1
|
Chen S, Zhu W, Zhan Y, Xia X. Antibacterial Activity of Phloretin Against Vibrio parahaemolyticus and Its Application in Seafood. Foods 2024; 13:3537. [PMID: 39593953 PMCID: PMC11592969 DOI: 10.3390/foods13223537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Although phloretin is widely utilized in the food industry as an additive, its effects on foodborne pathogens remain insufficiently investigated. This study aimed to evaluate the antimicrobial properties of phloretin (PHL) against Vibrio parahaemolyticus (V. parahaemolyticus) and to elucidate the potential mechanisms of action. After PHL treatment, alterations in the cell morphology, cell microstructure, and intracellular contents of V. parahaemolyticus were assessed. Scanning electron microscopy revealed substantial damage to cell integrity, subsequent to PHL treatment. A notable reduction in intracellular components, including proteins, ATP, and DNA, was observed in samples treated with PHL. PHL was shown to inhibit the activities of ATPase, β-galactosidase, and respiratory chain dehydrogenase in V. parahaemolyticus. Furthermore, it was demonstrated to elevate the intracellular levels of reactive oxygen species and promote cell death. After being applied to sea bass, shrimp, and oysters, PHL effectively inactivated V. parahaemolyticus in these seafoods. These findings demonstrate that PHL has potential for application in seafood to control V. parahaemolyticus.
Collapse
Affiliation(s)
| | | | | | - Xiaodong Xia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (S.C.); (W.Z.); (Y.Z.)
| |
Collapse
|
2
|
Wu J, Zhong K, Yang H, Zhang P, Yu N, Chen W, Zhang N, Gui S, Han L, Peng D. A holistic visualization for quality of Chinese materia medica: Structural and metabolic visualization by magnetic resonance imaging. J Pharm Anal 2024; 14:101019. [PMID: 39759970 PMCID: PMC11696849 DOI: 10.1016/j.jpha.2024.101019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 01/07/2025] Open
Abstract
The quality of Chinese materia medica (CMM) is a challenging and focused topic in the modernization of traditional Chinese medicine (TCM). A profound comprehension of the morphology, structure, active constituents, and dynamic changes during the whole process of CMM growth is essential, which needs highly precise contemporary techniques for in-depth elucidation. Magnetic resonance imaging (MRI) is a cutting-edge tool integrating the benefits of both nuclear magnetic resonance (NMR) spectroscopy and imaging technology. With real-time, non-destructive, and in situ detection capabilities, MRI has been previously used for monitoring internal and external structures of plants alongside compounds during physiological processes in vivo. Here, factors involved in the holistic quality evaluation of CMMs were investigated. Given the applications of MRI in various plants, several representative CMMs were used as examples to demonstrate a methodology of quality visualization by MRI, embodying holistically monitoring the real-time macroscopic morphology, mesoscopic structure, and microscopic metabolites non-destructively in situ. Taken together, the review not only presents a pioneering application mode for utilizing MRI for CMM quality visualization but also holds promise for advancing the quality control and evaluation of CMMs.
Collapse
Affiliation(s)
- Jing Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Kai Zhong
- Department of Biomedical Engineering, Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China
| | - Hongyi Yang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230012, China
| | - Peiliang Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Nianjun Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Ministry of Education-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Weidong Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Ministry of Education-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Na Zhang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230012, China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Ministry of Education-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lan Han
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Ministry of Education-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Ministry of Education-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
3
|
Wang Y, Minden A. Inhibition of NAMPT by PAK4 Inhibitors. Int J Mol Sci 2024; 25:10138. [PMID: 39337621 PMCID: PMC11431865 DOI: 10.3390/ijms251810138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The serine/threonine kinase PAK4 plays a crucial role in regulating cell proliferation, survival, migration, and invasion. Overexpression of PAK4 correlates with poor prognosis in some cancers. KPT-9274, a PAK4 inhibitor, significantly reduces the growth of triple-negative breast cancer cells and mammary tumors in mouse models, and it also inhibits the growth of several other types of cancer cells. Interestingly, although it was first identified as a PAK4 inhibitor, KPT-9274 was also found to inhibit the enzyme NAMPT (nicotinamide phosphoribosyltransferase), which is crucial for NAD (nicotinamide adenine dinucleotide) synthesis and vital for cellular energy and growth. These results made us question whether growth inhibition in response to KPT-9274 was due to PAK4 inhibition, NAMPT inhibition, or both. To address this, we tested several other PAK4 inhibitors that also inhibit cell growth, to determine whether they also inhibit NAMPT activity. Our findings confirm that multiple PAK4 inhibitors also inhibit NAMPT activity. This was assessed both in cell-free assays and in a breast cancer cell line. Molecular docking studies were also used to help us better understand the mechanism by which PAK4 inhibitors block PAK4 and NAMPT activity, and we identified specific residues on the PAK4 inhibitors that interact with NAMPT and PAK4. Our results suggest that PAK4 inhibitors may have a more complex mechanism of action than previously understood, necessitating further exploration of how they influence cancer cell growth.
Collapse
Affiliation(s)
- Yiling Wang
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Audrey Minden
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
4
|
Smailagić D, Dragišić Maksimović J, Marin M, Stupar S, Ninković S, Banjac N, Stanišić M. Phloretin inhibits the growth of Arabidopsis shoots by inducing chloroplast damage and programmed cell death. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154354. [PMID: 39341101 DOI: 10.1016/j.jplph.2024.154354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Phloretin is a key secondary metabolite produced by apple trees. Known for its strong antioxidant properties, this dihydrochalcone has been extensively studied in animals but less so in plants. Recently, we identified phloretin as a phytotoxic allelochemical that inhibits growth in the model plant Arabidopsis by disrupting auxin metabolism and distribution in the roots. In this study, we found that phloretin significantly hinders the growth of Arabidopsis seedlings' aerial parts after a short-term treatment (10 days) and causes their decay after long-term exposure (28 days). These effects result from ultrastructural damage in the mesophyll cells of the leaves, including chloroplast displacement and swelling, lesions, and alterations in thylakoid and cell wall organization. Interestingly, phloretin-treated plants showed a decrease in malondialdehyde levels and antioxidant enzyme activities, while hydrogen peroxide and proline levels remained unchanged. This suggests that phloretin-induced chlorosis and seedling decay are not due to oxidative stress but rather to severe chloroplast structural damage, leading to inefficient photosynthesis, starch degradation, starvation, and activation of micro- and macroautophagic processes for self-preservation. Ultimately, these processes result in programmed cell death. These new insights into the phytotoxic effects of phloretin on Arabidopsis shoots could pave the way for future research into phloretin as a potential multitarget bioherbicide and enhance our understanding of autoallelopathy in apple trees.
Collapse
Affiliation(s)
- Dijana Smailagić
- Institute for Biological Research 'Siniša Stanković' - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Marija Marin
- University of Belgrade, Faculty of Biology, Belgrade, Serbia
| | - Sofija Stupar
- Institute for Biological Research 'Siniša Stanković' - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Slavica Ninković
- Institute for Biological Research 'Siniša Stanković' - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nevena Banjac
- Institute for Biological Research 'Siniša Stanković' - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mariana Stanišić
- Institute for Biological Research 'Siniša Stanković' - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
5
|
Đorđić M, Janošević D, Smailagić D, Banjac N, Ninković S, Stanišić M, Trajković M. Effects of Phloretin on Seedling Growth and Histochemical Distribution of Phenols, Polysaccharides and Lipids in Capsella bursa-pastoris (L.) Medik. PLANTS (BASEL, SWITZERLAND) 2024; 13:1890. [PMID: 39065417 PMCID: PMC11280091 DOI: 10.3390/plants13141890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
The present study evaluates the phytotoxic effects of phloretin, a prevalent secondary metabolite of apple trees, on the broadleaf weed Capsella bursa-pastoris (L.) Medik. known for its resistant myxospermous seeds that form a long-lasting soil bank. The results indicate a significant, dose-dependent inhibitory effect of phloretin on the growth and morphological parameters of weed seedlings grown in vitro. Although the applied phloretin concentrations (250-1000 µM) were not lethal to the C. bursa-pastoris seedlings after two weeks, the metabolism of the seedlings was impaired, resulting in an accumulation of lipid droplets in the root tips and root hairs. Histochemical analysis shows deposits of phenols in the root epidermal cells, which are probably aggregates of phloretin or its metabolic derivatives. The accumulation of pectin in the cell walls of root border cells in phloretin-treated seedlings indicates an attempt to reduce the uptake of phloretin and reduce its concentration in the cells. Inhibition of shoot growth associated with chlorosis and reduced photosynthetic pigment content is a consequence of seedling exposure to phloretin. This study provides a basis for further evaluation of phloretin as a new bioherbicidal compound and for elucidating the mechanism underlying its phytotoxic activity.
Collapse
Affiliation(s)
- Milica Đorđić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (M.Đ.); (D.S.); (N.B.); (S.N.); (M.S.)
| | - Dušica Janošević
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia;
| | - Dijana Smailagić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (M.Đ.); (D.S.); (N.B.); (S.N.); (M.S.)
| | - Nevena Banjac
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (M.Đ.); (D.S.); (N.B.); (S.N.); (M.S.)
| | - Slavica Ninković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (M.Đ.); (D.S.); (N.B.); (S.N.); (M.S.)
| | - Mariana Stanišić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (M.Đ.); (D.S.); (N.B.); (S.N.); (M.S.)
| | - Milena Trajković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (M.Đ.); (D.S.); (N.B.); (S.N.); (M.S.)
| |
Collapse
|
6
|
Kofman K, Levin M. Bioelectric pharmacology of cancer: A systematic review of ion channel drugs affecting the cancer phenotype. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:25-39. [PMID: 38971325 DOI: 10.1016/j.pbiomolbio.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Cancer is a pernicious and pressing medical problem; moreover, it is a failure of multicellular morphogenesis that sheds much light on evolutionary developmental biology. Numerous classes of pharmacological agents have been considered as cancer therapeutics and evaluated as potential carcinogenic agents; however, these are spread throughout the primary literature. Here, we briefly review recent work on ion channel drugs as promising anti-cancer treatments and present a systematic review of the known cancer-relevant effects of 109 drugs targeting ion channels. The roles of ion channels in cancer are consistent with the importance of bioelectrical parameters in cell regulation and with the functions of bioelectric signaling in morphogenetic signals that act as cancer suppressors. We find that compounds that are well-known for having targets in the nervous system, such as voltage-gated ion channels, ligand-gated ion channels, proton pumps, and gap junctions are especially relevant to cancer. Our review suggests further opportunities for the repurposing of numerous promising candidates in the field of cancer electroceuticals.
