1
|
Sosnovskikh VY. Synthesis of 2,3-heterofused chromones, hetero analogues of xanthone. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3658-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Phang YL, Zheng C, Xu H. Structural diversity and biological activities of caged Garcinia xanthones: recent updates. ACTA MATERIA MEDICA 2022; 1. [DOI: 10.15212/amm-2022-0001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Caged xanthones are a class of natural compounds with approximately 200 members that are commonly isolated from the Garcinia genus in the Clusiaceae (formerly Guttiferae) family. They are often characterized by a notable 4-oxa-tricyclo[4.3.1.03,7]dec-2-one (caged) architecture with a common xanthone backbone. Because most caged xanthones have potent anticancer properties, they have become a target of interest in natural product chemistry. The unique chemical architectures and increasingly identified biological importance of these compounds have stimulated many studies and intense interest in their isolation, biological evaluation and mechanistic studies. This review summarizes recent progress and development in the chemistry and biological activity of caged Garcinia xanthones and of several compounds of non-Garcinia origin, from the years 2008 to 2021, providing an in-depth discussion of their structural diversity and medicinal potential. A preliminary discussion on structure-activity relationships is also provided.
Collapse
|
3
|
Sosnovskikh VY. Synthesis and reactivity of 3-(1-alkynyl)chromones. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
For the first time, the literature data on the methods of synthesis and reactivity of 3-(1-alkynyl)chromones are summarized and systematized. The main method for obtaining these compounds is the Sonogashira cross-coupling reaction of 3-halochromones with terminal acetylenes, and their most important chemical properties include the transformation into furans, reactions with dinucleophiles, ambiphilic [4+2]- and [4+3]-cyclizations, and also dimerization and mixed condensation of 2-methyl-3-(1-alkynyl)chromones due to the vinylogous methyl group. Except for the oxacyclization to furans, chemical transformations of 3-(1-alkynyl)chromones are accompanied by pyrone ring transformation, in which not only the carbonyl group but also the triple bond can participate. This significantly increases the synthetic value of these compounds and ensures the production of more complex heterocyclic systems based on them. The mechanisms of the reactions are discussed, the conditions for their implementation and the yields of the resulting products are indicated.
The bibliography includes 80 references.
Collapse
|
4
|
Phyo YZ, Teixeira J, Gonçalves R, Palmeira A, Tiritan ME, Bousbaa H, Pinto MMM, Fernandes C, Kijjoa A. Chiral derivatives of xanthones and benzophenones: Synthesis, enantioseparation, molecular docking, and tumor cell growth inhibition studies. Chirality 2021; 33:153-166. [PMID: 33448056 DOI: 10.1002/chir.23297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 01/13/2023]
Abstract
AbstractLiquid chromatography enantioseparation and determination of enantiomeric purity of synthetized xanthone and benzophenone derivatives comprising one or more chiral moieties are reported. High enantioselectivity and resolution were observed in (S,S)‐Whelk‐O1 chiral stationary phase (CSP) for the enantiomeric mixtures of compounds comprising an aromatic ring linked to the stereogenic center(s), with α values ranging from 1.35 to 4.15 and Rs values ranging from 2.22 to 13.87. Among all the tested enantiomeric mixtures, those comprising three chiral moieties positioned in the xanthone scaffold gave the best chromatographic results. Enantiomers comprising an alkyl chain linked to the stereogenic centers were enantioseparated on a Lux® Celullose‐2 CSP. For both CSPs, the elution was performed in polar organic mode. The enantiomeric ratio (e.r.) values were always higher than 99%. Additionally, assessment of chiral recognition mechanisms on (S,S)‐Whelk‐O1 CSP was performed by molecular docking approach, which are in accordance with the chromatographic parameters. The nature and number of chiral moieties in the central aromatic scaffold of either xanthone or benzophenone derivatives are proved to be crucial for enantiorecognition. The evaluation of the growth inhibition of human tumor cell lines revealed that (S,S)‐(+)‐5 was the most potent compound, with values of GI50 of 12.83 ± 2.09 μM for A375‐C5 melanoma, 12.40 ± 1.16 μM for MCF‐7 breast adenocarcinoma, and 13.06 ± 1.29 μM for NCI‐H460 non‐small cell lung cancer. In some cases, the growth inhibitory effects demonstrated to be dependent on the stereochemistry of the compounds.
