1
|
Zhang Y, Wu C, Zhang N, Fan R, Ye Y, Xu J. Recent Advances in the Development of Pyrazole Derivatives as Anticancer Agents. Int J Mol Sci 2023; 24:12724. [PMID: 37628906 PMCID: PMC10454718 DOI: 10.3390/ijms241612724] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Pyrazole derivatives, as a class of heterocyclic compounds, possess unique chemical structures that confer them with a broad spectrum of pharmacological activities. They have been extensively explored for designing potent and selective anticancer agents. In recent years, numerous pyrazole derivatives have been synthesized and evaluated for their anticancer potential against various cancer cell lines. Structure-activity relationship studies have shown that appropriate substitution on different positions of the pyrazole ring can significantly enhance anticancer efficacy and tumor selectivity. It is noteworthy that many pyrazole derivatives have demonstrated multiple mechanisms of anticancer action by interacting with various targets including tubulin, EGFR, CDK, BTK, and DNA. Therefore, this review summarizes the current understanding on the structural features of pyrazole derivatives and their structure-activity relationships with different targets, aiming to facilitate the development of potential pyrazole-based anticancer drugs. We focus on the latest research advances in anticancer activities of pyrazole compounds reported from 2018 to present.
Collapse
Affiliation(s)
- Yingqian Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Chenyuan Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Nana Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui Fan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
2
|
Swami S, Shrivastava R, Sharma N, Agarwala A, Verma VP, Singh AP. An ultrasound-assisted solvent and catalyst-free synthesis of structurally diverse pyrazole centered 1,5-disubstituted tetrazoles via one-pot four-component reaction. LETT ORG CHEM 2021. [DOI: 10.2174/1570178619666211220094516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
1,5-Disubstituted tetrazoles are vital drug-like scaffold usually encountered as valuable bioisosteres of cis-amide bond. In this article, we reported synthesis of some novel medicinally relevant pyrazole centered 1,5-disubstituted tetrazoles using ultrasound irradiation via a one-pot 4-C reaction from various pyrazole originated aldehyde, amine, isocyanide, and sodium azide. All the synthesized derivatives were characterized by IR, 1H NMR, 13C NMR, spectroscopic techniques, and mass analysis. This ultrasound-assisted green protocol has several advantages like mild reaction condition, high yield, catalyst and solvent-free reaction protocol, 15 minutes reaction time and easy workup.
Collapse
Affiliation(s)
- Suman Swami
- Department of Chemistry, Manipal University Jaipur, Jaipur (Rajasthan), VPO- Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur (Rajasthan), India
| | - Rahul Shrivastava
- Department of Chemistry, Manipal University Jaipur, Jaipur (Rajasthan), VPO- Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur (Rajasthan), India 303007, India
| | - Neelam Sharma
- Department of Chemistry, Manipal University Jaipur, Jaipur (Rajasthan), VPO- Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur (Rajasthan), India 303007, India
| | - Arunava Agarwala
- Department of Chemistry, Malda College, Malda, West Bengal, India
| | | | - Atul Pratap Singh
- Department of Chemistry, Chandigarh University, Gharuan, Mohali, India
| |
Collapse
|
3
|
Kisan Rasal N, Bhaskar Sonawane R, Vijay Jagtap S. Synthesis, Characterization, and Biological Study of 3-Trifluoromethylpyrazole Tethered Chalcone-Pyrrole and Pyrazoline-Pyrrole Derivatives. Chem Biodivers 2021; 18:e2100504. [PMID: 34409724 DOI: 10.1002/cbdv.202100504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/18/2021] [Indexed: 11/07/2022]
Abstract
The present study illustrates the design and synthesis of new series of 3-trifluoromethylpyrazole tethered chalcone-pyrrole and pyrazoline-pyrrole derivatives. All compounds were further screened for in vitro cytostatic activities on full NCI 60 cancer cell lines at National Cancer Institute, USA. Compounds (2E)-3-(1H-pyrrol-2-yl)-1-{4-[3-(trifluoromethyl)-1H-pyrazol-1-yl]phenyl}prop-2-en-1-one (5a) and (2E)-1-{3-methyl-4-[3-(trifluoromethyl)-1H-pyrazol-1-yl]phenyl}-3-(1H-pyrrol-2-yl)prop-2-en-1-one (5c) displayed significant antiproliferative activity (Growth Percentage: -77.10 and -92.13, respectively at 10 μM concentration) against the UO-31 cell lines from renal cancer and were further selected for assay at 10-fold dilutions of five different concentrations (10-4 to 10-8 M). Both compounds 5a and 5c exhibited promising antiproliferative activity (GI50 : 1.36 to 0.27 μM) against leukemia cancer cell lines HL-60 and RPMI-8226, colon cancer cell lines KM-12; breast cancer cell lines BT-549. Moreover, both compounds 5a and 5c were found to be non-cytotoxic (LC50 >100) against HL-60, RPMI-8226, and KM-12 cell lines. Remarkably, GI50 values of compounds 5a and 5c were identified as more promising than sunitinib against most cancer cell lines. In silico study of compounds 5a and 5c exemplified the desired ADME properties for drug-likeness as well as tighter interactions with VEGFR-2. Hence, compounds 5a and 5c would be good cytotoxic agents after further clinical study.