Collapse
Affiliation(s)
- Karina Kofman
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Michael Levin
- Allen Discovery Center at Tufts University, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, USA.
| |
Collapse
|
7
|
Gu Q, An Y, Xu M, Huang X, Chen X, Li X, Shan H, Zhang M. Disulfidptosis, A Novel Cell Death Pathway: Molecular Landscape and Therapeutic Implications. Aging Dis 2024:AD.2024.0083. [PMID: 38739940 DOI: 10.14336/ad.2024.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Programmed cell death is pivotal for several physiological processes, including immune defense. Further, it has been implicated in the pathogenesis of developmental disorders and the onset of numerous diseases. Multiple modes of programmed cell death, including apoptosis, pyroptosis, necroptosis, and ferroptosis, have been identified, each with their own unique characteristics and biological implications. In February 2023, Liu Xiaoguang and his team discovered "disulfidptosis," a novel pathway of programmed cell death. Their findings demonstrated that disulfidptosis is triggered in glucose-starved cells exhibiting high expression of a protein called SLC7A11. Furthermore, disulfidptosis is marked by a drastic imbalance in the NADPH/NADP+ ratio and the abnormal accumulation of disulfides like cystine. These changes ultimately lead to the destabilization of the F-actin network, causing cell death. Given that high SLC7A11 expression is a key feature of certain cancers, these findings indicate that disulfidptosis could serve as the basis of innovative anti-cancer therapies. Hence, this review delves into the discovery of disulfidptosis, its underlying molecular mechanisms and metabolic regulation, and its prospective applications in disease treatment.
Collapse
Affiliation(s)
- Qiuyang Gu
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yumei An
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Mingyuan Xu
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Xinqi Huang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Xueshi Chen
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Xianzhe Li
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Mingyang Zhang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
8
|
Dachani S, Kaleem M, Mujtaba MA, Mahajan N, Ali SA, Almutairy AF, Mahmood D, Anwer MK, Ali MD, Kumar S. A Comprehensive Review of Various Therapeutic Strategies for the Management of Skin Cancer. ACS OMEGA 2024; 9:10030-10048. [PMID: 38463249 PMCID: PMC10918819 DOI: 10.1021/acsomega.3c09780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
Skin cancer (SC) poses a global threat to the healthcare system and is expected to increase significantly over the next two decades if not diagnosed at an early stage. Early diagnosis is crucial for successful treatment, as the disease becomes more challenging to cure as it progresses. However, identifying new drugs, achieving clinical success, and overcoming drug resistance remain significant challenges. To overcome these obstacles and provide effective treatment, it is crucial to understand the causes of skin cancer, how cells grow and divide, factors that affect cell growth, and how drug resistance occurs. In this review, we have explained various therapeutic approaches for SC treatment via ligands, targeted photosensitizers, natural and synthetic drugs for the treatment of SC, an epigenetic approach for management of melanoma, photodynamic therapy, and targeted therapy for BRAF-mutated melanoma. This article also provides a detailed summary of the various natural drugs that are effective in managing melanoma and reducing the occurrence of skin cancer at early stages and focuses on the current status and future prospects of various therapies available for the management of skin cancer.
Collapse
Affiliation(s)
- Sudharshan
Reddy Dachani
- Department
of Pharmacy Practice, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Mohammed Kaleem
- Department
of Pharmacology, Babasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Md. Ali Mujtaba
- Department
of Pharmaceutics, Faculty of Pharmacy, Northern
Border University, Arar 91911, Saudi Arabia
| | - Nilesh Mahajan
- Department
of Pharmaceutics, Dabasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Sayyed A. Ali
- Department
of Pharmaceutics, Dabasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Ali F Almutairy
- Department
of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Danish Mahmood
- Department
of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Md. Khalid Anwer
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammad Daud Ali
- Department
of Pharmacy, Mohammed Al-Mana College for
Medical Sciences, Abdulrazaq Bin Hammam Street, Al Safa 34222, Dammam, Saudi Arabia
| | - Sanjay Kumar
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Uttar Pradesh 201306, India
| |
Collapse
|
9
|
Pal S, Sharma D, Yadav NP. Plant leads for mitigation of oral submucous fibrosis: Current scenario and future prospect. Oral Dis 2024; 30:80-99. [PMID: 36565439 DOI: 10.1111/odi.14485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/25/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
The aim of this review is to enumerate medicinal plants and their bioactive compounds that may become potential leads in the mitigation of oral submucous fibrosis (OSMF) in the forthcoming future. It is focused on pathophysiology, risk factors, current treatment regimen, potential plant leads, and future therapies for OSMF. Data were extracted from a vast literature survey by using SciFinder, Web of Science, Google Scholar, and PubMed search engines with relevant keywords. Upon literature survey, we found that the phytochemical 'arecoline' present in the areca nut is the main causative agent of OSMF condition. Currently, OSMF is treated by immunomodulatory and anti-inflammatory agents such as corticosteroids, enzymes (hyaluronidase, chymotrypsin, and collagenase), anti-inflammatory mediators (isoxsuprine and pentoxifylline), dietary supplements (vitamins, antioxidants, and micronutrients), and anti-fibrotic cytokines like interferon-gamma that provides short-term symptomatic relief to OSMF patients. However, some plant leads have been proven effective in alleviating symptoms and mitigating OSMF, which ultimately improves the quality of OSMF patients' life. We concluded that plant drugs like lycopene, curcumin, Aloe vera, colchicine, and Glycyrrhiza glabra are effective against OSMF in various in vitro and/or clinical studies and are being used by modern and traditional practitioners.
Collapse
Affiliation(s)
- Sarita Pal
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Disha Sharma
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Narayan Prasad Yadav
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
10
|
Elmetwalli A, Kamosh NH, El Safty R, Youssef AI, Salama MM, Abd El-Razek KM, El-Sewedy T. Novel phloretin-based combinations targeting glucose metabolism in hepatocellular carcinoma through GLUT2/PEPCK axis of action: in silico molecular modelling and in vivo studies. Med Oncol 2023; 41:12. [PMID: 38078989 DOI: 10.1007/s12032-023-02236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is commonly associated with disturbances in glucose metabolism and enhanced glycolysis. However, a controversial role for gluconeogenesis was reported to be tumor-promoting and tumor-suppressive. We investigated novel anti-HCC treatments through either the simultaneous inhibition of glycolysis and gluconeogenesis by "phloretin" and "sodium meta-arsenite", respectively (Combination 1); or the concurrent inhibition of glycolysis and induction of gluconeogenesis by phloretin and dexamethasone, respectively, (combination 2). A total of 110 Swiss albino mice were divided into eleven groups, HCC was induced by N, N-dimethyl-4-aminoazobenzene. We have measured the expression of the glucose transporter 2 (GLUT2), Phosphoenolpyruvate carboxykinases (PEPCK), Caspase-3, Beclin 1, Cyclin D1, and cytokeratin 18 genes; blood glucose and ATP levels; alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Furthermore, in silico molecular docking was performed to investigate the potential drug-receptor interactions. Histologically, the phloretin-based combinations resulted in a significant regression of malignant tissue compared to various treatments. GLUT2 and PEPCK mRNA analysis indicated successful off/on modulation of glycolysis and gluconeogenesis. Docking confirmed the potent binding between phloretin, sodium meta-arsenite, and dexamethasone with GLUT2, PEPCK, and Retinoid X Receptor Alpha, respectively. Molecularly, Combination 2 resulted in the highest reduction in cyclin D1, cytokeratin 18, and Beclin 1 expression contemporaneously with the upregulation in Caspase-3 levels. Biochemically, both combinations caused a significant reduction in ATP levels, ALT, and AST activity compared to the other groups. In conclusion, we propose two novel phloretin-based combinations that can be used in treating HCC through the regulation of glucose metabolism and ATP production.
Collapse
Affiliation(s)
- Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
- Microbiology Division, Higher Technological Institute of Applied Health Sciences, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
| | | | | | - Amany I Youssef
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mohammed M Salama
- Department of Histochemistry and Cell Biology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Khaled M Abd El-Razek
- Experimental Animal Unit, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Tarek El-Sewedy
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
11
|
Li L, Wang MQ, Duan F, Zhang JL, Yuan B, Cui B, Zhang H, Yan JY. Development and evaluation of polyacrylamide microspheres loaded with phloretin and tantalum for transcatheter arterial embolization. RSC Adv 2023; 13:35429-35434. [PMID: 38058558 PMCID: PMC10696423 DOI: 10.1039/d3ra05841g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
Transcatheter arterial embolization is an effective treatment for liver cancer. However, the development of novel embolic agents remains a challenge. In this study, we evaluated polyacrylic acid microspheres loaded with phloretin and tantalum as potential embolic agents for liver cancer treatment. Microspheres were synthesised via emulsion polymerisation and characterised in terms of size, shape, and drug-loading efficiency. Nanosized tantalum powder (0 to 15%) was added to the microspheres as an X-ray blocking agent. The maximum drug-loading capacity of the microspheres was approximately 20 mg g-1. The phloretin-loaded microspheres showed a sustained drug release profile in vitro. The microspheres were also evaluated for their in vivo anticancer efficacy in a rabbit VX2 liver tumour model. In conclusion, polyacrylic acid microspheres loaded with phloretin and tantalum have great potential as novel embolic agents for transcatheter arterial embolization for liver cancer treatment.
