1
|
Kubo S, Okada Y. The ATPase asymmetry: Novel computational insight into coupling diverse F O motors with tripartite F 1. Biophys J 2024:S0006-3495(24)00178-4. [PMID: 38459696 DOI: 10.1016/j.bpj.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024] Open
Abstract
ATP synthase, a crucial enzyme for cellular bioenergetics, operates via the coordinated coupling of an FO motor, which presents variable symmetry, and a tripartite F1 motor. Despite extensive research, the understanding of their coupling dynamics, especially with non-10-fold symmetrical FO motors, remains incomplete. This study investigates the coupling patterns between eightfold and ninefold FO motors and the constant threefold F1 motor using coarse-grained molecular dynamics simulations. We unveil that in the case of a ninefold FO motor, a 3-3-3 motion is most likely to occur, whereas a 3-3-2 motion predominates with an eightfold FO motor. Furthermore, our findings propose a revised model for the coupling method, elucidating that the pathways' energy usage is primarily influenced by F1 rotation and conformational changes hindered by the b-subunits. Our results present a crucial step toward comprehending the energy landscape and mechanisms governing ATP synthase operation.
Collapse
Affiliation(s)
- Shintaroh Kubo
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Yasushi Okada
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan; Universal Biology Institute and International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan; Laboratory for Cell Polarity Regulation, Center for Biosystems Dynamics Research (BDR), RIKEN, Osaka, Japan
| |
Collapse
|
2
|
Kubo S, Niina T, Takada S. F O-F 1 coupling and symmetry mismatch in ATP synthase resolved in every F O rotation step. Biophys J 2023; 122:2898-2909. [PMID: 36171725 PMCID: PMC10397808 DOI: 10.1016/j.bpj.2022.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/18/2022] [Accepted: 09/26/2022] [Indexed: 11/19/2022] Open
Abstract
FOF1 ATP synthase, a ubiquitous enzyme that synthesizes most ATP in living cells, is composed of two rotary motors: a membrane-embedded proton-driven FO motor and a catalytic F1 motor. These motors share both central and peripheral stalks. Although both FO and F1 have pseudo-symmetric structures, their symmetries do not match. How symmetry mismatch is solved remains elusive because of the missing intermediate structures of the rotational steps. Here, for the case of Bacillus PS3 ATP synthases with three- and 10-fold symmetries in F1 and FO, respectively, we uncovered the mechanical couplings between FO and F1 at every 36° rotation step via molecular dynamics simulations and comparative studies of cryoelectron microscopy (cryo-EM) structures from three species. We found that the mismatch could be solved using several elements: 1) the F1 head partially rotates relative to the FO a subunit via elastic distortion of the b subunits, 2) the rotor is twisted, and 3) comparisons of cryo-EM structures further suggest that the c ring rotary angles can deviate from the symmetric ones. In addition, the F1 motor may have non-canonical structures, relieving stronger frustration. Thus, we provide new insights for solving the symmetry mismatch problem.
Collapse
Affiliation(s)
- Shintaroh Kubo
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan; Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada.
| | - Toru Niina
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
3
|
Gao Y, Zhang J, Pan J, Ying S, Lou B, Yang Q, Hong W, Yang G. F OF1-ATP synthase molecular motor biosensor for miRNA detection of colon cancer. Life Sci 2023; 319:121527. [PMID: 36841472 DOI: 10.1016/j.lfs.2023.121527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
AIMS To establish a FOF1-ATP synthase molecular motor biosensor to accurately identify colon cancer miRNAs. MAIN METHODS The FOF1-ATP synthase molecular motor is extracted by fragmentation-centrifugation and connected to the colon cancer-specific miR-17 capture probe in the manner of the ε subunit-biotin-streptavidin-biotin system. Signal probes are designed for dual-signal characterization to increase detection accuracy. The FOF1-ATPase rotation rate decreases when the signaling and capture probes are combined with the target miRNA, resulting in a decrease in ATP synthesis. miR-17 concentrations are determined by changes in ATP-mediated chemiluminescence intensity and signal probe-mediated OD450nm. KEY FINDINGS The chemiluminescence intensity and OD450nm show a good linear relationship with the miR-17 concentration in the range of 5 to 200 nmol L-1 (R2 = 0.9985, 0.9989). The colon cancer mouse model is established for the blood samples, and miR-17 in serum and RNA extracts is quantitatively determined using the constructed sensor. SIGNIFICANCE The results are consistent with colon cancer progression, and the low concentration of miR-17 detecting accuracy is comparable to the PCR assay. In conclusion, the developed method is a direct, rapid, and promising method for miRNA detection of colon cancer.
