1
|
Sahu S, Sharma S, Kaur A, Singh G, Khatri M, Arya SK. Algal carbohydrate polymers: Catalytic innovations for sustainable development. Carbohydr Polym 2024; 327:121691. [PMID: 38171696 DOI: 10.1016/j.carbpol.2023.121691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Algal polysaccharides, harnessed for their catalytic potential, embody a compelling narrative in sustainable chemistry. This review explores the complex domains of algal carbohydrate-based catalysis, revealing its diverse trajectory. Starting with algal polysaccharide synthesis and characterization methods as catalysts, the investigation includes sophisticated techniques like NMR spectroscopy that provide deep insights into the structural variety of these materials. Algal polysaccharides undergo various preparation and modification techniques to enhance their catalytic activity such as immobilization. Homogeneous catalysis, revealing its significance in practical applications like crafting organic compounds and facilitating chemical transformations. Recent studies showcase how algal-derived catalysts prove to be remarkably versatile, showcasing their ability to customise reactions for specific substances. Heterogeneous catalysis, it highlights the significance of immobilization techniques, playing a central role in ensuring stability and the ability to reuse catalysts. The practical applications of heterogeneous algal catalysts in converting biomass and breaking down contaminants, supported by real-life case studies, emphasize their effectiveness. In sustainable chemistry, algal polysaccharides emerge as compelling catalysts, offering a unique intersection of eco-friendliness, structural diversity, and versatile catalytic properties. Tackling challenges such as dealing with complex structural variations, ensuring the stability of the catalyst, and addressing economic considerations calls for out-of-the-box and inventive solutions. Embracing the circular economy mindset not only assures sustainable catalyst design but also promotes efficient recycling practices. The use of algal carbohydrates in catalysis stands out as a source of optimism, paving the way for a future where chemistry aligns seamlessly with nature, guiding us toward a sustainable, eco-friendly, and thriving tomorrow. This review encapsulates-structural insights, catalytic applications, challenges, and future perspectives-invoking a call for collective commitment to catalyze a sustainable scientific revolution.
Collapse
Affiliation(s)
- Sudarshan Sahu
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Shalini Sharma
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Anupreet Kaur
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Madhu Khatri
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Shailendra Kumar Arya
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
2
|
Miao R, Li Z, Yuan Y, Yan X, Pang Q, Zhang A. Endogenous melatonin involved in plant salt response by impacting auxin signaling. PLANT CELL REPORTS 2024; 43:33. [PMID: 38200226 DOI: 10.1007/s00299-023-03097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/05/2023] [Indexed: 01/12/2024]
Abstract
KEY MESSAGE The study on melatonin biosynthesis mutant snat1snat2 revealed that endogenous melatonin plays an important role in salt responsiveness by mediating auxin signaling. Melatonin is a pleiotropic signaling molecule, which, besides being involved in multiple growth and developmental processes, also mediates environmental stress responses. However, whether and how endogenous melatonin is involved in salt response has not been determined. In this study, we elucidated the involvement of endogenous melatonin in salt response by investigatiing the impact of salt stress on a double mutant of Arabidopsis (snat1snat2) defective in melatonin biosynthesis genes SNAT1 and SNAT2. This mutant was found to exhibit salt sensitivity, manifested by unhealthy growth, ion imbalance and ROS accumulation under salt stress. Transcriptomic profiles of snat1snat2 revealed that the expression of a large number of salt-responsive genes was affected by SNAT defect, and these genes were closely related to the synthesis of auxin and several signaling pathways. In addition, the salt-sensitive growth phenotype of snat1snat2 was alleviated by the application of exogenous auxin. Our results show that endogenous melatonin may be essential for plant salt tolerance, a function that could be correlated with diverse activity in mediating auxin signaling.