Collapse
Affiliation(s)
- Liang Li
- Chinese PLA Medical School Beijing 100853 PR China
| | - Mao Qiang Wang
- Chinese PLA Medical School Beijing 100853 PR China
- Department of Interventional Radiology, Chinese PLA General Hospital Beijing 100853 PR China
| | - Feng Duan
- Department of Interventional Radiology, Chinese PLA General Hospital Beijing 100853 PR China
| | - Jin Long Zhang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University Beijing 100730 PR China
| | - Bing Yuan
- Department of Interventional Radiology, Chinese PLA General Hospital Beijing 100853 PR China
| | - Bao Cui
- Department of Interventional, Bethune International Peace Hospital Shijiazhuang 050082 PR China
| | - Heng Zhang
- Chinese PLA Medical School Beijing 100853 PR China
- Department of Radiology, National Clinical Research Center for Geriatric Diseases/Second Medical Center of Chinese PLA General Hospital Beijing 100853 China
| | - Jie Yu Yan
- Department of Interventional Radiology, Chinese PLA General Hospital Beijing 100853 PR China
| |
Collapse
|
12
|
Chhimwal J, Dhritlahre RK, Anand P, Ruchika, Patial V, Saneja A, Padwad YS. Amorphous solid dispersion augments the bioavailability of phloretin and its therapeutic efficacy via targeting mTOR/SREBP-1c axis in NAFLD mice. BIOMATERIALS ADVANCES 2023; 154:213627. [PMID: 37748276 DOI: 10.1016/j.bioadv.2023.213627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023]
Abstract
The escalating incidences of non-alcoholic fatty liver disease (NAFLD) and associated metabolic disorders are global health concerns. Phloretin (Ph) is a natural phenolic compound, that exhibits a wide array of pharmacological actions including its efficacy towards NAFLD. However, poor solubility and bioavailability of phloretin limits its clinical translation. Here, to address this concern we developed an amorphous solid dispersion of phloretin (Ph-SD) using Soluplus® as a polymer matrix. We further performed solid-state characterization through SEM, P-XRD, FT-IR, and TGA/DSC analysis. Phloretin content, encapsulation efficiency, and dissolution profile of the developed formulation were evaluated through reverse phase HPLC. Finally, the oral bioavailability of Ph-SD and its potential application in the treatment of experimental NAFLD mice was investigated. Results demonstrated that the developed formulation (Ph-PD) augments the dissolution profile and oral bioavailability of the native phloretin (Ph). In NAFLD mice, histopathological studies revealed the preventive effect of Ph-SD on degenerative changes, lipid accumulation, and inflammation in the liver. Ph-SD also improved the serum lipid profile, ALT, and AST levels and lowered the interleukin-6 and tumor necrosis factor-α levels in the liver. Further, Ph-SD reduced fibrotic changes in the liver tissues and attenuates NAFLD progression by blocking the mTOR/SREBP-1c pathway. In a nutshell, the results of our study strongly suggest that Ph-SD has the potential to be a therapeutic candidate in the treatment of NAFLD and can be carried forward for further clinical studies.
Collapse
Affiliation(s)
- Jyoti Chhimwal
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Rakesh Kumar Dhritlahre
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Prince Anand
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Ruchika
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Ankit Saneja
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Yogendra S Padwad
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
13
|
Li J, Yang Q, Liu H, Wang M, Pan C, Han L, Lan X. Phloretin alleviates palmitic acid-induced oxidative stress in HUVEC cells by suppressing the expression of LncBAG6-AS. Food Funct 2023; 14:9350-9363. [PMID: 37782102 DOI: 10.1039/d3fo03523a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Oxidative stress (OS) is an important trigger of vascular endothelial injury (VEI), which then leads to cardiovascular disease (CVDs). Phloretin was previously investigated to alleviate OS in human umbilical vein endothelial cells (HUVECs) by activating the AMPK/Nrf2 pathway; however, whether phloretin exerts cardiovascular health benefits by targeting non-coding RNAs (ncRNAs) remains unclear. Herein, the whole transcriptome sequencing and lncRNA library building were performed on HUVECs, a commonly used cell line for CVDs study, from different groups in control (CK), palmitic acid (PA, 100 μM), and PA + phloretin (50 μM, G50). KEGG analysis demonstrated that DE-lncRNAs regulated the pathway related to OS and metabolism in HUVECs. LncBAG6-AS was highly expressed under OS stimulation, which was reversed by phloretin co-treatment. Moreover, the MMP, activities of SOD, GSH-Px, T-AOC and GR were significantly ameliorated after interference of LncBAG6-AS, which were consistent with phloretin recover group. Furthermore, the expression of DE-genes from previously reported mRNA sequencing, including MAPK10, PIK3R1, ATP2B4, AKT2, and ADCY9, were significantly changed with LncBAG6-AS interference, indicating that LncBAG6-AS may participate in the process of OS attenuation by phloretin through regulating gene expression. So, the transcriptome sequencing of HUVECs with LncBAG6-AS knockdown was subsequently performed and DE-genes for "NC vs. si-ASO-LncBAG6-AS" were significantly enriched with GO terms, such as apoptosis, response to OS, ferroptosis, and others, which were similar to those observed from KEGG analysis. Overall, this study provides new insights into the molecular mechanisms by which bioactive substances alleviate OS and potential targets for the early prevention and treatment of VEI.
Collapse
Affiliation(s)
- Jie Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China.
| | - Qing Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China.
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, P. R. China.
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjing, 300072, P. R. China
| | - Hongfei Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100089, P. R. China
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, P. R. China.
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China.
| | - Lin Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, P. R. China.
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China.
| |
Collapse
|
14
|
Deshpande RD, Shah DS, Gurram S, Jha DK, Batabyal P, Amin PD, Sathaye S. Formulation, characterization, pharmacokinetics and antioxidant activity of phloretin oral granules. Int J Pharm 2023; 645:123386. [PMID: 37678475 DOI: 10.1016/j.ijpharm.2023.123386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/10/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
Phloretin (PHL), a flavonoid of the dihydrogen chalcone class, is reported to have low oral bioavailability due to its poor solubility and absorption. A common approach to enhance the solubility of such flavonoids is solubilization in a polymeric or lipidic matrix which would help in enhance dissolution rate and solubility. Accordingly, in the current study PHL was dissolved in Gelucire® 44/14 by melt-fusion technique and the viscous semisolid melt was adsorbed on a solid carrier to obtain free flowing granules. SeDeM-SLA (Solid-Liquid Adsorption) expert system was employed to select the most suitable carrier. This study achieved positive outcomes through the successful development of formulated oral PHL granules. The granules exhibited good stability, and favourable pharmacokinetic properties. In addition, the selected carrier effectively retained the antioxidant properties of PHL.
Collapse
Affiliation(s)
- Radni D Deshpande
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Devanshi S Shah
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Sharda Gurram
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Durgesh K Jha
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Paramita Batabyal
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Purnima D Amin
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Sadhana Sathaye
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
15
|
Lu Z, Chen H, Mo J, Yuan X, Wang D, Zheng X, Zhu W. Cocrystal of phloretin with isoniazid: preparation, characterization, and evaluation. RSC Adv 2023; 13:10914-10922. [PMID: 37033443 PMCID: PMC10077513 DOI: 10.1039/d3ra00750b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/14/2023] [Indexed: 04/08/2023] Open
Abstract
Phloretin (Phl) is a natural flavonoid compound with wide range of biological activities but demonstrates poor water solubility and limited pharmacological effects. In this study, one cocrystal of phloretin-isoniazid (Phl-Inz) was prepared successfully using the solvent evaporation method. The physical properties of cocrystal were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TG), powder X-ray diffraction (PXRD), Fourier-transform infrared (FT-IR) and single crystal X-ray diffraction (SCXRD). The Hirshfeld surface analysis explained further interactions in the cocrystal. The solubility test showed that the solubility of the cocrystal was increased at pH 1.2 and pH 6.8 compared to that of the pure drug. The test in vitro simulated gastrointestinal digestion showed that the release of phloretin in the cocrystal was better than that in the pure phloretin. The results of the DPPH and ABTS scavenging activity showed that the in vitro antioxidant activity of the cocrystal was improved. The anticancer assay exhibited improved cytotoxicity in the Phl-Inz cocrystal as compared with the pure Phl.
Collapse
Affiliation(s)
- Zhongyu Lu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou China
| | - Hankun Chen
- Research and Development Department, Guangzhou Qinglan Biotechnology Company Limited Guangzhou China
| | - Jiaxin Mo
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou China
| | - Xiaohong Yuan
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou China
| | - Dawei Wang
- ShunDe Hospital, Guangzhou University of Chinese Medicine Foshan China
| | - Xianhui Zheng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou China
| | - Wei Zhu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou China
| |
Collapse
|
16
|
Ibrahim TA, Hegazy MM, Maatooq GT, El-Hela AA. Ultra-performance liquid chromatography coupled with quadrupole high-resolution time-of-flight mass spectrometry for metabolite profiling and biological activity of Stellaria pallida (Dumort) Piré. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03055-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
17
|
Liu HM, Cheng MY, Xun MH, Zhao ZW, Zhang Y, Tang W, Cheng J, Ni J, Wang W. Possible Mechanisms of Oxidative Stress-Induced Skin Cellular Senescence, Inflammation, and Cancer and the Therapeutic Potential of Plant Polyphenols. Int J Mol Sci 2023; 24:ijms24043755. [PMID: 36835162 PMCID: PMC9962998 DOI: 10.3390/ijms24043755] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
As the greatest defense organ of the body, the skin is exposed to endogenous and external stressors that produce reactive oxygen species (ROS). When the antioxidant system of the body fails to eliminate ROS, oxidative stress is initiated, which results in skin cellular senescence, inflammation, and cancer. Two main possible mechanisms underlie oxidative stress-induced skin cellular senescence, inflammation, and cancer. One mechanism is that ROS directly degrade biological macromolecules, including proteins, DNA, and lipids, that are essential for cell metabolism, survival, and genetics. Another one is that ROS mediate signaling pathways, such as MAPK, JAK/STAT, PI3K/AKT/mTOR, NF-κB, Nrf2, and SIRT1/FOXO, affecting cytokine release and enzyme expression. As natural antioxidants, plant polyphenols are safe and exhibit a therapeutic potential. We here discuss in detail the therapeutic potential of selected polyphenolic compounds and outline relevant molecular targets. Polyphenols selected here for study according to their structural classification include curcumin, catechins, resveratrol, quercetin, ellagic acid, and procyanidins. Finally, the latest delivery of plant polyphenols to the skin (taking curcumin as an example) and the current status of clinical research are summarized, providing a theoretical foundation for future clinical research and the generation of new pharmaceuticals and cosmetics.
Collapse
Affiliation(s)
- Hui-Min Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
| | - Ming-Yan Cheng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Meng-Han Xun
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhi-Wei Zhao
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yun Zhang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wei Tang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jun Cheng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jia Ni
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
- Correspondence: ; Tel.: +86-18918830550
| |
Collapse
|
18
|
Zhang L, Tang Z, Zheng H, Zhong C, Zhang Q. Comprehensive Analysis of Metabolome and Transcriptome in Fruits and Roots of Kiwifruit. Int J Mol Sci 2023; 24:ijms24021299. [PMID: 36674815 PMCID: PMC9861564 DOI: 10.3390/ijms24021299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Kiwifruit (Actinidia chinensis) roots instead of fruits are widely used as Chinese medicine, but the functional metabolites remain unclear. In this study, we conducted comparative metabolome analysis between root and fruit in kiwifruit. A total of 410 metabolites were identified in the fruit and root tissues, and of them, 135 metabolites were annotated according to the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway. Moreover, 54 differentially expressed metabolites (DEMs) were shared in root and fruit, with 17 DEMs involved in the flavonoid pathway. Of the 17 DEMs, three flavonols (kaempferol-3-rhamnoside, L-Epicatechin and trifolin) and one dihydrochalcone (phloretin) showed the highest differences in the content level, suggesting that flavonols and dihydrochalcones may act as functional components in kiwifruit root. Transcriptome analysis revealed that genes related to flavonols and dihydrochalcones were highly expressed in root. Moreover, two AP2 transcription factors (TFs), AcRAP2-4 and AcAP2-4, were highly expressed in root, while one bHLH TF AcbHLH62 showed extremely low expression in root. The expression profiles of these TFs were similar to those of the genes related to flavonols and dihydrochalcones, suggesting they are key candidate genes controlling the flavonoid accumulation in kiwifruit. Our results provided an insight into the functional metabolites and their regulatory mechanism in kiwifruit root.
