1
|
Knorr IJ, Tix L, Liu W, Talbot SR, Schulz M, Bell L, Kögel B, Tolba R, Ernst L. Refinement in Post-Operative Care for Orthopaedic Models: Implementing a Sheep Walking Cast (SWC) for Effective Tibial Fracture Management. Biomedicines 2024; 12:343. [PMID: 38397945 PMCID: PMC10886840 DOI: 10.3390/biomedicines12020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
In the healthcare system, lower leg fractures remain relevant, incurring costs related to surgical treatment, hospitalization, and rehabilitation. The duration of treatment may vary depending on the individual case and its severity. Casting as a post-surgical fracture treatment is a common method in human and experimental veterinary medicine. Despite the high importance of sheep in preclinical testing materials for osteosynthesis, there is no standardised cast system ensuring proper stabilisation and functionality of hind limbs during the healing of tibia fractures or defects. Existing treatment approaches for tibial osteosynthesis in laboratory animal science include sling hanging, external fixators, or former Achilles tendon incision. These methods restrict animal movement for 4-6 weeks, limit species-typical behaviour, and impact social interactions. Our pilot study introduces a Standardised Walking Cast (SWC) for sheep, enabling immediate physiological movement post surgery. Seven Rhone sheep (female, 63.5 kg ± 6.45 kg) each with a single tibia defect (6 mm mechanical drilled defect) underwent SWC application for 4 weeks after plate osteosynthesis. The animals bore weight on their operated leg from day one, exhibiting slight lameness (grade 1-2 out of 5). Individual step lengths showed good uniformity (average deviation: 0.89 cm). Group housing successfully started on day three after surgery. Weekly X-rays and cast changes ensured proper placement, depicting the healing process. This study demonstrates the feasibility of using an SWC for up to 72 kg of body weight without sling hanging via ceiling mounting or external fixation techniques. Allowing species-typical movement and social behaviour can significantly improve the physiological behaviour of sheep in experiments, contributing to refinement.
Collapse
Affiliation(s)
- Ivonne Jeanette Knorr
- Institute for Laboratory Animal Science and Experimental Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (I.J.K.); (L.T.); (W.L.); (M.S.); (B.K.); (R.T.)
| | - Leonie Tix
- Institute for Laboratory Animal Science and Experimental Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (I.J.K.); (L.T.); (W.L.); (M.S.); (B.K.); (R.T.)
| | - Wenjia Liu
- Institute for Laboratory Animal Science and Experimental Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (I.J.K.); (L.T.); (W.L.); (M.S.); (B.K.); (R.T.)
| | - Steven R. Talbot
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, 30625 Hannover, Germany;
| | - Mareike Schulz
- Institute for Laboratory Animal Science and Experimental Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (I.J.K.); (L.T.); (W.L.); (M.S.); (B.K.); (R.T.)
| | - Laura Bell
- Audiovisual Media Center, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany;
| | - Babette Kögel
- Institute for Laboratory Animal Science and Experimental Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (I.J.K.); (L.T.); (W.L.); (M.S.); (B.K.); (R.T.)
| | - Rene Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (I.J.K.); (L.T.); (W.L.); (M.S.); (B.K.); (R.T.)
| | - Lisa Ernst
- Institute for Laboratory Animal Science and Experimental Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (I.J.K.); (L.T.); (W.L.); (M.S.); (B.K.); (R.T.)
| |
Collapse
|
2
|
Schulze F, Lang A, Schoon J, Wassilew GI, Reichert J. Scaffold Guided Bone Regeneration for the Treatment of Large Segmental Defects in Long Bones. Biomedicines 2023; 11:biomedicines11020325. [PMID: 36830862 PMCID: PMC9953456 DOI: 10.3390/biomedicines11020325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Bone generally displays a high intrinsic capacity to regenerate. Nonetheless, large osseous defects sometimes fail to heal. The treatment of such large segmental defects still represents a considerable clinical challenge. The regeneration of large bone defects often proves difficult, since it relies on the formation of large amounts of bone within an environment impedimental to osteogenesis, characterized by soft tissue damage and hampered vascularization. Consequently, research efforts have concentrated on tissue engineering and regenerative medical strategies to resolve this multifaceted challenge. In this review, we summarize, critically evaluate, and discuss present approaches in light of their clinical relevance; we also present future advanced techniques for bone tissue engineering, outlining the steps to realize for their translation from bench to bedside. The discussion includes the physiology of bone healing, requirements and properties of natural and synthetic biomaterials for bone reconstruction, their use in conjunction with cellular components and suitable growth factors, and strategies to improve vascularization and the translation of these regenerative concepts to in vivo applications. We conclude that the ideal all-purpose material for scaffold-guided bone regeneration is currently not available. It seems that a variety of different solutions will be employed, according to the clinical treatment necessary.