Collapse
Affiliation(s)
- Rongqing Miao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Zhiqi Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Yue Yuan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Xiufeng Yan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Qiuying Pang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Aiqin Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
3
|
Umegaki T, Kojima Y. Thermochemical Properties of Synthesized Urea from Recovered Ammonia and Carbon Dioxide in Well-Ordered Nanospaces of Hollow Silica Spheres. ACS OMEGA 2024; 9:714-718. [PMID: 38222630 PMCID: PMC10785277 DOI: 10.1021/acsomega.3c06534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024]
Abstract
The present work investigated the thermochemical properties of urea synthesized in well-ordered nanospaces of porous hollow silica spheres' shells from recovered ammonia and carbon dioxide in aqueous solution. Thermochemical behaviors of the urea synthesized in well-ordered nanospaces of the hollow spheres' shells prepared with 1-dodeclyamine were analyzed from the results of thermogravimetric analysis (TGA) and differential thermal analysis (DTA), and endothermic peaks assigned as the phase transition and decomposition were observed at ca. 440 and 514 K, respectively, which were higher than those of pristine urea (405 and 408 K, respectively), probably because of the nanoconfinement effect. The decomposition behavior was also confirmed by the result of diffuse reflectance infrared Fourier transform (DRIFT) spectra of the samples treated at various temperatures up to 573 K, and the decomposition of urea synthesized in the well-ordered nanospaces of the hollow spheres' shells started at 468 K and completed up to 533 K.
Collapse
Affiliation(s)
- Tetsuo Umegaki
- Department
of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan
| | - Yoshiyuki Kojima
- Department
of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan
| |
Collapse
|
4
|
Takaishi K, Nishimura R, Toda Y, Morishita H, Ema T. One-Pot Synthesis of Dihydropyrans via CO 2 Reduction and Domino Knoevenagel/oxa-Diels-Alder Reactions. Org Lett 2023; 25:1370-1374. [PMID: 36826404 DOI: 10.1021/acs.orglett.3c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Catalytic CO2 reduction with phenylsilane under solvent-free conditions was linked with the one-pot synthesis of 3,4-dihydropyrans from β-dicarbonyl compounds and styrenes. The synthesis includes three processes: (1) bis(silyl)acetal formation from CO2 and phenylsilane and a domino reaction of (2) Knoevenagel condensation and (3) inverse-electron-demand oxa-Diels-Alder reaction. The first process was catalyzed by a pentanuclear ZnII complex (0.07 mol %) to generate bis(silyl)acetals, which were hydrolyzed into formaldehyde to be used in the second step.
Collapse
Affiliation(s)
- Kazuto Takaishi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Ritsuki Nishimura
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Yuha Toda
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Hajime Morishita
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| |
Collapse
|
5
|
Velty A, Corma A. Advanced zeolite and ordered mesoporous silica-based catalysts for the conversion of CO 2 to chemicals and fuels. Chem Soc Rev 2023; 52:1773-1946. [PMID: 36786224 DOI: 10.1039/d2cs00456a] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
For many years, capturing, storing or sequestering CO2 from concentrated emission sources or from air has been a powerful technique for reducing atmospheric CO2. Moreover, the use of CO2 as a C1 building block to mitigate CO2 emissions and, at the same time, produce sustainable chemicals or fuels is a challenging and promising alternative to meet global demand for chemicals and energy. Hence, the chemical incorporation and conversion of CO2 into valuable chemicals has received much attention in the last decade, since CO2 is an abundant, inexpensive, nontoxic, nonflammable, and renewable one-carbon building block. Nevertheless, CO2 is the most oxidized form of carbon, thermodynamically the most stable form and kinetically inert. Consequently, the chemical conversion of CO2 requires highly reactive, rich-energy substrates, highly stable products to be formed or harder reaction conditions. The use of catalysts constitutes an important tool in the development of sustainable chemistry, since catalysts increase the rate of the reaction without modifying the overall standard Gibbs energy in the reaction. Therefore, special attention has been paid to catalysis, and in particular to heterogeneous catalysis because of its environmentally friendly and recyclable nature attributed to simple separation and recovery, as well as its applicability to continuous reactor operations. Focusing on heterogeneous catalysts, we decided to center on zeolite and ordered mesoporous materials due to their high thermal and chemical stability and versatility, which make them good candidates for the design and development of catalysts for CO2 conversion. In the present review, we analyze the state of the art in the last 25 years and the potential opportunities for using zeolite and OMS (ordered mesoporous silica) based materials to convert CO2 into valuable chemicals essential for our daily lives and fuels, and to pave the way towards reducing carbon footprint. In this review, we have compiled, to the best of our knowledge, the different reactions involving catalysts based on zeolites and OMS to convert CO2 into cyclic and dialkyl carbonates, acyclic carbamates, 2-oxazolidones, carboxylic acids, methanol, dimethylether, methane, higher alcohols (C2+OH), C2+ (gasoline, olefins and aromatics), syngas (RWGS, dry reforming of methane and alcohols), olefins (oxidative dehydrogenation of alkanes) and simple fuels by photoreduction. The use of advanced zeolite and OMS-based materials, and the development of new processes and technologies should provide a new impulse to boost the conversion of CO2 into chemicals and fuels.