Collapse
Affiliation(s)
- Long Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhengmin Tang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Hao Zheng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Caihong Zhong
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence: (C.Z.); (Q.Z.)
| | - Qiong Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence: (C.Z.); (Q.Z.)
| |
Collapse
|
19
|
Shirgadwar SM, Kumar R, Preeti K, Khatri DK, Singh SB. Neuroprotective Effect of Phloretin in Rotenone-Induced Mice Model of Parkinson's Disease: Modulating mTOR-NRF2-p62 Mediated Autophagy-Oxidative Stress Crosstalk. J Alzheimers Dis 2023; 94:S109-S124. [PMID: 36463449 PMCID: PMC10473071 DOI: 10.3233/jad-220793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is an age-related progressive multifactorial, neurodegenerative disease. The autophagy and Keap1-Nrf2 axis system are both implicated in the oxidative-stress response, metabolic stress, and innate immunity, and their dysregulation is associated with pathogenic processes in PD. Phloretin (PLT) is a phenolic compound reported possessing anti-inflammatory and antioxidant activities. OBJECTIVE To evaluate the neuroprotective potential of PLT in PD via modulating the autophagy-antioxidant axisMethods:The neuroprotective effect of PLT was evaluated in vitro using rotenone (ROT) exposed SH-SY5Y cell line and in vivo using ROT administered C57BL/6 mice. Mice were administered with PLT (50 and 100 mg/kg, p.o.) concomitantly with ROT (1 mg/kg, i.p) for 3 weeks. Locomotive activity and anxiety behaviors were assessed using rotarod and open field tests respectively. Further apoptosis (Cytochrome-C, Bax), α-Synuclein (α-SYN), tyrosine hydroxylase (TH), antioxidant proteins (nuclear factor erythroid 2-related factor 2 (NRF2), heme oxygenase-1 (HO-1) and autophagic (mTOR, Atg5,7, p62, Beclin,LC3B-I/II) protein activity were evaluated both in in vitro and in vivo. RESULTS PLT improved locomotive activity and anxiety-like behavior in mice. Further PLT diminished apoptotic cell death, α-SYN expression and improved the expression of TH, antioxidant, and autophagic regulating protein. CONCLUSION Taken together, present data deciphers that the PLT effectively improves motor and non-motor symptoms via modulating the mTOR/NRF2/p62 pathway-mediated feedback loop. Hence, PLT could emerge as a prospective disease-modifying drug for PD management.
Collapse
Affiliation(s)
- Shubhendu M. Shirgadwar
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Rahul Kumar
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Kumari Preeti
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| |
Collapse
|
20
|
Tuli HS, Rath P, Chauhan A, Ramniwas S, Vashishth K, Varol M, Jaswal VS, Haque S, Sak K. Phloretin, as a Potent Anticancer Compound: From Chemistry to Cellular Interactions. Molecules 2022; 27:8819. [PMID: 36557950 PMCID: PMC9787340 DOI: 10.3390/molecules27248819] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Phloretin is a natural dihydrochalcone found in many fruits and vegetables, especially in apple tree leaves and the Manchurian apricots, exhibiting several therapeutic properties, such as antioxidant, antidiabetic, anti-inflammatory, and antitumor activities. In this review article, the diverse aspects of the anticancer potential of phloretin are addressed, presenting its antiproliferative, proapoptotic, antimetastatic, and antiangiogenic activities in many different preclinical cancer models. The fact that phloretin is a planar lipophilic polyphenol and, thus, a membrane-disrupting Pan-Assay Interference compound (PAIN) compromises the validity of the cell-based anticancer activities. Phloretin significantly reduces membrane dipole potential and, therefore, is expected to be able to activate a number of cellular signaling pathways in a non-specific way. In this way, the effects of this minor flavonoid on Bax and Bcl-2 proteins, caspases and MMPs, cytokines, and inflammatory enzymes are all analyzed in the current review. Moreover, besides the anticancer activities exerted by phloretin alone, its co-effects with conventional anticancer drugs are also under discussion. Therefore, this review presents a thorough overview of the preclinical anticancer potential of phloretin, allowing one to take the next steps in the development of novel drug candidates and move on to clinical trials.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Prangya Rath
- Amity Institute of Environmental Sciences, Amity University, Noida 201303, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida 201303, India
| | - Seema Ramniwas
- University Centre for Research & Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali 140413, India
| | - Kanupriya Vashishth
- Advance Cardiac Centre Department of Cardiology, Post Graduate Institute of Medical Education and Research (PGIMER) Chandigarh, Chandigarh 160012, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Kotekli Campus, Mugla Sitki Kocman University, Mugla 48000, Turkey
| | - Vivek Sheel Jaswal
- Department of Chemistry and Chemical Science, School of Physical & Material Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | | |
Collapse
|
21
|
Taxillus chinensis (DC.) Danser: a comprehensive review on botany, traditional uses, phytochemistry, pharmacology, and toxicology. Chin Med 2022; 17:136. [PMID: 36482376 PMCID: PMC9730624 DOI: 10.1186/s13020-022-00694-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/26/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Taxillus chinensis (DC.) Danser (T. chinensis), known as "Sangjisheng" in Chinese, is a member of the family Loranthaceae, with the traditional functions of "dispelling wind dampness, strengthening bones and muscles, and preventing miscarriage". Since Eastern Han dynasty, it has been used for the treatment of rheumatoid arthritis, arthralgia, threatened abortion, and hypertension. Nowadays, T. chinensis is included in the 2020 Edition of the Chinese Pharmacopoeia as Taxilli Herba. The purpose of this review is to summarize the latest research on T. chinensis in recent years, and make critical comments, so as to provide reference for the clinical application and modern research of T. chinensis. MAIN BODY In this review, we summarize the botany, traditional uses, and research advances in the phytochemistry and pharmacological effects of T. chinensis. Its toxicity has also been discussed. The published literature on current pharmacological and toxicological data has also been assessed. To date, approximately 110 compounds, including flavonoids, phenolic acids, phenylpropanoids, tannins, glycosides, amino acids, and nucleosides, have been identified in T. chinensis. Flavonoids are considered the most vital bioactive ingredients in T. chinensis. Pharmacological studies have demonstrated that T. chinensis possesses anti-inflammatory, antioxidant, anticancer, antimicrobial, antiviral, diuretic, antihypertensive, antihyperglycemic, and other properties. CONCLUSION Currently, research on T. chinensis is in the preliminary stages, and further research is required to understand the active compounds present and mechanisms of action. We hope that this comprehensive review of T. chinensis will serve as a background for further research.
Collapse
|
22
|
A carbon-carbon hydrolase from human gut probiotics Flavonifractor plautii catalyzes phloretin conversion. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Bergling K, Martus G, Öberg CM. Phloretin Improves Ultrafiltration and Reduces Glucose Absorption during Peritoneal Dialysis in Rats. J Am Soc Nephrol 2022; 33:1857-1863. [PMID: 35985816 PMCID: PMC9528341 DOI: 10.1681/asn.2022040474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Harmful glucose exposure and absorption remain major limitations of peritoneal dialysis (PD). We previously showed that inhibition of sodium glucose cotransporter 2 did not affect glucose transport during PD in rats. However, more recently, we found that phlorizin, a dual blocker of sodium glucose cotransporters 1 and 2, reduces glucose diffusion in PD. Therefore, either inhibiting sodium glucose cotransporter 1 or blocking facilitative glucose channels by phlorizin metabolite phloretin would reduce glucose transport in PD. METHODS We tested a selective blocker of sodium glucose cotransporter 1, mizagliflozin, as well as phloretin, a nonselective blocker of facilitative glucose channels, in an anesthetized Sprague-Dawley rat model of PD. RESULTS Intraperitoneal phloretin treatment reduced glucose absorption by >30% and resulted in a >50% higher ultrafiltration rate compared with control animals. Sodium removal and sodium clearances were similarly improved, whereas the amount of ultrafiltration per millimole of sodium removed did not differ. Mizagliflozin did not influence glucose transport or osmotic water transport. CONCLUSIONS Taken together, our results and previous results indicate that blockers of facilitative glucose channels may be a promising target for reducing glucose absorption and improving ultrafiltration efficiency in PD.
Collapse
Affiliation(s)
- Karin Bergling
- Division of Nephrology, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, Lund, Sweden
| | - Giedre Martus
- Division of Nephrology, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, Lund, Sweden
| | - Carl M. Öberg
- Division of Nephrology, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
24
|
Targeting Virulence Factors of Candida albicans with Natural Products. Foods 2022; 11:foods11192951. [PMID: 36230026 PMCID: PMC9562657 DOI: 10.3390/foods11192951] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Natural products derived from natural resources, including nutritional functional food, play an important role in human health. In recent years, the study of anti-fungal and other properties of agri-foods and derived functional compounds has been a hot research topic. Candida albicans is a parasitic fungus that thrives on human mucosal surfaces, which are colonized through opportunistic infection. It is the most prevalent cause of invasive fungal infection in immunocompromised individuals, resulting in a wide variety of clinical symptoms. Moreover, the efficacy of classical therapeutic medications such as fluconazole is often limited by the development of resistance. There is an ongoing need for the development of novel and effective antifungal therapy and medications. Infection of C. albicans is influenced by a great quantity of virulence factors, like adhesion, invasion-promoting enzymes, mycelial growth, and phenotypic change, and among others. Furthermore, various natural products especially from food sources that target C. albicans virulence factors have been researched, providing promising prospects for C. albicans prevention and treatment. In this review, we discuss the virulence factors of C. albicans and how functional foods and derived functional compounds affect them. Our hope is that this review will stimulate additional thoughts and suggestions regarding nutritional functional food and therapeutic development for patients afflicted with C. albicans.