Collapse
Affiliation(s)
- Frank Schulze
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Annemarie Lang
- Departments of Orthopaedic Surgery & Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Georgi I. Wassilew
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Johannes Reichert
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
- Correspondence: ; Tel.: +49-3834-86-22530
| |
Collapse
|
3
|
Schmidt M, Waselau AC, Feichtner F, Julmi S, Klose C, Maier HJ, Wriggers P, Meyer-Lindenberg A. In vivo investigation of open-pored magnesium scaffolds LAE442 with different coatings in an open wedge defect. J Appl Biomater Funct Mater 2022; 20:22808000221142679. [PMID: 36545893 DOI: 10.1177/22808000221142679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The magnesium alloy LAE442 showed promising results as a bone substitute in numerous studies in non-weight bearing bone defects. This study aimed to investigate the in vivo behavior of wedge-shaped open-pored LAE442 scaffolds modified with two different coatings (magnesium fluoride (MgF2, group 1)) or magnesium fluoride/calcium phosphate (MgF2/CaP, group 2)) in a partial weight-bearing rabbit tibia defect model. The implantation of the scaffolds was performed as an open wedge corrective osteotomy in the tibia of 40 rabbits and followed for observation periods of 6, 12, 24, and 36 weeks. Radiological and microcomputed tomographic examinations were performed in vivo. X-ray microscopic, histological, histomorphometric, and SEM/EDS analyses were performed at the end of each time period. µCT measurements and X-ray microscopy showed a slight decrease in volume and density of the scaffolds of both coatings. Histologically, endosteal and periosteal callus formation with good bridging and stabilization of the osteotomy gap and ingrowth of bone into the scaffold was seen. The MgF2 coating favored better bridging of the osteotomy gap and more bone-scaffold contacts, especially at later examination time points. Overall, the scaffolds of both coatings met the requirement to withstand the loads after an open wedge corrective osteotomy of the proximal rabbit tibia. However, in addition to the inhomogeneous degradation behavior of individual scaffolds, an accumulation of gas appeared, so the scaffold material should be revised again regarding size dimension and composition.
Collapse
Affiliation(s)
- Marlene Schmidt
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anja-Christina Waselau
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Franziska Feichtner
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stefan Julmi
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen, Germany
| | - Christian Klose
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen, Germany
| | - Hans Jürgen Maier
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen, Germany
| | - Peter Wriggers
- Institute of Continuum Mechanics, Leibniz Universität Hannover, Garbsen, Germany
| | - Andrea Meyer-Lindenberg
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
4
|
Taguchi T, Lopez MJ. An overview of de novo bone generation in animal models. J Orthop Res 2021; 39:7-21. [PMID: 32910496 PMCID: PMC7820991 DOI: 10.1002/jor.24852] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 02/04/2023]
Abstract
Some of the earliest success in de novo tissue generation was in bone tissue, and advances, facilitated by the use of endogenous and exogenous progenitor cells, continue unabated. The concept of one health promotes shared discoveries among medical disciplines to overcome health challenges that afflict numerous species. Carefully selected animal models are vital to development and translation of targeted therapies that improve the health and well-being of humans and animals alike. While inherent differences among species limit direct translation of scientific knowledge between them, rapid progress in ex vivo and in vivo de novo tissue generation is propelling revolutionary innovation to reality among all musculoskeletal specialties. This review contains a comparison of bone deposition among species and descriptions of animal models of bone restoration designed to replicate a multitude of bone injuries and pathology, including impaired osteogenic capacity.