Collapse
Affiliation(s)
- Alexandra Velty
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain.
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain.
| |
Collapse
|
6
|
Mikšovsky P, Horn EN, Naghdi S, Eder D, Schnürch M, Bica-Schröder K. Continuous Formation of Limonene Carbonates in Supercritical Carbon Dioxide. Org Process Res Dev 2022; 26:2799-2810. [PMID: 36311380 PMCID: PMC9594339 DOI: 10.1021/acs.oprd.2c00143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/29/2022]
Abstract
![]()
We present a continuous flow method for the conversion
of bioderived
limonene oxide and limonene dioxide to limonene carbonates using carbon
dioxide in its supercritical state as a reagent and sole solvent.
Various ammonium- and imidazolium-based ionic liquids were initially
investigated in batch mode. For applying the best-performing and selective
catalyst tetrabutylammonium chloride in continuous flow, the ionic
liquid was physisorbed on mesoporous silica. In addition to the analysis
of surface area and pore size distribution of the best-performing
supported ionic liquid phase (SILP) catalysts via nitrogen physisorption,
SILPs were characterized by diffuse reflectance infrared Fourier transform
spectroscopy and thermogravimetric analysis and served as heterogeneous
catalysts in continuous flow. Initially, the continuous flow conversion
was optimized in short-term experiments resulting in the desired constant
product outputs. Under these conditions, the long-term behavior of
the SILP system was studied for a period of 48 h; no leaching of catalyst
from the supporting material was observed in the case of limonene
oxide and resulted in a yield of 16%. For limonene dioxide, just traces
of leached catalysts were detected after reducing the catalyst loading
from 30 to 15 wt %, thus enabling a constant product output in 17%
yield over time.
Collapse
Affiliation(s)
- Philipp Mikšovsky
- Institute of Applied Synthetic Chemistry (E163), TU Wien, Getreidemarkt 9/E163, 1060 Vienna, Austria
| | - Elias N. Horn
- Institute of Applied Synthetic Chemistry (E163), TU Wien, Getreidemarkt 9/E163, 1060 Vienna, Austria
| | - Shaghayegh Naghdi
- Institute of Materials Chemistry (E165), TU Wien, Getreidemarkt 9/E165, 1060 Vienna, Austria
| | - Dominik Eder
- Institute of Materials Chemistry (E165), TU Wien, Getreidemarkt 9/E165, 1060 Vienna, Austria
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry (E163), TU Wien, Getreidemarkt 9/E163, 1060 Vienna, Austria
| | - Katharina Bica-Schröder
- Institute of Applied Synthetic Chemistry (E163), TU Wien, Getreidemarkt 9/E163, 1060 Vienna, Austria
| |
Collapse
|
7
|
Wei X, Lu Q, Liu J, Ma L. Triethylamine Catalyzed Reductive CO
2
to Form N‐Formylation of Amines and Hydrazides. ChemistrySelect 2022. [DOI: 10.1002/slct.202201727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiu‐Zhi Wei
- Department of Engineering Science University of Science and Technology of China Hefei 230026 P.R. China
- CAS Key Laboratory of Renewable Energy Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P. R. China