Collapse
Affiliation(s)
- Ye' Zaw Phyo
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Matosinhos, Portugal
| | - Joana Teixeira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Matosinhos, Portugal
- Departamento de Ciências Químicas, Faculdade de Farmácia, Laboratório de Química Orgânica e Farmacêutica, Porto, Portugal
| | - Ricardo Gonçalves
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Cooperativa de Ensino Superior Politécnico e Universitário, Gandra, Portugal
| | - Andreia Palmeira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Matosinhos, Portugal
- Departamento de Ciências Químicas, Faculdade de Farmácia, Laboratório de Química Orgânica e Farmacêutica, Porto, Portugal
| | - Maria Elizabeth Tiritan
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Matosinhos, Portugal
- Departamento de Ciências Químicas, Faculdade de Farmácia, Laboratório de Química Orgânica e Farmacêutica, Porto, Portugal
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Cooperativa de Ensino Superior Politécnico e Universitário, Gandra, Portugal
| | - Hassan Bousbaa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Matosinhos, Portugal
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Cooperativa de Ensino Superior Politécnico e Universitário, Gandra, Portugal
| | - Madalena M M Pinto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Matosinhos, Portugal
- Departamento de Ciências Químicas, Faculdade de Farmácia, Laboratório de Química Orgânica e Farmacêutica, Porto, Portugal
| | - Carla Fernandes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Matosinhos, Portugal
- Departamento de Ciências Químicas, Faculdade de Farmácia, Laboratório de Química Orgânica e Farmacêutica, Porto, Portugal
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Matosinhos, Portugal
| |
Collapse
|
5
|
From Natural Products to New Synthetic Small Molecules: A Journey through the World of Xanthones. Molecules 2021; 26:molecules26020431. [PMID: 33467544 PMCID: PMC7829950 DOI: 10.3390/molecules26020431] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
This work reviews the contributions of the corresponding author (M.M.M.P.) and her research group to Medicinal Chemistry concerning the isolation from plant and marine sources of xanthone derivatives as well as their synthesis, biological/pharmacological activities, formulation and analytical applications. Although her group activity has been spread over several chemical families with relevance in Medicinal Chemistry, the main focus of the investigation and research has been in the xanthone family. Xanthone derivatives have a variety of activities with great potential for therapeutic applications due to their versatile framework. The group has contributed with several libraries of xanthones derivatives, with a variety of activities such as antitumor, anticoagulant, antiplatelet, anti-inflammatory, antimalarial, antimicrobial, hepatoprotective, antioxidant, and multidrug resistance reversal effects. Besides therapeutic applications, our group has also developed xanthone derivatives with analytical applications as chiral selectors for liquid chromatography and for maritime application as antifouling agents for marine paints. Chemically, it has been challenging to afford green chemistry methods and achieve enantiomeric purity of chiral derivatives. In this review, the structures of the most significant compounds will be presented.
Collapse
|
6
|
Wang F, Pang Y, Chen G, Wang W, Chen Z. Enhanced physical and biological properties of chitosan scaffold by silk proteins cross-linking. Carbohydr Polym 2020; 229:115529. [DOI: 10.1016/j.carbpol.2019.115529] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 11/24/2022]
|
7
|
Klein-Júnior LC, Campos A, Niero R, Corrêa R, Vander Heyden Y, Filho VC. Xanthones and Cancer: from Natural Sources to Mechanisms of Action. Chem Biodivers 2020; 17:e1900499. [PMID: 31794156 DOI: 10.1002/cbdv.201900499] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022]
Abstract
Xanthones are a class of heterocyclic natural products that have been widely studied for their pharmacological potential. In fact, they have been serving as scaffolds for the design of derivatives focusing on drug development. One of the main study targets of xanthones is their anticancer activity. Several compounds belonging to this class have already demonstrated cytotoxic and antitumor effects, making it a promising group for further exploration. This review therefore focuses on recently published studies, emphasizing their natural and synthetic sources and describing the main mechanisms of action responsible for the anticancer effect of promising xanthones.