Collapse
|
25
|
Nakhate KT, Badwaik H, Choudhary R, Sakure K, Agrawal YO, Sharma C, Ojha S, Goyal SN. Therapeutic Potential and Pharmaceutical Development of a Multitargeted Flavonoid Phloretin. Nutrients 2022; 14:nu14173638. [PMID: 36079895 PMCID: PMC9460114 DOI: 10.3390/nu14173638] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Phloretin is a flavonoid of the dihydrogen chalcone class, present abundantly in apples and strawberries. The beneficial effects of phloretin are mainly associated with its potent antioxidant properties. Phloretin modulates several signaling pathways and molecular mechanisms to exhibit therapeutic benefits against various diseases including cancers, diabetes, liver injury, kidney injury, encephalomyelitis, ulcerative colitis, asthma, arthritis, and cognitive impairment. It ameliorates the complications associated with diabetes such as cardiomyopathy, hypertension, depression, memory impairment, delayed wound healing, and peripheral neuropathy. It is effective against various microbial infections including Salmonella typhimurium, Listeria monocytogenes, Mycobacterium tuberculosis, Escherichia coli, Candida albicans and methicillin-resistant Staphylococcus aureus. Considering the therapeutic benefits, it generated interest for the pharmaceutical development. However, poor oral bioavailability is the major drawback. Therefore, efforts have been undertaken to enhance its bioavailability by modifying physicochemical properties and molecular structure, and developing nanoformulations. In the present review, we discussed the pharmacological actions, underlying mechanisms and molecular targets of phloretin. Moreover, the review provides insights into physicochemical and pharmacokinetic characteristics, and approaches to promote the pharmaceutical development of phloretin for its therapeutic applications in the future. Although convincing experimental data are reported, human studies are not available. In order to ascertain its safety, further preclinical studies are needed to encourage its pharmaceutical and clinical development.
Collapse
Affiliation(s)
- Kartik T. Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Hemant Badwaik
- Department of Pharmaceutical Chemistry, Shri Shankaracharya Institute of Pharmaceutical Sciences and Research, Bhilai 490020, Chhattisgarh, India
| | - Rajesh Choudhary
- Department of Pharmacology, Shri Shankaracharya College of Pharmaceutical Sciences, Bhilai 490020, Chhattisgarh, India
| | - Kalyani Sakure
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Bhilai 490024, Chhattisgarh, India
| | - Yogeeta O. Agrawal
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (S.O.); (S.N.G.)
| | - Sameer N. Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India
- Correspondence: (S.O.); (S.N.G.)
| |
Collapse
|
26
|
Fan C, Zhang Y, Tian Y, Zhao X, Teng J. Phloretin enhances autophagy by impairing AKT activation and inducing JNK-Beclin-1 pathway activation. Exp Mol Pathol 2022; 127:104814. [PMID: 35878674 DOI: 10.1016/j.yexmp.2022.104814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/16/2022] [Accepted: 07/16/2022] [Indexed: 12/01/2022]
Abstract
Phloretin is a type of dihydrochalcone that is primarily found in apples and has been reported to possess various potent biological activities, such as anticancer, antioxidant and anti-inflammatory effects. Our previous study has shown that phloretin induces apoptosis in human glioblastoma. In this study, we found that phloretin induced autophagy in SH-SY5Y cells by decreasing p-AKT and p-mTOR levels in the AKT/mTOR pathway and increasing the activation of JNK, the phosphorylation of c-Jun and the expression of Beclin-1. Moreover, the upregulation of Beclin-1 was decreased by SP600125 or a siRNA against c-Jun. Furthermore, SP600125 and siRNAs against c-Jun and Beclin-1 inhibited phloretin-induced autophagy. In addition, inhibition of phloretin-induced autophagy by cotreatment with phloretin and 3-MA decreased phloretin-induced cytotoxicity to SH-SY5Y cells. In conclusion, our results suggest that the AKT/mTOR pathway and JNK-mediated Beclin-1 expression are involved in phloretin-induced autophagy. Phloretin can be used to protect neurons during phloretin treatment of glioblastoma.
Collapse
Affiliation(s)
- Chenghe Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou 450052, China
| | - Yilin Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou 450052, China
| | - Yu Tian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou 450052, China
| | - Xinyu Zhao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou 450052, China.
| | - Junfang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou 450052, China.
| |
Collapse
|
27
|
Itou da Silva FS, Veiga Bizerra PF, Mito MS, Constantin RP, Klosowski EM, Lima de Souza BT, Moreira da Costa Menezes PV, Alves Bueno PS, Nanami LF, Marchiosi R, Dantas Dos Santos W, Ferrarese-Filho O, Ishii-Iwamoto EL, Constantin RP. The metabolic and toxic acute effects of phloretin in the rat liver. Chem Biol Interact 2022; 364:110054. [PMID: 35872042 DOI: 10.1016/j.cbi.2022.110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
The current study sought to evaluate the acute effects of phloretin (PH) on metabolic pathways involved in the maintenance of glycemia, specifically gluconeogenesis and glycogenolysis, in the perfused rat liver. The acute effects of PH on energy metabolism and toxicity parameters in isolated hepatocytes and mitochondria, as well as its effects on the activity of a few key enzymes, were also evaluated. PH inhibited gluconeogenesis from different substrates, stimulated glycogenolysis and glycolysis, and altered oxygen consumption. The citric acid cycle activity was inhibited by PH under gluconeogenic conditions. Similarly, PH reduced the cellular ATP/ADP and ATP/AMP ratios under gluconeogenic and glycogenolytic conditions. In isolated mitochondria, PH inhibited the electron transport chain and the FoF1-ATP synthase complex as well as acted as an uncoupler of oxidative phosphorylation, inhibiting the synthesis of ATP. PH also decreased the activities of malate dehydrogenase, glutamate dehydrogenase, glucose 6-phosphatase, and glucose 6-phosphate dehydrogenase. Part of the bioenergetic effects observed in isolated mitochondria was shown in isolated hepatocytes, in which PH inhibited mitochondrial respiration and decreased ATP levels. An aggravating aspect might be the finding that PH promotes the net oxidation of NADH, which contradicts the conventional belief that the compound operates as an antioxidant. Although trypan blue hepatocyte viability tests revealed substantial losses in cell viability over 120 min of incubation, PH did not promote extensive enzyme leakage from injured cells. In line with this effect, only after a lengthy period of infusion did PH considerably stimulate the release of enzymes into the effluent perfusate of livers. In conclusion, the increased glucose release caused by enhanced glycogenolysis, along with suppression of gluconeogenesis, is the opposite of what is predicted for antihyperglycemic agents. These effects were caused in part by disruption of mitochondrial bioenergetics, a result that should be considered when using PH for therapeutic purposes, particularly over long periods and in large doses.
Collapse
Affiliation(s)
- Fernanda Sayuri Itou da Silva
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Paulo Francisco Veiga Bizerra
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Márcio Shigueaki Mito
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Renato Polimeni Constantin
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Eduardo Makiyama Klosowski
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Byanca Thais Lima de Souza
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | | | | | - Letícia Fernanda Nanami
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Rogério Marchiosi
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Wanderley Dantas Dos Santos
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Osvaldo Ferrarese-Filho
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Emy Luiza Ishii-Iwamoto
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Rodrigo Polimeni Constantin
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil; Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| |
Collapse
|
28
|
Zhang Q, Wang L, Zhao Y. An Overview of Lithocarpus polystachyus, with Dihydrochalcones as Natural-Derived Bioactive Compounds. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2101063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Qili Zhang
- School of Life Science and Medicine, Shandong University of Technology, Zi bo, China
| | - Li Wang
- Adverse Drug Reaction Monitoring Deparment, Jinan Center for Food and Drug Control, Jinan, China
| | - Yanfang Zhao
- School of Life Science and Medicine, Shandong University of Technology, Zi bo, China
| |
Collapse
|
29
|
Sayed AM, Gohar OM, Abd-Alhameed EK, Hassanein EHM, Ali FEM. The importance of natural chalcones in ischemic organ damage: Comprehensive and bioinformatic analysis review. J Food Biochem 2022; 46:e14320. [PMID: 35857486 DOI: 10.1111/jfbc.14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022]
Abstract
Over the last few decades, extensive research has been conducted, yielding a detailed account of thousands of newly discovered compounds of natural origin and their biological activities, all of which have the potential to be used for a wide range of therapeutic purposes. There are multiple research papers denoting the central objective of chalcones, which have been shown to have therapeutic potential against various forms of ischemia. The various aspects of chalcones are discussed in this review regarding molecular mechanisms involved in the promising anti-ischemic potential of these chalcones. The main mechanisms involved in these protective effects are Nrf2/Akt activation and NF-κB/TLR4 suppression. Furthermore, in-silico studies were carried out to discover the probable binding of these chalcones to Keap-1 (an inhibitor of Nrf2), Akt, NF-κB, and TLR4 protein molecules. Besides, network pharmacology analysis was conducted to predict the interacting partners of these signals. The obtained results indicated that Nrf2, Akt, NF-κB, and TLR4 are involved in the beneficial anti-ischemic actions of chalcones. Conclusively, the present findings show that chalcones as anti-ischemic agents have a valid rationale. The discussed studies will provide a comprehensive viewpoint on chalcones and can help to optimize their effects in different ischemia. PRACTICAL APPLICATIONS: Ischemic organ damage is an unavoidable pathological condition with a high worldwide incidence. According to the current research progress, natural chalcones have been proved to treat and/or prevent various types of ischemic organ damage by alleviating oxidative stress, inflammation, and apoptosis by different molecular mechanisms. This article displays the comprehensive research progress and the molecular basis of ischemic organ damage pathophysiology and introduces natural chalcones' mechanism in the ischemic organ condition.
Collapse
Affiliation(s)
- Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Osama M Gohar
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
30
|
Kim JL, Lee DH, Pan CH, Park S, Oh SC, Lee SY. Role of phloretin as a sensitizer to TRAIL‑induced apoptosis in colon cancer. Oncol Lett 2022; 24:321. [PMID: 35949608 PMCID: PMC9353883 DOI: 10.3892/ol.2022.13441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/06/2022] [Indexed: 11/06/2022] Open
Abstract
Phloretin is one of the apple polyphenols with anticancer activities. Since tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) serves important roles in inducing apoptosis, the present study examined the effect of phloretin on TRAIL-induced apoptosis in colon cancer cells. Treatment with both phloretin and TRAIL markedly suppressed the survival of cancer cells from several colon cancer cell lines compared with that of cells treated with either TRAIL or phloretin. Additionally, decreased numbers of colonies were observed following addition of phloretin and TRAIL. Furthermore, TRAIL- and phloretin-treated HT-29-Luc cells exhibited decreased luciferase activity. Increased apoptosis was observed in phloretin- and TRAIL-treated HT-29-Luc colon cancer cells, accompanying elevated levels of cleaved poly(ADP-ribose) polymerase, and caspase-3, −8 and −9. The expression levels of MCL1 apoptosis regulator BCL2 family member (Mcl-1) were decreased following addition of phloretin in colon cancer cells. In addition, overexpression of Mcl-1 in phloretin- and TRAIL-treated HT-29-Luc cells resulted in increased cell survival. Treatment of HT-29-Luc cells with a combination of cycloheximide (CHX) and phloretin led to a more prominent decrease in Mcl-1 expression compared with that in cells treated with CHX alone, while Mcl-1 expression was recovered by treatment with MG132. Binding of ubiquitin with Mcl-1 was verified using immunoprecipitation. Intraperitoneal injection of both TRAIL and phloretin into tumor xenografts was associated with a decreased tumor volume compared with that following injection with either TRAIL or phloretin. Overall, the present results suggest a synergistic effect of phloretin on TRAIL-induced apoptosis in colon cancer cells.