| | - Qiqi Lu
- CAS Key Laboratory of Renewable Energy Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P. R. China
| | - Jianguo Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education School of Energy and Environment Southeast University Nanjing 210096 PR China
| | - Longlong Ma
- Department of Engineering Science University of Science and Technology of China Hefei 230026 P.R. China. Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education School of Energy and Environment Southeast University Nanjing 210096 PR China
| |
Collapse
|
8
|
Veltri L, Amuso R, Mancuso R, Gabriele B. Advances in Palladium-Catalyzed Carboxylation Reactions. Molecules 2022; 27:262. [PMID: 35011494 PMCID: PMC8746634 DOI: 10.3390/molecules27010262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
In this short review, we highlight the advancements in the field of palladium-catalyzed carbon dioxide utilization for the synthesis of high value added organic molecules. The review is structured on the basis of the kind of substrate undergoing the Pd-catalyzed carboxylation process. Accordingly, after the introductory section, the main sections of the review will illustrate Pd-catalyzed carboxylation of olefinic substrates, acetylenic substrates, and other substrates (aryl halides and triflates).
Collapse
Affiliation(s)
- Lucia Veltri
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende, Italy; (R.A.); (R.M.)
| | | | | | - Bartolo Gabriele
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende, Italy; (R.A.); (R.M.)
| |
Collapse
|
9
|
Kim JE, Jang JH, Lee KM, Balamurugan M, Jo YI, Lee MY, Choi S, Im SW, Nam KT. Electrochemical Synthesis of Glycine from Oxalic Acid and Nitrate. Angew Chem Int Ed Engl 2021; 60:21943-21951. [PMID: 34324785 DOI: 10.1002/anie.202108352] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 11/05/2022]
Abstract
In manufacturing C-N bond-containing compounds, it is an important challenge to alternate the conventional methodologies that utilize reactive substrates, toxic reagents, and organic solvents. In this study, we developed an electrochemical method to synthesize a C-N bond-containing molecule avoiding the use of cyanides and amines by harnessing nitrate (NO3 - ) as a nitrogen source in an aqueous electrolyte. In addition, we utilized oxalic acid as a carbon source, which can be obtained from electrochemical conversion of CO2. Thus, our approach can provide a route for the utilization of anthropogenic CO2 and nitrate wastes, which cause serious environmental problems including global warming and eutrophication. Interestingly, the coreduction of oxalic acid and nitrate generated reactive intermediates, which led to C-N bond formation followed by further reduction to an amino acid, namely, glycine. By carefully controlling this multireduction process with a fabricated Cu-Hg electrode, we demonstrated the efficient production of glycine with a faradaic efficiency (F.E.) of up to 43.1 % at -1.4 V vs. Ag/AgCl (current density≈90 mA cm-2 ).