Collapse
Affiliation(s)
- Takashi Taguchi
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Mandi J. Lopez
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
5
|
Busch A, Herten M, Haversath M, Kaiser C, Brandau S, Jäger M. Ceramic Scaffolds in a Vacuum Suction Handle for Intraoperative Stromal Cell Enrichment. Int J Mol Sci 2020; 21:ijms21176393. [PMID: 32887518 PMCID: PMC7504718 DOI: 10.3390/ijms21176393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
During total joint replacement, high concentrations of mesenchymal stromal cells (MSCs) are released at the implantation site. They can be found in cell–tissue composites (CTC) that are regularly removed by surgical suction. A surgical vacuum suction handle was filled with bone substitute granules, acting as a filter allowing us to harvest CTC. The purpose of this study was to investigate the osteopromotive potential of CTC trapped in the bone substitute filter material during surgical suction. In the course of 10 elective total hip and knee replacement surgeries, β-tricalcium-phosphate (TCP) and cancellous allograft (Allo) were enriched with CTC by vacuum suction. Mononuclear cells (MNC) were isolated from the CTC and investigated towards cell proliferation and colony forming unit (CFU) formation. Furthermore, MSC surface markers, trilineage differentiation potential and the presence of defined cytokines were examined. Comparable amounts of MNC and CFUs were detected in both CTCs and characterized as MSC‰ of MNC with 9.8 ± 10.7‰ for the TCP and 12.8 ± 10.2‰ for the Allo (p = 0.550). CTCs in both filter materials contain cytokines for stimulation of cell proliferation and differentiation (EGF, PDGF-AA, angiogenin, osteopontin). CTC trapped in synthetic (TCP) and natural (Allo) bone substitute filters during surgical suction in the course of a joint replacement procedure include relevant numbers of MSCs and cytokines qualified for bone regeneration.
Collapse
Affiliation(s)
- André Busch
- Department of Orthopedics, Trauma and Reconstructive Surgery, St. Marien Hospital Mülheim an der Ruhr, D-45468 Mülheim/Ruhr, Germany;
| | - Monika Herten
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
- Correspondence: (M.H.); (M.J.); Tel.: +49-201-723-2475 (M.H.)
| | - Marcel Haversath
- Department of Orthopedics, St. Vinzenz Hospital Düsseldorf, 40477 Düsseldorf, Germany;
| | - Christel Kaiser
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
| | - Marcus Jäger
- Department of Orthopedics, Trauma and Reconstructive Surgery, St. Marien Hospital Mülheim an der Ruhr, D-45468 Mülheim/Ruhr, Germany;
- Chair of Orthopedics and Trauma Surgery, University of Duisburg Essen, D-45147 Essen, Germany
- Correspondence: (M.H.); (M.J.); Tel.: +49-201-723-2475 (M.H.)
| |
Collapse
|
6
|
Sparks DS, Saifzadeh S, Savi FM, Dlaska CE, Berner A, Henkel J, Reichert JC, Wullschleger M, Ren J, Cipitria A, McGovern JA, Steck R, Wagels M, Woodruff MA, Schuetz MA, Hutmacher DW. A preclinical large-animal model for the assessment of critical-size load-bearing bone defect reconstruction. Nat Protoc 2020; 15:877-924. [PMID: 32060491 DOI: 10.1038/s41596-019-0271-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/11/2019] [Indexed: 12/31/2022]
Abstract
Critical-size bone defects, which require large-volume tissue reconstruction, remain a clinical challenge. Bone engineering has the potential to provide new treatment concepts, yet clinical translation requires anatomically and physiologically relevant preclinical models. The ovine critical-size long-bone defect model has been validated in numerous studies as a preclinical tool for evaluating both conventional and novel bone-engineering concepts. With sufficient training and experience in large-animal studies, it is a technically feasible procedure with a high level of reproducibility when appropriate preoperative and postoperative management protocols are followed. The model can be established by following a procedure that includes the following stages: (i) preoperative planning and preparation, (ii) the surgical approach, (iii) postoperative management, and (iv) postmortem analysis. Using this model, full results for peer-reviewed publication can be attained within 2 years. In this protocol, we comprehensively describe how to establish proficiency using the preclinical model for the evaluation of a range of bone defect reconstruction options.