Collapse
Affiliation(s)
- Ying Gao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China; Zhejiang Moda Biotech Co., Ltd, Hangzhou 310018, China
| | - Jie Zhang
- Taizhou Technician College, Taizhou 318000, China
| | - Jiexia Pan
- Criminal Investigation Corps of Zhejiang Provincial Public Security Department, Hangzhou 310009, China
| | - Sanjun Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Bang Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Weiyong Hong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China; Department of Pharmacy, Municipal Hospital Affiliated to Taizhou University, Taizhou 318000, China.
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
4
|
Changes within the central stalk of E. coli F 1F o ATP synthase observed after addition of ATP. Commun Biol 2023; 6:26. [PMID: 36631659 PMCID: PMC9834311 DOI: 10.1038/s42003-023-04414-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
F1Fo ATP synthase functions as a biological generator and makes a major contribution to cellular energy production. Proton flow generates rotation in the Fo motor that is transferred to the F1 motor to catalyze ATP production, with flexible F1/Fo coupling required for efficient catalysis. F1Fo ATP synthase can also operate in reverse, hydrolyzing ATP and pumping protons, and in bacteria this function can be regulated by an inhibitory ε subunit. Here we present cryo-EM data showing E. coli F1Fo ATP synthase in different rotational and inhibited sub-states, observed following incubation with 10 mM MgATP. Our structures demonstrate how structural transitions within the inhibitory ε subunit induce torsional movement in the central stalk, thereby enabling its rotation within the Fο motor. This highlights the importance of the central rotor for flexible coupling of the F1 and Fo motors and provides further insight into the regulatory mechanism mediated by subunit ε.
Collapse
|
5
|
Otomo A, Iida T, Okuni Y, Ueno H, Murata T, Iino R. Direct observation of stepping rotation of V-ATPase reveals rigid component in coupling between V o and V 1 motors. Proc Natl Acad Sci U S A 2022; 119:e2210204119. [PMID: 36215468 PMCID: PMC9586324 DOI: 10.1073/pnas.2210204119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
V-ATPases are rotary motor proteins that convert the chemical energy of ATP into the electrochemical potential of ions across cell membranes. V-ATPases consist of two rotary motors, Vo and V1, and Enterococcus hirae V-ATPase (EhVoV1) actively transports Na+ in Vo (EhVo) by using torque generated by ATP hydrolysis in V1 (EhV1). Here, we observed ATP-driven stepping rotation of detergent-solubilized EhVoV1 wild-type, aE634A, and BR350K mutants under various Na+ and ATP concentrations ([Na+] and [ATP], respectively) by using a 40-nm gold nanoparticle as a low-load probe. When [Na+] was low and [ATP] was high, under the condition that only Na+ binding to EhVo is rate limiting, wild-type and aE634A exhibited 10 pausing positions reflecting 10-fold symmetry of the EhVo rotor and almost no backward steps. Duration time before the forward steps was inversely proportional to [Na+], confirming that Na+ binding triggers the steps. When both [ATP] and [Na+] were low, under the condition that both Na+ and ATP bindings are rate limiting, aE634A exhibited 13 pausing positions reflecting 10- and 3-fold symmetries of EhVo and EhV1, respectively. The distribution of duration time before the forward step was fitted well by the sum of two exponential decay functions with distinct time constants. Furthermore, occasional backward steps smaller than 36° were observed. Small backward steps were also observed during three long ATP cleavage pauses of BR350K. These results indicate that EhVo and EhV1 do not share pausing positions, Na+ and ATP bindings occur at different angles, and the coupling between EhVo and EhV1 has a rigid component.