Collapse
Affiliation(s)
- Jeong Eun Kim
- Department of Materials Science and Engineering, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jun Ho Jang
- Department of Materials Science and Engineering, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Kyu Min Lee
- Department of Materials Science and Engineering, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Mani Balamurugan
- Department of Materials Science and Engineering, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Young In Jo
- Department of Materials Science and Engineering, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Moo Young Lee
- Department of Materials Science and Engineering, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seungwoo Choi
- Department of Materials Science and Engineering, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sang Won Im
- Department of Materials Science and Engineering, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
10
|
Kim JE, Jang JH, Lee KM, Balamurugan M, Jo YI, Lee MY, Choi S, Im SW, Nam KT. Electrochemical Synthesis of Glycine from Oxalic Acid and Nitrate. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jeong Eun Kim
- Department of Materials Science and Engineering Seoul National University Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Jun Ho Jang
- Department of Materials Science and Engineering Seoul National University Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Kyu Min Lee
- Department of Materials Science and Engineering Seoul National University Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Mani Balamurugan
- Department of Materials Science and Engineering Seoul National University Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Young In Jo
- Department of Materials Science and Engineering Seoul National University Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Moo Young Lee
- Department of Materials Science and Engineering Seoul National University Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Seungwoo Choi
- Department of Materials Science and Engineering Seoul National University Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Sang Won Im
- Department of Materials Science and Engineering Seoul National University Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering Seoul National University Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| |
Collapse
|
11
|
Mirza‐Aghayan M, Saeedi M, Boukherroub R. Carbon–nitrogen bond formation using modified graphene oxide derivatives decorated with copper complexes and nanoparticles. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Mandana Saeedi
- Chemistry and Chemical Engineering Research Center of Iran (CCERCI) Tehran Iran
| | - Rabah Boukherroub
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR8520 Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts‐de‐France Lille France
| |
Collapse
|
12
|
CO2 Derivatives of Molecular Tin Compounds. Part 2: Carbamato, Formato, Phosphinoformato and Metallocarboxylato Complexes. INORGANICS 2021. [DOI: 10.3390/inorganics9030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Single-crystal X-ray diffraction structures of organotin compounds bearing hemicarbonate and carbonate ligands were recently reviewed by us—“CO2 Derivatives of Molecular Tin Compounds. Part 1: Hemicarbonato and Carbonato Complexes”, Inorganics 2020, 8, 31—based on crystallographic data available from the Cambridge Structural Database. Interestingly, this first collection revealed that most of the compounds listed were isolated in the context of studies devoted to the reactivity of tin precursors towards carbon dioxide, at atmospheric pressure or under pressure, thus highlighting the suitable disposition of Sn to fix CO2. In the frame of a second part, the present review carries on to explore CO2 derivatives of molecular tin compounds by describing successively the complexes with carbamato, formato, and phosphinoformato ligands, and obtained from insertion reactions of carbon dioxide into Sn–X bonds (X = N, H, P, respectively). The last chapter is devoted to X-ray structures of transition metal/tin CO2 complexes exhibiting metallocarboxylato ligands. As in Part 1, for each tin compound reported and when described in the original study, the structural descriptions are supplemented by synthetic conditions and spectroscopic data.
Collapse
|
13
|
Sable DA, Vadagaonkar KS, Kapdi AR, Bhanage BM. Carbon dioxide based methodologies for the synthesis of fine chemicals. Org Biomol Chem 2021; 19:5725-5757. [PMID: 34132318 DOI: 10.1039/d1ob00755f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rapid environmental changes triggered by the increase in the concentration of heat-absorbing gases such as CO2 in the atmosphere have become a major cause of concern. One of the ways to counter this growing threat will be to efficiently convert atmospheric CO2 into value-added products via the development of efficient transition-metal-catalyzed processes. Conversion of CO2 into bulk products such as CH3OH and methane as well as its incorporation into commercial polyurethane synthesis has been achieved and reviewed extensively. However, the efficient transformation of CO2 into fine chemicals and value-added chemicals has many fold advantages. Recent years have seen a rapid rise in the number of metal-mediated protocols to achieve this goal of converting CO2 into fine chemicals. These are essential developments given the requirement of several commodities and fine chemicals in various industrial processes and the utilization of atmospheric CO2 will help provide a sustainable solution to the current environmental problems. Accordingly, we present here a comprehensive compilation of catalytic processes, involving CO2 as the C1 source for reacting with substrates such as alkanes, alkenes, alkynes, amines, acid chlorides, alcohols, allyl boronates, alkenyl triflates, and many others to provide easy access to a wide variety of useful molecules. Such a technology would certainly prove to be beneficial in solving the problems associated with the environmental accumulation of CO2.