Collapse
Affiliation(s)
- Nishant Kisan Rasal
- Department of Chemistry, Baburaoji Gholap College, Sangvi, Pune, 411 027, India, (Affiliated to Savitribai Phule Pune University
| | - Rahul Bhaskar Sonawane
- Department of Chemistry, Baburaoji Gholap College, Sangvi, Pune, 411 027, India, (Affiliated to Savitribai Phule Pune University
| | - Sangeeta Vijay Jagtap
- Department of Chemistry, Baburaoji Gholap College, Sangvi, Pune, 411 027, India, (Affiliated to Savitribai Phule Pune University
| |
Collapse
|
4
|
Mor S, Khatri M, Punia R, Sindhu S. Recent Progress on Anticancer Agents Incorporating Pyrazole Scaffold. Mini Rev Med Chem 2021; 22:115-163. [PMID: 33823764 DOI: 10.2174/1389557521666210325115218] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 11/22/2022]
Abstract
The search of new anticancer agents is considered as a dynamic field of medicinal chemistry. In recent years, the synthesis of compounds with anticancer potential has increased and a large number of structurally varied compounds displaying potent anticancer activities have been published. Pyrazole is an important biologically active scaffold that possessed nearly all types of biological activities. The aim of this review is to collate literature work reported by researchers to provide an overview on in vivo and in vitro anticancer activities of pyrazole based derivatives among the diverse biological activities displayed by them and also presents recent efforts made on this heterocyclic moiety regarding anticancer activities. This review has been driven from the increasing number of publications, on this issue, which have been reported in the literature since the ending of the 20th century (from 1995-to date).
Collapse
Affiliation(s)
- Satbir Mor
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Mohini Khatri
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Ravinder Punia
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Suchita Sindhu
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| |
Collapse
|
5
|
Xia LY, Zhang YL, Yang R, Wang ZC, Lu YD, Wang BZ, Zhu HL. Tubulin Inhibitors Binding to Colchicine-Site: A Review from 2015 to 2019. Curr Med Chem 2021; 27:6787-6814. [PMID: 31580244 DOI: 10.2174/0929867326666191003154051] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/25/2019] [Accepted: 08/22/2019] [Indexed: 11/22/2022]
Abstract
Due to the three domains of the colchicine-site which is conducive to the combination with small molecule compounds, colchicine-site on the tubulin has become a common target for antitumor drug development, and accordingly, a large number of tubulin inhibitors binding to the colchicine-site have been reported and evaluated over the past years. In this study, tubulin inhibitors targeting the colchicine-site and their application as antitumor agents were reviewed based on the literature from 2015 to 2019. Tubulin inhibitors were classified into ten categories according to the structural features, including colchicine derivatives, CA-4 analogs, chalcone analogs, coumarin analogs, indole hybrids, quinoline and quinazoline analogs, lignan and podophyllotoxin derivatives, phenothiazine analogs, N-heterocycle hybrids and others. Most of them displayed potent antitumor activity, including antiproliferative effects against Multi-Drug-Resistant (MDR) cell lines and antivascular properties, both in vitro and in vivo. In this review, the design, synthesis and the analysis of the structure-activity relationship of tubulin inhibitors targeting the colchicine-site were described in detail. In addition, multi-target inhibitors, anti-MDR compounds, and inhibitors bearing antitumor activity in vivo are further listed in tables to present a clear picture of potent tubulin inhibitors, which could be beneficial for medicinal chemistry researchers.