Collapse
Affiliation(s)
- Akihiro Otomo
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan
| | - Tatsuya Iida
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan
| | - Yasuko Okuni
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan
| |
Collapse
|
6
|
Frasch WD, Bukhari ZA, Yanagisawa S. F1FO ATP synthase molecular motor mechanisms. Front Microbiol 2022; 13:965620. [PMID: 36081786 PMCID: PMC9447477 DOI: 10.3389/fmicb.2022.965620] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
The F-ATP synthase, consisting of F1 and FO motors connected by a central rotor and the stators, is the enzyme responsible for synthesizing the majority of ATP in all organisms. The F1 (αβ)3 ring stator contains three catalytic sites. Single-molecule F1 rotation studies revealed that ATP hydrolysis at each catalytic site (0°) precedes a power-stroke that rotates subunit-γ 120° with angular velocities that vary with rotational position. Catalytic site conformations vary relative to subunit-γ position (βE, empty; βD, ADP bound; βT, ATP-bound). During a power stroke, βE binds ATP (0°–60°) and βD releases ADP (60°–120°). Årrhenius analysis of the power stroke revealed that elastic energy powers rotation via unwinding the γ-subunit coiled-coil. Energy from ATP binding at 34° closes βE upon subunit-γ to drive rotation to 120° and forcing the subunit-γ to exchange its tether from βE to βD, which changes catalytic site conformations. In F1FO, the membrane-bound FO complex contains a ring of c-subunits that is attached to subunit-γ. This c-ring rotates relative to the subunit-a stator in response to transmembrane proton flow driven by a pH gradient, which drives subunit-γ rotation in the opposite direction to force ATP synthesis in F1. Single-molecule studies of F1FO embedded in lipid bilayer nanodisks showed that the c-ring transiently stopped F1-ATPase-driven rotation every 36° (at each c-subunit in the c10-ring of E. coli F1FO) and was able to rotate 11° in the direction of ATP synthesis. Protonation and deprotonation of the conserved carboxyl group on each c-subunit is facilitated by separate groups of subunit-a residues, which were determined to have different pKa’s. Mutations of any of any residue from either group changed both pKa values, which changed the occurrence of the 11° rotation proportionately. This supports a Grotthuss mechanism for proton translocation and indicates that proton translocation occurs during the 11° steps. This is consistent with a mechanism in which each 36° of rotation the c-ring during ATP synthesis involves a proton translocation-dependent 11° rotation of the c-ring, followed by a 25° rotation driven by electrostatic interaction of the negatively charged unprotonated carboxyl group to the positively charged essential arginine in subunit-a.
Collapse
|
7
|
Volkán-Kacsó S, Marcus RA. F 1-ATPase Rotary Mechanism: Interpreting Results of Diverse Experimental Modes With an Elastic Coupling Theory. Front Microbiol 2022; 13:861855. [PMID: 35531282 PMCID: PMC9072658 DOI: 10.3389/fmicb.2022.861855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/28/2022] [Indexed: 11/19/2022] Open
Abstract
In this chapter, we review single-molecule observations of rotary motors, focusing on the general theme that their mechanical motion proceeds in substeps with each substep described by an angle-dependent rate constant. In the molecular machine F1-ATPase, the stepping rotation is described for individual steps by forward and back reaction rate constants, some of which depend strongly on the rotation angle. The rotation of a central shaft is typically monitored by an optical probe. We review our recent work on the theory for the angle-dependent rate constants built to treat a variety of single-molecule and ensemble experiments on the F1-ATPase, and relating the free energy of activation of a step to the standard free energy of reaction for that step. This theory, an elastic molecular transfer theory, provides a framework for a multistate model and includes the probe used in single-molecule imaging and magnetic manipulation experiments. Several examples of its application are the following: (a) treatment of the angle-dependent rate constants in stalling experiments, (b) use of the model to enhance the time resolution of the single-molecule imaging apparatus and to detect short-lived states with a microsecond lifetime, states hidden by the fluctuations of the imaging probe, (c) treatment of out-of-equilibrium "controlled rotation" experiments, (d) use of the model to predict, without adjustable parameters, the angle-dependent rate constants of nucleotide binding and release, using data from other experiments, and (e) insights obtained from correlation of kinetic and cryo-EM structural data. It is also noted that in the case where the release of ADP would be a bottleneck process, the binding of ATP to another site acts to accelerate the release by 5-6 orders of magnitude. The relation of the present set of studies to previous and current theoretical work in the field is described. An overall goal is to gain mechanistic insight into the biological function in relation to structure.