Collapse
Affiliation(s)
- Dhanashri A Sable
- Institute of Chemical Technology, Department of Chemistry, Nathalal Parekh Road, Matunga, Mumbai-400019, Maharashtra, India. and Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar 751013, Odisha, India
| | - Kamlesh S Vadagaonkar
- Institute of Chemical Technology, Department of Chemistry, Nathalal Parekh Road, Matunga, Mumbai-400019, Maharashtra, India.
| | - Anant R Kapdi
- Institute of Chemical Technology, Department of Chemistry, Nathalal Parekh Road, Matunga, Mumbai-400019, Maharashtra, India.
| | - Bhalchandra M Bhanage
- Institute of Chemical Technology, Department of Chemistry, Nathalal Parekh Road, Matunga, Mumbai-400019, Maharashtra, India.
| |
Collapse
|
14
|
Wang P, He Q, Zhang H, Sun Q, Cheng Y, Gan T, He X, Ji H. N-formylation of amines using phenylsilane and CO2 over ZnO catalyst under mild condition. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2020.106195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
15
|
Schilling W, Das S. Transition Metal-Free Synthesis of Carbamates Using CO 2 as the Carbon Source. CHEMSUSCHEM 2020; 13:6246-6258. [PMID: 33107690 DOI: 10.1002/cssc.202002073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Utilization of carbon dioxide as a C1 synthon is highly attractive for the synthesis of valuable chemicals. However, activation of CO2 is highly challenging, owing to its thermodynamic stability and kinetic inertness. With this in mind, several strategies have been developed for the generation of carbon-heteroatom bonds. Among these, formation of C-N bonds is highly attractive, especially, when carbamates can be synthesized directly from CO2 . This Minireview focuses on transition metal-free approaches for the fixation of CO2 to generate carbamates for the production of fine chemicals and pharmaceuticals. Within the past decade, transition metal-free approaches have gained increasing attention, but traditional reviews have rarely focused on these approaches. Direct comparisons between such methods have been even more scarce. This Minireview seeks to address this discrepancy.
Collapse
Affiliation(s)
- Waldemar Schilling
- Institute for Biomolecular and Organic Chemistry, Georg-August-Universität Göttingen, Tammanstraße 2, 37077, Göttingen, Germany
| | - Shoubhik Das
- ORSY division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
16
|
Leong BX, Teo YC, Condamines C, Yang MC, Su MD, So CW. A NHC-Silyliumylidene Cation for Catalytic N-Formylation of Amines Using Carbon Dioxide. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03795] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bi-Xiang Leong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Yeow-Chuan Teo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Cloé Condamines
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Ming-Chung Yang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheuk-Wai So
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| |
Collapse
|
17
|
Shen N, Zhai SJ, Cheung CW, Ma JA. Direct N-formylation of nitroarenes with CO 2. Chem Commun (Camb) 2020; 56:9620-9623. [PMID: 32691036 DOI: 10.1039/d0cc03098h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Herein we describe a straightforward N-formylation of nitroarenes with CO2 to access N-aryl formamides exclusively in the presence of iron and hydrosilane as additives. This protocol showcases a good tolerance of a wide range of nitroarenes and nitroheteroarenes.
Collapse
Affiliation(s)
- Ni Shen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China.
| | | | | | | |
Collapse
|
18
|
Affiliation(s)
- Renat Kadyrov
- Institute of Inorganic ChemistryAcademy of Sciences of the Czech Republic 25068 Řež Czech Republic
- Evonik Resource Efficiency GmbH Rodenbacher Chaussee 4 63457 Hanau Germany
| | - Konrad Moebus
- Evonik Resource Efficiency GmbH Rodenbacher Chaussee 4 63457 Hanau Germany
| |
Collapse
|
19
|
Bresciani G, Biancalana L, Pampaloni G, Marchetti F. Recent Advances in the Chemistry of Metal Carbamates. Molecules 2020; 25:E3603. [PMID: 32784784 PMCID: PMC7465543 DOI: 10.3390/molecules25163603] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Following a related review dating back to 2003, the present review discusses in detail the various synthetic, structural and reactivity aspects of metal species containing one or more carbamato ligands, representing a large family of compounds across all the periodic table. A preliminary overview is provided on the reactivity of carbon dioxide with amines, and emphasis is given to recent findings concerning applications in various fields.
Collapse
Affiliation(s)
| | | | - Guido Pampaloni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (G.B.); (L.B.)
