the placebo group (mean difference: -0.39; 95% CI [- 0.836-0.055], p = 0.08, relative reduction: 36.5%). In the AP group, 30% had 3-CDP compared to 41% in the placebo group (HR: 0.596; 95% CI [0.200-1.777], p = 0.06). The mean EDSS change was - 0.025 in the AP group and + 0.352 in the placebo group (mean difference: 0.63, p = 0.042). Adverse events related to AP were mild rash and dysgeusia. CONCLUSIONS AP was well tolerated and showed a potential effect in reducing brain atrophy and disability progression, that need to be further evaluated in a larger clinical trial. TRIAL REGISTRATION ClinicalTrials.gov NCT02273635 retrospectively registered on October 24th, 2014.
Collapse
Affiliation(s)
- Ethel Ciampi
- Neurology Department, Faculty of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay, 362, 5° floor, Santiago, Chile. .,Neurology, Hospital Dr. Sótero del Río, Av. Concha y Toro, 3459, Santiago, Chile.
| | - Reinaldo Uribe-San-Martin
- Neurology Department, Faculty of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay, 362, 5° floor, Santiago, Chile.,Neurology, Hospital Dr. Sótero del Río, Av. Concha y Toro, 3459, Santiago, Chile
| | - Claudia Cárcamo
- Neurology Department, Faculty of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay, 362, 5° floor, Santiago, Chile.
| | - Juan Pablo Cruz
- Radiology, Pontificia Universidad Católica de Chile, Diagonal Paraguay, 362, 5° floor, Santiago, Chile
| | - Ana Reyes
- Neurology Department, Faculty of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay, 362, 5° floor, Santiago, Chile
| | - Diego Reyes
- Neurology Department, Faculty of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay, 362, 5° floor, Santiago, Chile
| | - Carmen Pinto
- Neurology Department, Faculty of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay, 362, 5° floor, Santiago, Chile
| | - Macarena Vásquez
- Neurology Department, Faculty of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay, 362, 5° floor, Santiago, Chile
| | - Rafael A Burgos
- Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Independencia, 613, Valdivia, Chile
| | - Juan Hancke
- Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Independencia, 613, Valdivia, Chile
| |
Collapse
|
12
|
Huang Y, Jiang Z, Wang J, Yin G, Jiang K, Tu J, Wang T. Quality Evaluation of Mahonia bealei (Fort.) Carr. Using Supercritical Fluid Chromatography with Chemical Pattern Recognition. Molecules 2019; 24:molecules24203684. [PMID: 31614942 PMCID: PMC6832872 DOI: 10.3390/molecules24203684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023] Open
Abstract
Mahonia bealei (Fort.) Carr. (M. bealei) plays an important role in the treatment of many diseases. In the present study, a comprehensive method combining supercritical fluid chromatography (SFC) fingerprints and chemical pattern recognition (CPR) for quality evaluation of M. bealei was developed. Similarity analysis, hierarchical cluster analysis (HCA), principal component analysis (PCA) were applied to classify and evaluate the samples of wild M. bealei, cultivated M. bealei and its substitutes according to the peak area of 11 components but an accurate classification could not be achieved. PLS-DA was then adopted to select the characteristic variables based on variable importance in projection (VIP) values that responsible for accurate classification. Six characteristics peaks with higher VIP values (≥1) were selected for building the CPR model. Based on the six variables, three types of samples were accurately classified into three related clusters. The model was further validated by a testing set samples and predication set samples. The results indicated the model was successfully established and predictive ability was also verified satisfactory. The established model demonstrated that the developed SFC coupled with PLS-DA method showed a great potential application for quality assessment of M. bealei.
Collapse
Affiliation(s)
- Yang Huang
- Shenzhen Institute for Drug Control, Shenzhen 518057, China.
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Jue Wang
- Shenzhen Institute for Drug Control, Shenzhen 518057, China.
- Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen 518057, China.
| | - Guo Yin
- Shenzhen Institute for Drug Control, Shenzhen 518057, China.
- Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen 518057, China.
| | - Kun Jiang
- Shenzhen Institute for Drug Control, Shenzhen 518057, China.
- Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen 518057, China.
| | - Jiasheng Tu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Tiejie Wang
- Shenzhen Institute for Drug Control, Shenzhen 518057, China.
- Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen 518057, China.
| |
Collapse
|