Collapse
Affiliation(s)
- Jung-Lim Kim
- Division of Oncology/Hematology, Department of Internal Medicine, College of Medicine, Korea University, Seoul 08308, Republic of Korea
| | - Dae-Hee Lee
- Department of Marine Food Science and Technology, Gangneung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Cheol-Ho Pan
- Natural Product Informatics Research Center, Korea Institute of Science and Technology Gangneung Institute of Natural Products, Gangneung, Gangwon 25451, Republic of Korea
| | - Su Park
- Department of Surgery, Wonkwang University Sanbon Hospital, Gyeonggi 15865, Republic of Korea
| | - Sang-Cheul Oh
- Division of Oncology/Hematology, Department of Internal Medicine, College of Medicine, Korea University, Seoul 08308, Republic of Korea
| | - Suk-Young Lee
- Division of Hemato‑Oncology, Department of Internal Medicine, School of Medicine, Wonkwang University Sanbon Hospital, Gunpo, Gyeonggi 15865, Republic of Korea
| |
Collapse
|
31
|
Phloretin in Benign Prostate Hyperplasia and Prostate Cancer: A Contemporary Systematic Review. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071029. [PMID: 35888117 PMCID: PMC9322491 DOI: 10.3390/life12071029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/02/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022]
Abstract
Currently, medication for benign prostate hyperplasia (BPH) and prostate cancer (PCa) are mainly based on modulating the hormone and nervous systems. However, side effects often affect patients, and might decrease their commitment to continuing the medication and lower their quality of life. Some studies have indicated that chronic inflammation might be the cause of BPH and PCa. Based on this hypothesis, the effect of phloretin, a potent anti-inflammatory and anti-oxidative flavonoid, has been researched since 2010. Results from animal and in-vitro studies, obtained from databases, also indicate that the use of phloretin in treating BPH and PCa is promising. Due to its effect on inflammatory cytokines, apoptosis or anti-apoptosis, reactive oxygen species, anti-oxidant enzymes and oxidative stress, phloretin is worthy of further study in human clinical trials regarding safety and effective dosages.
Collapse
|
32
|
Oyenihi AB, Belay ZA, Mditshwa A, Caleb OJ. "An apple a day keeps the doctor away": The potentials of apple bioactive constituents for chronic disease prevention. J Food Sci 2022; 87:2291-2309. [PMID: 35502671 PMCID: PMC9321083 DOI: 10.1111/1750-3841.16155] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/04/2022] [Accepted: 03/27/2022] [Indexed: 11/30/2022]
Abstract
Apples are rich sources of selected micronutrients (e.g., iron, zinc, vitamins C and E) and polyphenols (e.g., procyanidins, phloridzin, 5′‐caffeoylquinic acid) that can help in mitigating micronutrient deficiencies (MNDs) and chronic diseases. This review provides an up‐to‐date overview of the significant bioactive compounds in apples together with their reported pharmacological actions against chronic diseases such as diabetes, cancer, and cardiovascular diseases. For consumers to fully gain these health benefits, it is important to ensure an all‐year‐round supply of highly nutritious and good‐quality apples. Therefore, after harvest, the physicochemical and nutritional quality attributes of apples are maintained by applying various postharvest treatments and hurdle techniques. The impact of these postharvest practices on the safety of apples during storage is also highlighted. This review emphasizes that advancements in postharvest management strategies that extend the storage life of apples should be optimized to better preserve the bioactive components crucial to daily dietary needs and this can help improve the overall health of consumers.
Collapse
Affiliation(s)
- Ayodeji B Oyenihi
- Functional Foods Research Unit, Faculty of Applied Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Zinash A Belay
- Agri-Food Systems & Omics Laboratory, Post-Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | - Asanda Mditshwa
- School of Agriculture, Earth and Environmental Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (PMB-Campus), Scottsville, South Africa
| | - Oluwafemi J Caleb
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.,SARChI Postharvest Technology Laboratory, African Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
33
|
Zhang D, Yu Z, Zhao W, Liu J. Assessment of the anti-tumor activity of cyanidin-3-O-arabinoside from apple against APN, JAK, and EZH2 target proteins. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
De Luca F, Di Chio C, Zappalà M, Ettari R. Dihydrochalcones as antitumor agents. Curr Med Chem 2022; 29:5042-5061. [PMID: 35430969 DOI: 10.2174/0929867329666220415113219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
Dihydrochalcones are a class of secondary metabolites, possessing several biological properties such as antitumor, antioxidant, antibacterial, antidiabetic, estrogenic, anti-inflammatory, antithrombotic, antiviral, neuroprotective and immunomodulator properties; therefore, they are currently considered promising candidates in the drug discovery process. This review intend to debate their pharmacological actions with a particular attention to their antitumor activity against a panel of cancer cell-lines and to the description of the inhibition mechanisms of cell proliferation such as the regulation of angiogenesis, apoptosis, etc etc.
Collapse
Affiliation(s)
- Fabiola De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, Italy
| | - Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, Italy
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, Italy
| |
Collapse
|
35
|
Coelho M, Oliveira C, Coscueta ER, Fernandes J, Pereira RN, Teixeira JA, Rodrigues AS, Pintado ME. Bioactivity and Bioaccessibility of Bioactive Compounds in Gastrointestinal Digestion of Tomato Bagasse Extracts. Foods 2022; 11:foods11071064. [PMID: 35407151 PMCID: PMC8997470 DOI: 10.3390/foods11071064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
A nutrient-rich diet is a key to improving the chemical signals, such as antioxidants, which modulate pathogens’ resistance in the gut and prevent diseases. A current industrial problem is the generation of undervalued by-products, such as tomato bagasse, which are rich in bioactive compounds and of commercial interest (carotenoids and phenolic compounds). This work analyzed the effect of gastrointestinal digestion on the bioactivity and bioaccessibility of carotenoids and phenolic compounds from tomato bagasse extracts. Thus, the extraction by ohmic heating (OH) technology was compared with conventional (organic solvents). The results showed that the main phenolic compounds identified by UPLC-qTOF-MS were p-coumaric acid, naringenin, and luteolin. A higher recovery index for total phenolic compounds throughout the gastrointestinal digestion was observed for OH while for carotenoids, a strong reduction after stomach conditions was observed for both extracts. Furthermore, colon-available fraction exhibited a prebiotic effect upon different Bifidobacterium and Lactobacillus, but a strain-dependent and more accentuated effect on OH. Thus, the extraction technology highly influenced bioaccessibility, with OH demonstrating a positive impact on the recovery of bioactive compounds and related health benefits, such as antioxidant, anti-hypertensive, prebiotic, and anti-inflammatory properties. Of these properties, the last is demonstrated here for the first time.
Collapse
Affiliation(s)
- Marta Coelho
- CBQF—Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.C.); (C.O.); (E.R.C.); (J.F.)
- LABBELS—Associate Laboratory-CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (J.A.T.)
| | - Carla Oliveira
- CBQF—Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.C.); (C.O.); (E.R.C.); (J.F.)
| | - Ezequiel R. Coscueta
- CBQF—Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.C.); (C.O.); (E.R.C.); (J.F.)
| | - João Fernandes
- CBQF—Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.C.); (C.O.); (E.R.C.); (J.F.)
| | - Ricardo N. Pereira
- LABBELS—Associate Laboratory-CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (J.A.T.)
| | - José A. Teixeira
- LABBELS—Associate Laboratory-CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (J.A.T.)
| | - António Sebastião Rodrigues
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal;
| | - Manuela E. Pintado
- CBQF—Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.C.); (C.O.); (E.R.C.); (J.F.)
- Correspondence:
| |
Collapse
|
36
|
Phyllanthus muellerianus and Ficus exasperata exhibit anti-proliferative and pro-apoptotic activities in human prostate cancer PC-3 cells by modulating calcium influx and activating caspases. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
37
|
Potentiation of the Cytotoxic Activity of Nutraceutical Phloretin against Cervical Cancer by Formulation into Microemulsion. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02569-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
38
|
Rahman MA, Ahmed KR, Rahman MDH, Park MN, Kim B. Potential Therapeutic Action of Autophagy in Gastric Cancer Managements: Novel Treatment Strategies and Pharmacological Interventions. Front Pharmacol 2022; 12:813703. [PMID: 35153766 PMCID: PMC8834883 DOI: 10.3389/fphar.2021.813703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC), second most leading cause of cancer-associated mortality globally, is the cancer of gastrointestinal tract in which malignant cells form in lining of the stomach, resulting in indigestion, pain, and stomach discomfort. Autophagy is an intracellular system in which misfolded, aggregated, and damaged proteins, as well as organelles, are degraded by the lysosomal pathway, and avoiding abnormal accumulation of huge quantities of harmful cellular constituents. However, the exact molecular mechanism of autophagy-mediated GC management has not been clearly elucidated. Here, we emphasized the role of autophagy in the modulation and development of GC transformation in addition to underlying the molecular mechanisms of autophagy-mediated regulation of GC. Accumulating evidences have revealed that targeting autophagy by small molecule activators or inhibitors has become one of the greatest auspicious approaches for GC managements. Particularly, it has been verified that phytochemicals play an important role in treatment as well as prevention of GC. However, use of combination therapies of autophagy modulators in order to overcome the drug resistance through GC treatment will provide novel opportunities to develop promising GC therapeutic approaches. In addition, investigations of the pathophysiological mechanism of GC with potential challenges are urgently needed, as well as limitations of the modulation of autophagy-mediated therapeutic strategies. Therefore, in this review, we would like to deliver an existing standard molecular treatment strategy focusing on the relationship between chemotherapeutic drugs and autophagy, which will help to improve the current treatments of GC patients.