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (G.B.); (L.B.)
| |
Collapse
|
20
|
Copper-thioguanine metallodrug with self-reinforcing circular catalysis for activatable MRI imaging and amplifying specificity of cancer therapy. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9738-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Yingcharoen P, Natongchai W, Poater A, D' Elia V. Intertwined chemistry of hydroxyl hydrogen-bond donors, epoxides and isocyanates in the organocatalytic synthesis of oxazolidinones versus isocyanurates: rational catalytic investigation and mechanistic understanding. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00987c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The efficiency and chemoselectivity of the cycloaddition of isocyanates to epoxides to afford oxazolidinones were investigated using hydroxyl hydrogen-bond donors as organocatalysts.
Collapse
Affiliation(s)
- Prapussorn Yingcharoen
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| | - Wuttichai Natongchai
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - Valerio D' Elia
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| |
Collapse
|
22
|
Franz D, Jandl C, Stark C, Inoue S. Catalytic CO 2 Reduction with Boron- and Aluminum Hydrides. ChemCatChem 2019; 11:5275-5281. [PMID: 31894189 PMCID: PMC6919925 DOI: 10.1002/cctc.201901255] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/17/2019] [Indexed: 12/11/2022]
Abstract
The previously reported dimeric NHI aluminum dihydrides 1 a,b, as well as the bis(NHI) aluminum dihydride salt 9 +[OTs]-, the bis(NHI) boron dihydride salt 10 +[OTs]-, and the "free" bis(NHI) ligand 12 were investigated with regard to their activity as a homogenous (pre)catalyst in the hydroboration (i. e. catalytic reduction) of carbon dioxide (CO2) in chloroform under mild conditions (i. e. room temperature, 1 atm; NHI=N-heterocyclic imine, Ts=tosyl). Borane dimethylsulfide complex and catecholborane were used as a hydride source. Surprisingly, the less sterically hindered 1 a exhibited lower catalytic activity than the bulkier 1 b. A similarly unexpected discrepancy was found with the lower catalytic activity of 10 + in comparison to the one of the bis(NHI) 12. The latter is incorporated as the ligand to the boron center in 10 +. To elucidate possible mechanisms for CO2 reduction the compounds were subjected to stoichiometric reactivity studies with the borane or CO2. Aluminum carboxylates 4, 6, and 7 + with two, four, and one formate group per two aluminum centers were isolated. Also, the boron formate salt 11 +[OTs]- was characterized. Selected metal formates were subjected to stoichiometric reactions with boranes and/or tested as a catalyst. We conclude that each type of catalyst (1 a,b, 9 +, 10 +, 12) follows an individual mechanistic pathway for CO2 reduction.
Collapse
Affiliation(s)
- Daniel Franz
- Department of Chemistry Catalysis Research Center and Institute of Silicon ChemistryTechnische Universität MünchenLichtenbergstr. 4Garching bei München85748Germany
| | - Christian Jandl
- Department of Chemistry Catalysis Research Center and Institute of Silicon ChemistryTechnische Universität MünchenLichtenbergstr. 4Garching bei München85748Germany
| | - Claire Stark
- Department of Chemistry Catalysis Research Center and Institute of Silicon ChemistryTechnische Universität MünchenLichtenbergstr. 4Garching bei München85748Germany
| | - Shigeyoshi Inoue
- Department of Chemistry Catalysis Research Center and Institute of Silicon ChemistryTechnische Universität MünchenLichtenbergstr. 4Garching bei München85748Germany
| |
Collapse
|
23
|
Ojeda‐Amador AI, Munarriz J, Alamán‐Valtierra P, Polo V, Puerta‐Oteo R, Jiménez MV, Fernández‐Alvarez FJ, Pérez‐Torrente JJ. Mechanistic Insights on the Functionalization of CO
2
with Amines and Hydrosilanes Catalyzed by a Zwitterionic Iridium Carboxylate‐Functionalized Bis‐NHC Catalyst. ChemCatChem 2019. [DOI: 10.1002/cctc.201901687] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ana I. Ojeda‐Amador
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Facultad de CienciasUniversidad de Zaragoza Zaragoza 50009 Spain
| | - Julen Munarriz