Collapse
Affiliation(s)
- Lin-Ying Xia
- Zhengzhou Children’s Hospital, Zhengzhou 450018, P.R. China,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, P.R. China
| | - Ya-Liang Zhang
- Zhengzhou Children’s Hospital, Zhengzhou 450018, P.R. China,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, P.R. China
| | - Rong Yang
- Zhengzhou Children’s Hospital, Zhengzhou 450018, P.R. China,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, P.R. China
| | - Zhong-Chang Wang
- Zhengzhou Children’s Hospital, Zhengzhou 450018, P.R. China,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, P.R. China
| | - Ya-Dong Lu
- Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, Nanjing 210008, P.R. China
| | - Bao-Zhong Wang
- Zhengzhou Children’s Hospital, Zhengzhou 450018, P.R. China,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, P.R. China
| | - Hai-Liang Zhu
- Zhengzhou Children’s Hospital, Zhengzhou 450018, P.R. China
| |
Collapse
|
6
|
Wang G, Liu W, Peng Z, Huang Y, Gong Z, Li Y. Design, synthesis, molecular modeling, and biological evaluation of pyrazole-naphthalene derivatives as potential anticancer agents on MCF-7 breast cancer cells by inhibiting tubulin polymerization. Bioorg Chem 2020; 103:104141. [DOI: 10.1016/j.bioorg.2020.104141] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 01/29/2023]
|
7
|
Design and Synthesis of Organic Molecules as Antineoplastic Agents. Molecules 2020; 25:molecules25122808. [PMID: 32570759 PMCID: PMC7356313 DOI: 10.3390/molecules25122808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 11/16/2022] Open
Abstract
The fight against cancer is one of the most challenging tasks currently for lots of researchers in many fields, such as pharmaceuticals, medicine, and chemicals [...].
Collapse
|
8
|
Ion GND, Olaru OT, Nitulescu G, Olaru II, Tsatsakis A, Burykina TI, Spandidos DA, Nitulescu GM. Improving the odds of success in antitumoral drug development using scoring approaches towards heterocyclic scaffolds. Oncol Rep 2020; 44:589-598. [PMID: 32627025 PMCID: PMC7336486 DOI: 10.3892/or.2020.7636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
One of the most commonly discussed topics in the field of drug discovery is the continuous search for anticancer therapies, in which small-molecule development plays an important role. Although a number of techniques have been established over the past decades, one of the main methods for drug discovery and development is still represented by rational, ligand-based drug design. However, the success rate of this method could be higher if not affected by cognitive bias, which renders many potential druggable scaffolds and structures overlooked. The present study aimed to counter this bias by presenting an objective overview of the most important heterocyclic structures in the development of anti-proliferative drugs. As such, the present study analyzed data for 91,438 compounds extracted from the Developmental Therapeutics Program (DTP) database provided by the National Cancer Institute. Growth inhibition data from these compounds tested on a panel of 60 cancer cell lines representing various tissue types (NCI-60 panel) was statistically interpreted using 6 generated scores assessing activity, selectivity, growth inhibition efficacy and potency of different structural scaffolds, Bemis-Murcko skeletons, chemical features and structures common among the analyzed compounds. Of the most commonly used rings, the most prominent anti-proliferative effects were produced by quinoline, tetrahydropyran, benzimidazole and pyrazole, while overall, the optimal results were produced by complex ring structures that originate from natural compounds. These results highlight the impact of certain ring structures on the anti-proliferative effects in drug design. In addition, considering that medicinal chemists usually focus their research on simpler scaffolds the majority of the time with no significant pay-off, the present study indicates several unused complex scaffolds that could be exploited when designing anticancer therapies for optimal results in the fight against cancer.