Collapse
Affiliation(s)
- Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Department of Biotechnology and Genetic Engineering, Global Biotechnology and Biomedical Research Network (GBBRN), Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Kazi Rejvee Ahmed
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - MD. Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Global Biotechnology and Biomedical Research Network (GBBRN), Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
- ABEx Bio-Research Center, East Azampur, Bangladesh
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
39
|
Mahmoud AM, Sayed AM, Ahmed OS, Abdel-Daim MM, Hassanein EHM. The role of flavonoids in inhibiting IL-6 and inflammatory arthritis. Curr Top Med Chem 2022; 22:746-768. [PMID: 34994311 DOI: 10.2174/1568026622666220107105233] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that primarily affects the synovial joints. RA has well-known clinical manifestations and can cause progressive disability and premature death along with socioeconomic burdens. Interleukin-6 (IL-6) has been implicated in the pathology of RA where it can stimulate pannus formation, osteoclastogenesis, and oxidative stress. Flavonoids are plant metabolites with beneficial pharmacological effects, including anti-inflammatory, antioxidant, antidiabetic, anticancer, and others. Flavonoids are polyphenolic compounds found in a variety of plants, vegetables, and fruits. Many flavonoids have demonstrated anti-arthritic activity mediated mainly through the suppression of pro-inflammatory cytokines. This review thoroughly discusses the accumulate data on the role of flavonoids on IL-6 in RA.
Collapse
Affiliation(s)
- Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt
| | - Osama S Ahmed
- Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| |
Collapse
|
40
|
Liu X, Liu J, Lei D, Zhao GR. Modular metabolic engineering for production of phloretic acid, phloretin and phlorizin in Escherichia coli. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.116931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Patil C, Wagh S, Patil K, Mahajan U, Bagal P, Wadkar A, Bommanhalli B, Patil P, Goyal S, Ojha S. Phloretin-induced suppression of oxidative and nitrosative stress attenuates doxorubicin-induced cardiotoxicity in rats. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.338921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
42
|
Apple polyphenol phloretin complexed with ruthenium is capable of reprogramming the breast cancer microenvironment through modulation of PI3K/Akt/mTOR/VEGF pathways. Toxicol Appl Pharmacol 2022; 434:115822. [PMID: 34896434 DOI: 10.1016/j.taap.2021.115822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/10/2021] [Accepted: 12/05/2021] [Indexed: 12/15/2022]
Abstract
Our recent investigation directed to synthesize a novel ruthenium-phloretin complex accompanied by the study of antioxidant in addition to DNA binding capabilities, to determine the chemotherapeutic activity against breast carcinoma in vitro and in vivo. Ruthenium-phloretin complex was synthesized and characterized by different spectroscopic methods. The complex was further investigated to determine its efficacy in both MCF-7 and MDA-MB-231 human carcinoma cell lines and finally in an in vivo model of mammary carcinogenesis induced by DMBA in rats. Our studies confirm that the chelation of the metal and ligand was materialize by the 3-OH and 9-OH functional groups of the ligand and the complex is found crystalline and was capable of intercalating with CT-DNA. The complex was capable of reducing cellular propagation and initiate apoptotic events in MCF-7 and MDA-MB-231 breast carcinoma cell lines. Ruthenium-phloretin complex could modulate p53 intervene apoptosis in the breast carcinoma, initiated by the trail of intrinsic apoptosis facilitated through Bcl2 and Bax and at the same time down regulating the PI3K/Akt/mTOR pathway coupled with MMP9 regulated tumor invasive pathways. Ruthenium-phloretin chemotherapy could interrupt, revoke or suspend the succession of breast carcinoma by altering intrinsic apoptosis along with the anti-angiogenic pathway.
Collapse
|
43
|
Liu N, Zhang N, Zhang S, Zhang L, Liu Q. Phloretin inhibited the pathogenicity and virulence factors against Candida albicans. Bioengineered 2021; 12:2420-2431. [PMID: 34167447 PMCID: PMC8806719 DOI: 10.1080/21655979.2021.1933824] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/19/2021] [Indexed: 11/02/2022] Open
Abstract
Oral candidiasis is one of the most common types of fungal infection caused by Candida albicans (C. albicans). The present study aims to investigate the antifungal effects of phloretin (a dihydrochalcone flavonoid) against the C. albicans pathogenicity. In this work, we treated C. albicans SC5314 with 37.28, 74.55, or 149.10 μg/mL (equivalent to 0.5×, 1× or 2× MIC) phloretin in vitro. Besides, we established a mice model of oral candidiasis by a sublingual infection of C. albicans suspension (1 × 107 colony-forming unit/mL), and mice were treated with phloretin (3.73 or 7.46 mg/mL, which were equivalent to 50× or 100× MIC) twice a day starting on day one post-infection. The results showed that the MIC of phloretin against C. albicans was 74.55 μg/mL. Phloretin exerted antifungal activity by inhibiting the biofilm formation and suppressing the yeast-to-hyphae transition upon the downregulation of hypha-associated genes including enhanced adherence to polystyrene 1, the extent of cell elongation gene 1, hyphal wall protein 1 gene, and agglutinin-like sequence gene 3. Next, phloretin repressed the secretion of proteases and phospholipases via reducing the expression of protease-encoding genes secreted aspartyl proteases (SAP)1 and SAP2, as well as phospholipase B1. Subsequently, the in vivo antifungal activity of phloretin was testified by the reverse of the enhanced lesion severity, inflammatory infiltration, and the increased colony-forming unit counts caused by C. albicans of tongue tissues in oral candidiasis mice. In conclusion, phloretin suppressed the pathogenicity and virulence factors against C. albicans both in vivo and in vitro.
Collapse
Affiliation(s)
- Na Liu
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Nan Zhang
- Department of Stomatology, The Third Hospital of Shanxi Medical University, Taiyuan, P.R. China
| | - Shengrong Zhang
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Lifang Zhang
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Qing Liu
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, P.R. China
| |
Collapse
|
44
|
Casado-Díaz A, Rodríguez-Ramos Á, Torrecillas-Baena B, Dorado G, Quesada-Gómez JM, Gálvez-Moreno MÁ. Flavonoid Phloretin Inhibits Adipogenesis and Increases OPG Expression in Adipocytes Derived from Human Bone-Marrow Mesenchymal Stromal-Cells. Nutrients 2021; 13:4185. [PMID: 34836440 PMCID: PMC8623874 DOI: 10.3390/nu13114185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
Phloretin (a flavonoid abundant in apple), has antioxidant, anti-inflammatory, and glucose-transporter inhibitory properties. Thus, it has interesting pharmacological and nutraceutical potential. Bone-marrow mesenchymal stem cells (MSC) have high differentiation capacity, being essential for maintaining homeostasis and regenerative capacity in the organism. Yet, they preferentially differentiate into adipocytes instead of osteoblasts with aging. This has a negative impact on bone turnover, remodeling, and formation. We have evaluated the effects of phloretin on human adipogenesis, analyzing MSC induced to differentiate into adipocytes. Expression of adipogenic genes, as well as genes encoding OPG and RANKL (involved in osteoclastogenesis), protein synthesis, lipid-droplets formation, and apoptosis, were studied. Results showed that 10 and 20 µM phloretin inhibited adipogenesis. This effect was mediated by increasing beta-catenin, as well as increasing apoptosis in adipocytes, at late stages of differentiation. In addition, this chemical increased OPG gene expression and OPG/RANKL ratio in adipocytes. These results suggest that this flavonoid (including phloretin-rich foods) has interesting potential for clinical and regenerative-medicine applications. Thus, such chemicals could be used to counteract obesity and prevent bone-marrow adiposity. That is particularly useful to protect bone mass and treat diseases like osteoporosis, which is an epidemic worldwide.
Collapse
Affiliation(s)
- Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición—GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, 14004 Córdoba, Spain; (Á.R.-R.); (B.T.-B.); (J.M.Q.-G.); (M.Á.G.-M.)
| | - Ángel Rodríguez-Ramos
- Unidad de Gestión Clínica de Endocrinología y Nutrición—GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, 14004 Córdoba, Spain; (Á.R.-R.); (B.T.-B.); (J.M.Q.-G.); (M.Á.G.-M.)
| | - Bárbara Torrecillas-Baena
- Unidad de Gestión Clínica de Endocrinología y Nutrición—GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, 14004 Córdoba, Spain; (Á.R.-R.); (B.T.-B.); (J.M.Q.-G.); (M.Á.G.-M.)
| | - Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, CIBERFES, 14071 Córdoba, Spain;
| | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición—GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, 14004 Córdoba, Spain; (Á.R.-R.); (B.T.-B.); (J.M.Q.-G.); (M.Á.G.-M.)
| | - María Ángeles Gálvez-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición—GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, 14004 Córdoba, Spain; (Á.R.-R.); (B.T.-B.); (J.M.Q.-G.); (M.Á.G.-M.)
| |
Collapse
|
45
|
Deng X, Wang Y, Tian L, Yang M, He S, Liu Y, Khan A, Li Y, Cao J, Cheng G. Anneslea fragrans Wall. ameliorates ulcerative colitis via inhibiting NF-κB and MAPK activation and mediating intestinal barrier integrity. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114304. [PMID: 34116185 DOI: 10.1016/j.jep.2021.114304] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/10/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anneslea fragrans Wall. is traditionally used as a folk medicine in treating indigestion, fever, dysentery, diarrhea, and liver inflammation in China, Vietnam and Cambodia. However, its anti-inflammatory activity and mechanism under a safety therapeutic dose as well as the main chemical components have not yet been fully investigated. AIM OF THE STUDY This study aimed to explore the therapeutic effect and possible molecular mechanisms of aqueous-methanol extract (AFE) of A. fragrans leaves on dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) mice and illustrate its potent anti-inflammatory chemical compounds. MATERIALS AND METHODS The AFE was obtained and then analyzed by high performance liquid chromatography (HPLC). Phytochemical investigation on the AFE was carried out to isolate and characterize its major components. The acute toxicity test was performed to provide the safety information of AFE. Subsequently, the protective effect of AFE on DSS-induced UC was evaluated by physiological changes, histopathological and immunohistochemical analysis, and the expressions of antioxidant enzyme, pro-inflammatory cytokines and anti-inflammatory cytokines. The expressions of target proteins in nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) were determined by western blot analysis. The tight junction (TJ) proteins in colon tissue were performed by immunohistochemical technique for evaluating the intestinal barrier integrity. RESULTS HPLC guided isolation of AFE resulted into two dihydrochalcones, which were elucidated as vacciniifolin (1) and confusoside (2). Acute toxicity evaluation revealed that median lethal dose (LD50) of AFE was greater than 5000 mg/kg. Furthermore, AFE significantly attenuated ulcerative colitis symptoms, suppressed myeloperoxidase activity, and increased the expression of superoxide dismutase and glutathione. AFE treatment could also reduce the levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6 and increase the levels of interleukin-4 and interleukin-10 in colon tissues and serum of DSS-induced UC mice. In addition, AFE significantly increased the expression of zonula occludens-1, occludin and claudin-1, and inhibited the phosphorylation of target protein of the NF-κB and MAPK signaling pathways in colon tissue. CONCLUSION Dihydrochalcone glycosides are the major chemical constituents in AFE. AFE ameliorated DSS-induced UC in mice by inhibiting the inflammatory response via modulation of NF-κB and MAPK pathways and maintaining the intestinal barrier function, indicating that the plant A. fragrans could be used as a therapeutic candidate for ulcerative colitis.