Collapse
Affiliation(s)
- Sándor Volkán-Kacsó
- Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA, United States
- Segerstrom Science Center, Azusa Pacific University, Azusa, CA, United States
| | - Rudolph A. Marcus
- Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
8
|
Sielaff H, Dienerowitz F, Dienerowitz M. Single-molecule FRET combined with electrokinetic trapping reveals real-time enzyme kinetics of individual F-ATP synthases. NANOSCALE 2022; 14:2327-2336. [PMID: 35084006 DOI: 10.1039/d1nr05754e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) is a key technique to observe conformational changes in molecular motors and to access the details of single-molecule static and dynamic disorder during catalytic processes. However, studying freely diffusing molecules in solution is limited to a few tens of milliseconds, while surface attachment often bears the risk to restrict their natural motion. In this paper we combine smFRET and electrokinetic trapping (ABEL trap) to non-invasively hold single FOF1-ATP synthases for up to 3 s within the detection volume, thereby extending the observation time by a factor of 10 as compared to Brownian diffusion without surface attachment. In addition, we are able to monitor complete reaction cycles and to selectively trap active molecules based on their smFRET signal, thus speeding up the data acquisition process. We demonstrate the capability of our method to study the dynamics of single molecules by recording the ATP-hydrolysis driven rotation of individual FOF1-ATP synthase molecules over numerous reaction cycles and extract their kinetic rates. We argue that our method is not limited to motor proteins. Instead, it can be applied to monitor conformational changes with millisecond time resolution for a wide range of enzymes, thereby making it a versatile tool for studying protein dynamics.
Collapse
Affiliation(s)
- Hendrik Sielaff
- Department of Chemistry, Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, 117557 Singapore, Singapore
| | - Frank Dienerowitz
- Ernst-Abbe-Hochschule Jena, University of Applied Sciences, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
| | - Maria Dienerowitz
- Single-Molecule Microscopy Group, Universitätsklinikum Jena, Nonnenplan 2-4, 07743 Jena, Germany.
| |
Collapse
|
9
|
Yanagisawa S, Frasch WD. pH-dependent 11° F 1F O ATP synthase sub-steps reveal insight into the F O torque generating mechanism. eLife 2021; 10:70016. [PMID: 34970963 PMCID: PMC8754430 DOI: 10.7554/elife.70016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/27/2021] [Indexed: 12/04/2022] Open
Abstract
Most cellular ATP is made by rotary F1FO ATP synthases using proton translocation-generated clockwise torque on the FO c-ring rotor, while F1-ATP hydrolysis can force counterclockwise rotation and proton pumping. The FO torque-generating mechanism remains elusive even though the FO interface of stator subunit-a, which contains the transmembrane proton half-channels, and the c-ring is known from recent F1FO structures. Here, single-molecule F1FO rotation studies determined that the pKa values of the half-channels differ, show that mutations of residues in these channels change the pKa values of both half-channels, and reveal the ability of FO to undergo single c-subunit rotational stepping. These experiments provide evidence to support the hypothesis that proton translocation through FO operates via a Grotthuss mechanism involving a column of single water molecules in each half-channel linked by proton translocation-dependent c-ring rotation. We also observed pH-dependent 11° ATP synthase-direction sub-steps of the Escherichia coli c10-ring of F1FO against the torque of F1-ATPase-dependent rotation that result from H+ transfer events from FO subunit-a groups with a low pKa to one c-subunit in the c-ring, and from an adjacent c-subunit to stator groups with a high pKa. These results support a mechanism in which alternating proton translocation-dependent 11° and 25° synthase-direction rotational sub-steps of the c10-ring occur to sustain F1FO ATP synthesis.