Collapse
Affiliation(s)
- Luiz C Klein-Júnior
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| | - Adriana Campos
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| | - Rivaldo Niero
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| | - Rogério Corrêa
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel - VUB, B-1090, Brussels, Belgium
| | - Valdir Cechinel Filho
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| |
Collapse
|
8
|
Resende DISP, Durães F, Maia M, Sousa E, Pinto MMM. Recent advances in the synthesis of xanthones and azaxanthones. Org Chem Front 2020. [DOI: 10.1039/d0qo00659a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A useful chemical toolbox for (aza)xanthones from 2012 to 2020 that covers the optimization of known procedures and novel methodologies.
Collapse
Affiliation(s)
- Diana I. S. P. Resende
- CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental
- Terminal de Cruzeiros do Porto de Leixões
- 4450-208 Matosinhos
- Portugal
- Laboratório de Química Orgânica e Farmacêutica
| | - Fernando Durães
- CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental
- Terminal de Cruzeiros do Porto de Leixões
- 4450-208 Matosinhos
- Portugal
- Laboratório de Química Orgânica e Farmacêutica
| | - Miguel Maia
- CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental
- Terminal de Cruzeiros do Porto de Leixões
- 4450-208 Matosinhos
- Portugal
- Laboratório de Química Orgânica e Farmacêutica
| | - Emília Sousa
- CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental
- Terminal de Cruzeiros do Porto de Leixões
- 4450-208 Matosinhos
- Portugal
- Laboratório de Química Orgânica e Farmacêutica
| | - Madalena M. M. Pinto
- CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental
- Terminal de Cruzeiros do Porto de Leixões
- 4450-208 Matosinhos
- Portugal
- Laboratório de Química Orgânica e Farmacêutica
| |
Collapse
|
9
|
Phyo YZ, Teixeira J, Tiritan ME, Cravo S, Palmeira A, Gales L, Silva AMS, Pinto MMM, Kijjoa A, Fernandes C. New chiral stationary phases for liquid chromatography based on small molecules: Development, enantioresolution evaluation and chiral recognition mechanisms. Chirality 2019; 32:81-97. [PMID: 31725938 DOI: 10.1002/chir.23142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/15/2019] [Accepted: 10/06/2019] [Indexed: 11/05/2022]
Abstract
Recently, we reported the development of new chiral stationary phases (CSPs) for liquid chromatography (LC) based on chiral derivatives of xanthones (CDXs). Based on the most promising CDX selectors, 12 new CSPs were successfully prepared starting from suitable functionalized small molecules including xanthone and benzophenone derivatives. The chiral selectors comprising one, two, three, or four chiral moieties were covalently bonded to a chromatographic support and further packed into LC stainless-steel columns (150 × 2.1 mm I.D.). The enantioselective performance of the new CSPs was evaluated by LC using different classes of chiral compounds. Specificity for enantioseparation of some CDXs was observed in the evaluation of the new CSPs. Besides, assessment of chiral recognition mechanisms was performed by computational studies using molecular docking approach, which are in accordance with the chromatographic parameters. X-Ray analysis was used to establish a chiral selector 3D structure.
Collapse
Affiliation(s)
- Ye' Zaw Phyo
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, Matosinhos, Portugal
| | - Joana Teixeira
- Faculdade de Farmácia, Departamento de Ciências Químicas, Laboratório de Química Orgânica e Farmacêutica, Porto, Portugal
| | - Maria Elizabeth Tiritan
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, Matosinhos, Portugal.,Faculdade de Farmácia, Departamento de Ciências Químicas, Laboratório de Química Orgânica e Farmacêutica, Porto, Portugal.,CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Gandra, PRD, Portugal
| | - Sara Cravo
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, Matosinhos, Portugal.,Faculdade de Farmácia, Departamento de Ciências Químicas, Laboratório de Química Orgânica e Farmacêutica, Porto, Portugal
| | - Andreia Palmeira
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, Matosinhos, Portugal.,Faculdade de Farmácia, Departamento de Ciências Químicas, Laboratório de Química Orgânica e Farmacêutica, Porto, Portugal
| | - Luís Gales
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Artur M S Silva
- QOPNA & LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
| | - Madalena M M Pinto
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, Matosinhos, Portugal.,Faculdade de Farmácia, Departamento de Ciências Químicas, Laboratório de Química Orgânica e Farmacêutica, Porto, Portugal
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, Matosinhos, Portugal
| | - Carla Fernandes
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, Matosinhos, Portugal.,Faculdade de Farmácia, Departamento de Ciências Químicas, Laboratório de Química Orgânica e Farmacêutica, Porto, Portugal