Collapse
Affiliation(s)
- Xiaocui Deng
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yudan Wang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Lei Tian
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Meilian Yang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shuyue He
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yaping Liu
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Yanping Li
- College of Pharmaceutic Science, Yunnan University of Traditional Chinese Medicine, Kunming, 650000, China
| | - Jianxin Cao
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Guiguang Cheng
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
46
|
Yang YF, Chuang HW, Kuo WT, Lin BS, Chang YC. Current Development and Application of Anaerobic Glycolytic Enzymes in Urothelial Cancer. Int J Mol Sci 2021; 22:ijms221910612. [PMID: 34638949 PMCID: PMC8508954 DOI: 10.3390/ijms221910612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
Urothelial cancer is a malignant tumor with metastatic ability and high mortality. Malignant tumors of the urinary system include upper tract urothelial cancer and bladder cancer. In addition to typical genetic alterations and epigenetic modifications, metabolism-related events also occur in urothelial cancer. This metabolic reprogramming includes aberrant expression levels of genes, metabolites, and associated networks and pathways. In this review, we summarize the dysfunctions of glycolytic enzymes in urothelial cancer and discuss the relevant phenotype and signal transduction. Moreover, we describe potential prognostic factors and risks to the survival of clinical cancer patients. More importantly, based on several available databases, we explore relationships between glycolytic enzymes and genetic changes or drug responses in urothelial cancer cells. Current advances in glycolysis-based inhibitors and their combinations are also discussed. Combining all of the evidence, we indicate their potential value for further research in basic science and clinical applications.
Collapse
Affiliation(s)
- Yi-Fang Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
| | - Hao-Wen Chuang
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Wei-Ting Kuo
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Bo-Syuan Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Correspondence: ; Tel.: +886-2-2826-7064
| |
Collapse
|
47
|
Enzymatic Production of 3-OH Phlorizin, a Possible Bioactive Polyphenol from Apples, by Bacillus megaterium CYP102A1 via Regioselective Hydroxylation. Antioxidants (Basel) 2021; 10:antiox10081327. [PMID: 34439575 PMCID: PMC8406095 DOI: 10.3390/antiox10081327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022] Open
Abstract
Phlorizin is the most abundant glucoside of phloretin from the apple tree and its products. Phlorizin and its aglycone phloretin are currently considered health-beneficial polyphenols from apples useful in treating hyperglycemia and obesity. Recently, we showed that phloretin could be regioselectively hydroxylated to make 3-OH phloretin by Bacillus megaterium CYP102A1 and human P450 enzymes. The 3-OH phloretin has a potent inhibitory effect on differentiating 3T3-L1 preadipocytes into adipocytes and lipid accumulation. The glucoside of 3-OH phloretin would be a promising agent with increased bioavailability and water solubility compared with its aglycone. However, procedures to make 3-OH phlorizin, a glucoside of 3-OH phloretin, using chemical methods, are not currently available. Here, a biocatalytic strategy for the efficient synthesis of a possibly valuable hydroxylated product, 3-OH phlorizin, was developed via CYP102A1-catalyzed regioselective hydroxylation. The production of 3-OH phlorizin by CYP102A1 was confirmed by HPLC and LC–MS spectroscopy in addition to enzymatic removal of its glucose moiety for comparison to 3-OH phloretin. Taken together, in this study, we found a panel of mutants from B. megaterium CYP102A1 could catalyze regioselective hydroxylation of phlorizin to produce 3-OH phlorizin, a catechol product.
Collapse
|
48
|
Fatima M, Iqubal MK, Iqubal A, Kaur H, Gilani SJ, Rahman MH, Ahmadi A, Rizwanullah M. Current Insight into the Therapeutic Potential of Phytocompounds and their Nanoparticle-based Systems for Effective Management of Lung Cancer. Anticancer Agents Med Chem 2021; 22:668-686. [PMID: 34238197 DOI: 10.2174/1871520621666210708123750] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/27/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
Lung cancer is the second most common cancer and the primary cause of cancer-related death in both men and women worldwide. Due to diagnosis at an advanced stage, it is associated with high mortality in the majority of patients. At present, various treatment approaches are available such as chemotherapy, surgery, and radiotherapy. However, all these approaches usually cause serious side effects like degeneration of normal cells, bone marrow depression, alopecia, extensive vomiting, etc. To overcome the aforementioned problems, researchers have focused on the alternative therapeutic approach in which various natural compounds are reported, which possessed anti-lung cancer activity. Phytocompounds exhibit their anti-lung cancer activity via targeting various cell-signaling pathways, apoptosis, cell cycle arrest, and regulating antioxidant status and detoxification. Apart from the excellent anti-cancer activity, clinical administration of phytocompounds is confined because of their high lipophilicity and low bioavailability. Therefore, researchers show their concern in the development of a stable, safe, and effective approach of treatment with minimal side effects by the development of nanoparticle-based delivery of these phytocompounds to the target site. Targeted delivery of phytocompound through nanoparticles overcomes the aforementioned problems. In this article, the molecular mechanism of phytocompounds, their emerging combination therapy, and their nanoparticles-based delivery systems in the treatment of lung cancer have been discussed.
Collapse
Affiliation(s)
- Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi -110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi -110062, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi -110062, India
| | - Harsimran Kaur
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, New Delhi-110017, India
| | - Sadaf Jamal Gilani
- Department of Basic Health Science, Preparatory Year, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka-1213. Bangladesh
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Md Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi -110062, India
| |
Collapse
|
49
|
Hu Z, Wang H, Li L, Wang Q, Jiang S, Chen M, Li X, Shaotong J. pH-responsive antibacterial film based polyvinyl alcohol/poly (acrylic acid) incorporated with aminoethyl-phloretin and application to pork preservation. Food Res Int 2021; 147:110532. [PMID: 34399510 DOI: 10.1016/j.foodres.2021.110532] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
This study demonstrates a pH-responsive antibacterial film based on polyvinyl alcohol/poly (acrylic acid) incorporated with aminoethyl-phloretin (PVA/PAA-AEP) for intelligent food packaging. The thermal, mechanical, barrier and light transmittance properties of PVA/PAA are enhanced by PAA presence of ≤6%. The interactions between PVA and PAA were hydrogen and ester bonds. The pH-responsive characteristic is dependent on the protonation/deprotonation tendency of the carboxylic groups on PAA in acidic/alkaline environment. The PVA/PAA3 is selected for the incorporation of AEP and its pH-responsive swelling follows Ritger-Peppas and Schott second-order models. The AEP is hydrogen bonded with the matrix of PVA/PAA3 and the release of AEP is pH-responsive and a rate-limiting step following the First-order model. With pH decrease, the predominant release control was gradually changing from polymer relaxation to Fick diffusion. The PVA/PAA3-AEP films demonstrate AEP content dependent antioxidant and antimicrobial activities. Furthermore, the antibacterial efficiency against Listeria monocytogenes and Staphylococcus aureus is significantly better than Escherichia coli. The target film PVA/PAA3-AEP3 can effectively prolong the shelf-life of pork (TVB-N < 25 mg/100 g) by 4 days at 25 °C, suggesting its great potential in intelligent food packaging.
Collapse
Affiliation(s)
- Zheng Hu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China
| | - Hualin Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China; Anhui Institute of Agro-Products Intensive Processing Technology, 230009 Hefei, Anhui, PR China.
| | - Linlin Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China
| | - Qian Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China
| | - Suwei Jiang
- Department of Biological and Environmental Engineering, Hefei University, 230601 Hefei, Anhui, PR China
| | - Minmin Chen
- School of Chemistry and Material Engineering, Chaohu University, 238000 Hefei, Anhui, PR China
| | - Xingjiang Li
- School of Food and Biological Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China; Anhui Institute of Agro-Products Intensive Processing Technology, 230009 Hefei, Anhui, PR China
| | - Jiang Shaotong
- School of Food and Biological Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China; Anhui Institute of Agro-Products Intensive Processing Technology, 230009 Hefei, Anhui, PR China
| |
Collapse
|
50
|
Assessment of In Vitro Bioaccessibility of Polyphenols from Annurca, Limoncella, Red Delicious, and Golden Delicious Apples Using a Sequential Enzymatic Digestion Model. Antioxidants (Basel) 2021; 10:antiox10040541. [PMID: 33808499 PMCID: PMC8067271 DOI: 10.3390/antiox10040541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 11/17/2022] Open
Abstract
Four different varieties of apples have been considered (Limoncella, Annurca, Red Delicious, and Golden Delicious) to estimate the extent of colon polyphenolics release after in vitro sequential enzyme digestion. Since several studies report a positive effect of apple polyphenols in colonic damage, we found of interest to investigate the colon release of polyphenols in different varieties of apples in order to assess their prevention of colonic damage. UHPLC-HRMS analysis and antioxidant activity (ABTS, DPPH, and FRAP assays) were carried out on the apple extracts (peel, flesh, and whole fruit) obtained from not digested samples and on bioaccessible fractions (duodenal and colon bioaccessible fractions) after in vitro digestion. Polyphenolic content and antioxidant activities were found to vary significantly among the tested cultivars with Limoncella showing the highest polyphenol content accompanied by an excellent antioxidant activity in both flesh and whole fruit. The overall trend of soluble antioxidant capacity from the soluble duodenal phase (SDP) and soluble colonic phase (SCP) followed the concentrations of flavanols, procyandinis, and hydroxycinnamic acids under the same digestive steps. Our results highlighted that on average 64.2% of the total soluble antioxidant activity was released in the SCP with Limoncella exhibiting the highest values (82.31, 70.05, and 65.5%, respectively for whole fruit, flesh, and peel). This result suggested that enzymatic treatment with pronase E and viscozyme L, to reproduce biochemical conditions occurring in the colon, is effective for breaking the dietary fiber-polyphenols interactions and for the release of polyphenols which can exercise their beneficial effects in the colon. The beneficial effects related to the Limoncella consumption could thus be of potential great relevance to counteract the adverse effects of pro-oxidant and inflammatory processes on intestinal cells.
Collapse
|