Collapse
Affiliation(s)
- Seiga Yanagisawa
- 1School of Life Sciences, Arizona State University, Tempe, United States
| | - Wayne D Frasch
- School of Life Sciences, Arizona State University, Tempe, United States
| |
Collapse
|
10
|
Li Y, Valdez NA, Mnatsakanyan N, Weber J. The nucleotide binding affinities of two critical conformations of Escherichia coli ATP synthase. Arch Biochem Biophys 2021; 707:108899. [PMID: 33991499 PMCID: PMC8278868 DOI: 10.1016/j.abb.2021.108899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
ATP synthase is essential in aerobic energy metabolism, and the rotary catalytic mechanism is one of the core concepts to understand the energetic functions of ATP synthase. Disulfide bonds formed by oxidizing a pair of cysteine mutations halted the rotation of the γ subunit in two critical conformations, the ATP-waiting dwell (αE284C/γQ274C) and the catalytic dwell (αE284C/γL276C). Tryptophan fluorescence was used to measure the nucleotide binding affinities for MgATP, MgADP and MgADP-AlF4 (a transition state analog) to wild-type and mutant F1 under reducing and oxidizing conditions. In the reduced state, αE284C/γL276C F1 showed a wild-type-like nucleotide binding pattern; after oxidation to lock the enzyme in the catalytic dwell state, the nucleotide binding parameters remained unchanged. In contrast, αE284C/γQ274C F1 showed significant differences in the affinities of the oxidized versus the reduced state. Locking the enzyme in the ATP-waiting dwell reduced nucleotide binding affinities of all three catalytic sites. Most importantly, the affinity of the low affinity site was reduced to such an extent that it could no longer be detected in the binding assay (Kd > 5 mM). The results of the present study allow to present a model for the catalytic mechanism of ATP synthase under consideration of the nucleotide affinity changes during a 360° cycle of the rotor.
Collapse
Affiliation(s)
- Yunxiang Li
- Department of Chemistry and Biochemistry, Texas Woman's University, Denton, TX, 76204, USA; Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Neydy A Valdez
- Department of Biology, Texas Woman's University, Denton, TX, 76204, USA
| | - Nelli Mnatsakanyan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA; School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Joachim Weber
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA; Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
11
|
Heitkamp T, Börsch M. Fast ATP-Dependent Subunit Rotation in Reconstituted F oF 1-ATP Synthase Trapped in Solution. J Phys Chem B 2021; 125:7638-7650. [PMID: 34254808 DOI: 10.1021/acs.jpcb.1c02739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
FoF1-ATP synthases are ubiquitous membrane-bound, rotary motor enzymes that can catalyze ATP synthesis and hydrolysis. Their enzyme kinetics are controlled by internal subunit rotation, by substrate and product concentrations, and by mechanical inhibitory mechanisms but also by the electrochemical potential of protons across the membrane. Single-molecule Förster resonance energy transfer (smFRET) has been used to detect subunit rotation within FoF1-ATP synthases embedded in freely diffusing liposomes. We now report that kinetic monitoring of functional rotation can be prolonged from milliseconds to seconds by utilizing an anti-Brownian electrokinetic trap (ABEL trap). These extended observation times allowed us to observe fluctuating rates of functional rotation for individual FoF1-liposomes in solution. Broad distributions of ATP-dependent catalytic rates were revealed. The buildup of an electrochemical potential of protons was confirmed to limit the maximum rate of ATP hydrolysis. In the presence of ionophores or uncouplers, the fastest subunit rotation speeds measured in single reconstituted FoF1-ATP synthases were 180 full rounds per second. This was much faster than measured by biochemical ensemble averaging, but not as fast as the maximum rotational speed reported previously for isolated single F1 complexes uncoupled from the membrane-embedded Fo complex. Further application of ABEL trap measurements should help resolve the mechanistic causes of such fluctuating rates of subunit rotation.