| |
Collapse
|
10
|
Yu L, Chen L, Luo G, Liu L, Zhu W, Yan P, Zhang P, Zhang C, Wu W. Study on Synthesis and Biological Evaluation of 3-Aryl Substituted Xanthone Derivatives as Novel and Potent Tyrosinase Inhibitors. Chem Pharm Bull (Tokyo) 2019; 67:1232-1241. [DOI: 10.1248/cpb.c19-00572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Lihong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University
| | - Liandi Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University
- The Third Affiliated Hospital of Guangzhou Medical University
| | - Guolin Luo
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University
| | - Licai Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University
| | - Wenqi Zhu
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University
| | - Pengke Yan
- The Third Affiliated Hospital of Guangzhou Medical University
| | - Peiquan Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University
| | - Chao Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University
| | - Wenhao Wu
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University
| |
Collapse
|
11
|
Barmak A, Niknam K, Mohebbi G, Pournabi H. Antibacterial studies of hydroxyspiro[indoline-3,9-xanthene]trione against spiro[indoline3,9-xanthene]trione and their use as acetyl and butyrylcholinesterase inhibitors. Microb Pathog 2019; 130:95-99. [PMID: 30851360 DOI: 10.1016/j.micpath.2019.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 02/08/2019] [Accepted: 03/04/2019] [Indexed: 12/20/2022]
Abstract
Xanthene derivatives are well known for their effective biological activities. In search of effective antibacterial agents, the spiro[indoline3,9-xanthene]-trione (A) and hydroxy-spiro[indoline-3,9-xanthene]-trione (B), were synthesized and tested for in vitro antibacterial activity against Staphylococcus aureus and Escherichia coli. Furthermore, the synthesized compounds were tested in vitro and in silico for their anticholinesterase activities. The anticholinesterase activities for six substitutes of the hydroxy derivative (B1-B6) were also studied through the molecular docking. All concentrations of compounds presented a dose-dependent antibacterial activity. The docking results showed that all compounds are more constant than the galantamine. Amongst, compound B1 exhibited the minimum binding energy in both AChE and BChE enzymes. Results indicate the importance of xanthene derivatives as potential antibacterial and anticholinesterases agents.
Collapse
Affiliation(s)
- Alireza Barmak
- Department of Chemistry, Faculty of Sciences, Persian Gulf University, Bushehr, 75169, Iran
| | - Khodabakhsh Niknam
- Department of Chemistry, Faculty of Sciences, Persian Gulf University, Bushehr, 75169, Iran.
| | - Gholamhossein Mohebbi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hamid Pournabi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
12
|
Fernandes C, Carraro ML, Ribeiro J, Araújo J, Tiritan ME, Pinto MMM. Synthetic Chiral Derivatives of Xanthones: Biological Activities and Enantioselectivity Studies. Molecules 2019; 24:E791. [PMID: 30813236 PMCID: PMC6412826 DOI: 10.3390/molecules24040791] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Many naturally occurring xanthones are chiral and present a wide range of biological and pharmacological activities. Some of them have been exhaustively studied and subsequently, obtained by synthesis. In order to obtain libraries of compounds for structure activity relationship (SAR) studies as well as to improve the biological activity, new bioactive analogues and derivatives inspired in natural prototypes were synthetized. Bioactive natural xanthones compromise a large structural multiplicity of compounds, including a diversity of chiral derivatives. Thus, recently an exponential interest in synthetic chiral derivatives of xanthones (CDXs) has been witnessed. The synthetic methodologies can afford structures that otherwise could not be reached within the natural products for biological activity and SAR studies. Another reason that justifies this trend is that both enantiomers can be obtained by using appropriate synthetic pathways, allowing the possibility to perform enantioselectivity studies. In this work, a literature review of synthetic CDXs is presented. The structures, the approaches used for their synthesis and the biological activities are described, emphasizing the enantioselectivity studies.
Collapse
Affiliation(s)
- Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| | - Maria Letícia Carraro
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - João Ribeiro
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Joana Araújo
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria Elizabeth Tiritan
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Cooperativa de Ensino Superior, Politécnico e Universitário (CESPU), Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal.
| | - Madalena M M Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| |
Collapse
|