Collapse
Affiliation(s)
- David S Sparks
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.,Department of Plastic & Reconswrapping a sterile Coban wrap around the limb distallytructive Surgery, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia.,Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, Queensland, Australia
| | - Siamak Saifzadeh
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.,Medical Engineering Research Facility, Queensland UCoban wrap only comes non-sterile. Sterilize Coban wrap before use.niversity of Technology, Chermside, Queensland, Australia
| | - Flavia Medeiros Savi
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.,ARC Centre for Additive Biomanufactthe mounting resin base cement. Use it only in a laboratory fume cabinet and withuring, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Constantin E Dlaska
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.,Jamieson Trauma Institute, Royal Brisbane Hospital, Herston, Queensland, Australia
| | - Arne Berner
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.,Department of Trauma Surgery, University Hospital of Regensburg, Regensburg, Germany
| | - Jan Henkel
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Johannes C Reichert
- Department of Orthopaedic Surgery, Center for Musculoskeletal Research, König-Ludwig-Haus, Julius-Maximilians-University, Würzburg, Germany.,Department of Orthopaedic and Trauma Surgery, Evangelisches Waldkrankenhaus Spandau, Berlin, Germany
| | - Martin Wullschleger
- Jamieson Trauma Institute, Royal Brisbane Hospital, Herston, Queensland, Australia.,Griffith University, School of Medicine, Southport, Queensland, Australia
| | - Jiongyu Ren
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Amaia Cipitria
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Jacqui A McGovern
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Roland Steck
- Medical Engineering Research Facility, Queensland UCoban wrap only comes non-sterile. Sterilize Coban wrap before use.niversity of Technology, Chermside, Queensland, Australia
| | - Michael Wagels
- Department of Plastic & Reconswrapping a sterile Coban wrap around the limb distallytructive Surgery, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia.,Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, Queensland, Australia.,Australian Centre for Complex Integrated Surgical Solutions (ACCISS), Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Maria Ann Woodruff
- ARC Centre for Additive Biomanufactthe mounting resin base cement. Use it only in a laboratory fume cabinet and withuring, Queensland University of Technology, Kelvin Grove, Queensland, Australia.,Biofabrication and Tissue Morphology Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Michael A Schuetz
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.,Jamieson Trauma Institute, Royal Brisbane Hospital, Herston, Queensland, Australia
| | - Dietmar W Hutmacher
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia. .,ARC Centre for Additive Biomanufactthe mounting resin base cement. Use it only in a laboratory fume cabinet and withuring, Queensland University of Technology, Kelvin Grove, Queensland, Australia.
| |
Collapse
|
7
|
Busch A, Wegner A, Haversath M, Jäger M. Bone Substitutes in Orthopaedic Surgery: Current Status and Future Perspectives. ZEITSCHRIFT FUR ORTHOPADIE UND UNFALLCHIRURGIE 2020; 159:304-313. [PMID: 32023626 DOI: 10.1055/a-1073-8473] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bone replacement materials have been successfully supplied for a long time. But there are cases, especially in critical sized bone defects, in which the therapy is not sufficient. Nowadays, there are multiple bone substitutes available. Autologous bone grafts remain the "gold standard" in bone regeneration. Yet, donor-site morbidity and the available amount of sufficient material are limitations for autologous bone grafting. This study aimed to provide information about the current status in research regarding bone substitutes. We report on the advantages and drawbacks of several bone substitutes. At the end, we discuss the current developments of combining ceramic substitutes with osteoinductive substances.
Collapse
Affiliation(s)
- André Busch
- Department of Orthopaedics, Trauma and Reconstructive Surgery, Marienhospital Mülheim an der Ruhr, Chair of Orthopaedics and Trauma Surgery, University of Duisburg-Essen, Germany
| | - Alexander Wegner
- Department of Orthopaedics, Trauma and Reconstructive Surgery, Marienhospital Mülheim an der Ruhr, Chair of Orthopaedics and Trauma Surgery, University of Duisburg-Essen, Germany
| | - Marcel Haversath
- Department of Orthopaedics, Trauma and Reconstructive Surgery, Marienhospital Mülheim an der Ruhr, Chair of Orthopaedics and Trauma Surgery, University of Duisburg-Essen, Germany
| | - Marcus Jäger
- Department of Orthopaedics, Trauma and Reconstructive Surgery, Marienhospital Mülheim an der Ruhr, Chair of Orthopaedics and Trauma Surgery, University of Duisburg-Essen, Germany
| |
Collapse
|