Collapse
Affiliation(s)
- Thomas Heitkamp
- Single-Molecule Microscopy Group, Jena University Hospital, Nonnenplan 2-4, 07743 Jena, Germany
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Nonnenplan 2-4, 07743 Jena, Germany
| |
Collapse
|
12
|
The catalytic dwell in ATPases is not crucial for movement against applied torque. Nat Chem 2020; 12:1187-1192. [PMID: 32958886 DOI: 10.1038/s41557-020-0549-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
Abstract
The ATPase-catalysed conversion of ATP to ADP is a fundamental process in biology. During the hydrolysis of ATP, the α3β3 domain undergoes conformational changes while the central stalk (γ/D) rotates unidirectionally. Experimental studies have suggested that different catalytic mechanisms operate depending on the type of ATPase, but the structural and energetic basis of these mechanisms remains unclear. In particular, it is not clear how the positions of the catalytic dwells influence the energy transduction. Here we show that the observed dwell positions, unidirectional rotation and movement against the applied torque are reflections of the free-energy surface of the systems. Instructively, we determine that the dwell positions do not substantially affect the stopping torque. Our results suggest that the three resting states and the pathways that connect them should not be treated equally. The current work demonstrates how the free-energy landscape determines the behaviour of different types of ATPases.
Collapse
|
13
|
Sobti M, Walshe JL, Wu D, Ishmukhametov R, Zeng YC, Robinson CV, Berry RM, Stewart AG. Cryo-EM structures provide insight into how E. coli F 1F o ATP synthase accommodates symmetry mismatch. Nat Commun 2020; 11:2615. [PMID: 32457314 PMCID: PMC7251095 DOI: 10.1038/s41467-020-16387-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
F1Fo ATP synthase functions as a biological rotary generator that makes a major contribution to cellular energy production. It comprises two molecular motors coupled together by a central and a peripheral stalk. Proton flow through the Fo motor generates rotation of the central stalk, inducing conformational changes in the F1 motor that catalyzes ATP production. Here we present nine cryo-EM structures of E. coli ATP synthase to 3.1-3.4 Å resolution, in four discrete rotational sub-states, which provide a comprehensive structural model for this widely studied bacterial molecular machine. We observe torsional flexing of the entire complex and a rotational sub-step of Fo associated with long-range conformational changes that indicates how this flexibility accommodates the mismatch between the 3- and 10-fold symmetries of the F1 and Fo motors. We also identify density likely corresponding to lipid molecules that may contribute to the rotor/stator interaction within the Fo motor.
Collapse
Affiliation(s)
- Meghna Sobti
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia.,Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - James L Walshe
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Di Wu
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, United Kingdom
| | - Robert Ishmukhametov
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, United Kingdom
| | - Yi C Zeng
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, United Kingdom
| | - Richard M Berry
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, United Kingdom
| | - Alastair G Stewart
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia. .,Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Kensington, NSW, 2052, Australia.
| |
Collapse
|
14
|
Abstract
In nature, DNA molecules carry the hereditary information. But DNA has physical and chemical properties that make it attractive for uses beyond heredity. In this Review, we discuss the potential of DNA for creating machines that are both encoded by and built from DNA molecules. We review the main methods of DNA nanostructure assembly, describe recent advances in building increasingly complex molecular structures and discuss strategies for creating machine-like nanostructures that can be actuated and move. We highlight opportunities for applications of custom DNA nanostructures as scientific tools to address challenges across biology, chemistry and engineering.