Collapse
Affiliation(s)
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Georgiana Nitulescu
- Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Iulia Ioana Olaru
- Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Tatiana I Burykina
- Department of Analytical and Forensic Medical Toxicology, Sechenov Medical University, 119991 Moscow, Russia
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - George Mihai Nitulescu
- Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| |
Collapse
|
9
|
Cui YJ, Ma CC, Zhang CM, Tang LQ, Liu ZP. The discovery of novel indazole derivatives as tubulin colchicine site binding agents that displayed potent antitumor activity both in vitro and in vivo. Eur J Med Chem 2020; 187:111968. [DOI: 10.1016/j.ejmech.2019.111968] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/25/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
|
10
|
Swanepoel B, Nitulescu GM, Olaru OT, Venables L, van de Venter M. Anti-Cancer Activity of a 5-Aminopyrazole Derivative Lead Compound (BC-7) and Potential Synergistic Cytotoxicity with Cisplatin against Human Cervical Cancer Cells. Int J Mol Sci 2019; 20:ijms20225559. [PMID: 31703393 PMCID: PMC6888365 DOI: 10.3390/ijms20225559] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/24/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
The use of some very well-known chemotherapeutic agents, such as cisplatin, is limited by toxicity in normal tissues and the development of drug resistance. In order to address drug resistance and the side-effects of anti-cancer agents, recent research has focused on finding novel combinations of anti-cancer agents with non-overlapping mechanisms of action. The cytotoxic effect of the synthetic 5-aminopyrazole derivative N-[[3-(4-bromophenyl)-1H-pyrazol-5-yl]-carbamothioyl]-4-chloro-benzamide (BC-7) was evaluated by the bis-Benzamide H 33342 trihydrochloride/propidium iodide (Hoechst 33342/PI) dual staining method against HeLa, MeWo, HepG2, Vero, and MRHF cell lines. Quantitative fluorescence image analysis was used for the elucidation of mechanism of action and synergism with cisplatin in HeLa cells. BC-7 displayed selective cytotoxicity towards HeLa cells (IC50 65.58 ± 8.40 μM) and induced apoptosis in a mitochondrial- and caspase dependent manner. This was most likely preceded by cell cycle arrest in the early M phase and the onset of mitotic catastrophe. BC-7 increased the cytotoxic effect of cisplatin in a synergistic manner with combination index (CI) values less than 0.9 accompanied by highly favourable dose reduction indices. Therefore, the results obtained support the implication that BC-7 has potential anti-cancer properties and that combinations of BC-7 with cisplatin should be further investigated for potential clinical applications.
Collapse
Affiliation(s)
- Bresler Swanepoel
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77000, Port Elizabeth 6031, South Africa; (B.S.); (L.V.); (M.v.d.V.)
| | - George Mihai Nitulescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
- Correspondence: or
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| | - Luanne Venables
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77000, Port Elizabeth 6031, South Africa; (B.S.); (L.V.); (M.v.d.V.)
| | - Maryna van de Venter
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77000, Port Elizabeth 6031, South Africa; (B.S.); (L.V.); (M.v.d.V.)
| |
Collapse
|
11
|
Ajani OO, Akande MM, October N, Siyanbola TO, Aderohunmu DV, Akinsiku AA, Olorunshola SJ. Microwave assisted synthesis, characterization and investigation of antibacterial activity of 3-(5-(substituted-phenyl)-4,5-dihydro-1 H-pyrazol-3-yl)-2 H-chromen-2-one derivatives. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2019. [DOI: 10.1080/25765299.2019.1632141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Olayinka O. Ajani
- Department of Chemistry, Covenant University, CST, Ota, Ogun State, Nigeria
| | - Maria M. Akande
- Department of Chemistry, Covenant University, CST, Ota, Ogun State, Nigeria
| | - Natasha October
- Department of Chemistry, University of Pretoria, Hatfield, South Africa
| | | | | | | | - Shade J. Olorunshola
- Department of Biological Sciences, Covenant University, CST, Ota, Ogun State, Nigeria
| |
Collapse
|