- Departamento de Química Física Instituto de Biocomputación y Física de Sistemas complejos (BIFI) Facultad de CienciasUniversidad de Zaragoza Zaragoza 50009 Spain
| | - Pablo Alamán‐Valtierra
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Facultad de CienciasUniversidad de Zaragoza Zaragoza 50009 Spain
| | - Víctor Polo
- Departamento de Química Física Instituto de Biocomputación y Física de Sistemas complejos (BIFI) Facultad de CienciasUniversidad de Zaragoza Zaragoza 50009 Spain
| | - Raquel Puerta‐Oteo
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Facultad de CienciasUniversidad de Zaragoza Zaragoza 50009 Spain
| | - M. Victoria Jiménez
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Facultad de CienciasUniversidad de Zaragoza Zaragoza 50009 Spain
| | - Francisco J. Fernández‐Alvarez
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Facultad de CienciasUniversidad de Zaragoza Zaragoza 50009 Spain
| | - Jesús J. Pérez‐Torrente
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Facultad de CienciasUniversidad de Zaragoza Zaragoza 50009 Spain
| |
Collapse
|
24
|
Hulla M, Dyson PJ. Pivotal Role of the Basic Character of Organic and Salt Catalysts in C−N Bond Forming Reactions of Amines with CO
2. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906942] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Martin Hulla
- Institut des Sciences et Ingénierie Chimiques École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| |
Collapse
|
25
|
Hulla M, Dyson PJ. Pivotal Role of the Basic Character of Organic and Salt Catalysts in C-N Bond Forming Reactions of Amines with CO 2. Angew Chem Int Ed Engl 2019; 59:1002-1017. [PMID: 31364789 DOI: 10.1002/anie.201906942] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Indexed: 01/12/2023]
Abstract
Organocatalysts promote a range of C-N bond forming reactions of amines with CO2 . Herein, we review these reactions and attempt to identify the unifying features of the catalysts that allows them to promote a multitude of seemingly unrelated reactions. Analysis of the literature shows that these reactions predominantly proceed by carbamate salt formation in the form [BaseH][RR'NCOO]. The anion of the carbamate salt acts as a nucleophile in hydrosilane reductions of CO2 , internal cyclization reactions or after dehydration as an electrophile in the synthesis of urea derivatives. The reactions are enhanced by polar aprotic solvents and can be either promoted or hindered by H-bonding interactions. The predominant role of all types of organic and salt catalysts (including ionic liquids, ILs) is the stabilization of the carbamate salt, mostly by acting as a base. Catalytic enhancement depends on the combination of the amine, the base strength, the solvent, steric factors, ion pairing and H-bonding. A linear relationship between the base strength and the reaction yield has been demonstrated with IL catalysts in the synthesis of formamides and quinazoline-2,4-diones. The role of organocatalysts in the reactions indicates that all bases of sufficient strength should be able to catalyze the reactions. However, a physical limit to the extent of a purely base catalyzed reaction mechanism should exist, which needs to be identified, understood and overcome by synergistic or alternative methods.
Collapse
Affiliation(s)
- Martin Hulla
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
26
|
Recent Advances in the Chemical Fixation of Carbon Dioxide: A Green Route to Carbonylated Heterocycle Synthesis. Catalysts 2019. [DOI: 10.3390/catal9060511] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Carbon dioxide produced by human activities is one of the main contributions responsible for the greenhouse effect, which is modifying the Earth’s climate. Therefore, post-combustion CO2 capture and its conversion into high value-added chemicals are integral parts of today’s green industry. On the other hand, carbon dioxide is a ubiquitous, cheap, abundant, non-toxic, non-flammable and renewable C1 source. Among CO2 usages, this review aims to summarize and discuss the advances in the reaction of CO2, in the synthesis of cyclic carbonates, carbamates, and ureas appeared in the literature since 2017.
Collapse
|