Collapse
|
15
|
Murphy BJ, Klusch N, Langer J, Mills DJ, Yildiz Ö, Kühlbrandt W. Rotary substates of mitochondrial ATP synthase reveal the basis of flexible F1-Focoupling. Science 2019; 364:364/6446/eaaw9128. [DOI: 10.1126/science.aaw9128] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/26/2019] [Indexed: 12/17/2022]
Abstract
F1Fo–adenosine triphosphate (ATP) synthases make the energy of the proton-motive force available for energy-consuming processes in the cell. We determined the single-particle cryo–electron microscopy structure of active dimeric ATP synthase from mitochondria ofPolytomellasp. at a resolution of 2.7 to 2.8 angstroms. Separation of 13 well-defined rotary substates by three-dimensional classification provides a detailed picture of the molecular motions that accompanyc-ring rotation and result in ATP synthesis. Crucially, the F1head rotates along with the central stalk andc-ring rotor for the first ~30° of each 120° primary rotary step to facilitate flexible coupling of the stoichiometrically mismatched F1and Fosubcomplexes. Flexibility is mediated primarily by the interdomain hinge of the conserved OSCP subunit. A conserved metal ion in the proton access channel may synchronizec-ring protonation with rotation.
Collapse
|
16
|
Sobti M, Ishmukhametov R, Bouwer JC, Ayer A, Suarna C, Smith NJ, Christie M, Stocker R, Duncan TM, Stewart AG. Cryo-EM reveals distinct conformations of E. coli ATP synthase on exposure to ATP. eLife 2019; 8:e43864. [PMID: 30912741 PMCID: PMC6449082 DOI: 10.7554/elife.43864] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/25/2019] [Indexed: 12/13/2022] Open
Abstract
ATP synthase produces the majority of cellular energy in most cells. We have previously reported cryo-EM maps of autoinhibited E. coli ATP synthase imaged without addition of nucleotide (Sobti et al. 2016), indicating that the subunit ε engages the α, β and γ subunits to lock the enzyme and prevent functional rotation. Here we present multiple cryo-EM reconstructions of the enzyme frozen after the addition of MgATP to identify the changes that occur when this ε inhibition is removed. The maps generated show that, after exposure to MgATP, E. coli ATP synthase adopts a different conformation with a catalytic subunit changing conformation substantially and the ε C-terminal domain transitioning via an intermediate 'half-up' state to a condensed 'down' state. This work provides direct evidence for unique conformational states that occur in E. coli ATP synthase when ATP binding prevents the ε C-terminal domain from entering the inhibitory 'up' state.
Collapse
Affiliation(s)
- Meghna Sobti
- Molecular, Structural and Computational Biology DivisionThe Victor Chang Cardiac Research InstituteDarlinghurstAustralia
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
| | - Robert Ishmukhametov
- Department of Physics, Clarendon LaboratoryUniversity of OxfordOxfordUnited Kingdom
| | - James C Bouwer
- Molecular HorizonsThe University of WollongongWollongongAustralia
| | - Anita Ayer
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
- Vascular Biology DivisionVictor Chang Cardiac Research InstituteDarlinghurstAustralia
| | - Cacang Suarna
- Vascular Biology DivisionVictor Chang Cardiac Research InstituteDarlinghurstAustralia
| | - Nicola J Smith
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
- Molecular Cardiology and Biophysics DivisionVictor Chang Cardiac Research InstituteDarlinghurstAustralia
| | - Mary Christie
- Molecular, Structural and Computational Biology DivisionThe Victor Chang Cardiac Research InstituteDarlinghurstAustralia
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
| | - Roland Stocker
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
- Vascular Biology DivisionVictor Chang Cardiac Research InstituteDarlinghurstAustralia
| | - Thomas M Duncan
- Department of Biochemistry & Molecular BiologySUNY Upstate Medical UniversitySyracuse, NYUnited States
| | - Alastair G Stewart
- Molecular, Structural and Computational Biology DivisionThe Victor Chang Cardiac Research InstituteDarlinghurstAustralia
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
| |
Collapse
|