1
|
Wang J, Qiao JQ, Zheng WJ, Lian HZ. Effect of ionic liquids as mobile phase additives on retention behaviors of G-quadruplexes in reversed-phase high performance liquid chromatography. J Chromatogr A 2024; 1715:464604. [PMID: 38176351 DOI: 10.1016/j.chroma.2023.464604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
G-quadruplexes (G4s) play an important role in a variety of biological processes and have extensive application prospects. Due to the significance of G4s in physiology and biosensing, studies on G4s have attracted much attention, stimulating the development or improvement of methods for G4 structures and polymorphism analysis. In this work, ionic liquids (ILs) were involved as mobile phase additives in reversed-phase high performance liquid chromatography (RP-HPLC) to analyse G4s with various conformations for the first time. How ILs affected the retention behaviors of G4s was investigated comprehensively. It was found that the addition of ILs markedly enhanced G4 retention, along with obvious amelioration on chromatographic peak shapes and separation. The influence of pH of mobile phase and types of ILs were also included in order to acquire an in-depth understanding. It appeared that the effect of ILs on G4 retention behaviors was the result of a combination of various interactions between G4s with the hydrophobic stationary phase and with the IL-containing mobile phase, where ion pair mechanism and enhanced hydrophobic interaction dominated. The findings of this work revealed that ILs could effectively improve the separation of G4s in RP-HPLC, which was conducive to G4 structural analysis, especially for G4s polymorphism elucidation.
Collapse
Affiliation(s)
- Ju Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Jun-Qin Qiao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| | - Wei-Juan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Hong-Zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
2
|
Wang J, Qiao J, Zheng W, Lian H. Study on the Interaction of a Peptide Targeting Specific G-Quadruplex Structures Based on Chromatographic Retention Behavior. Int J Mol Sci 2023; 24:ijms24021438. [PMID: 36674950 PMCID: PMC9866954 DOI: 10.3390/ijms24021438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/01/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
G-quadruplexes (G4s) are of vital biological significance and G4-specific ligands with conformational selectivity show great application potential in disease treatment and biosensing. RHAU, a RNA helicase associated with AU-rich element, exerts biological functions through the mediation of G4s and has been identified to be a G4 binder. Here, we investigated the interactions between the RHAU peptide and G4s with different secondary structures using size exclusion chromatography (SEC) in association with circular dichroism (CD), ultraviolet-visible (UV-Vis) absorption, and native polyacrylamide gel electrophoresis (Native-PAGE). Spectral results demonstrated that the RHAU peptide did not break the main structure of G4s, making it more reliable for G4 structural analysis. The RHAU peptide was found to display a structural selectivity for a preferential binding to parallel G4s as reflected by the distinct chromatographic retention behaviors. In addition, the RHAU peptide exhibited different interactions with intermolecular parallel G4s and intramolecular parallel G4s, providing a novel recognition approach to G4 structures. The findings of this study enriched the insight into the binding of RHAU to G4s with various conformations. It is noteworthy that SEC technology can be easy and reliable for elucidating G4-peptide interactions, especially for a multiple G4 coexisting system, which supplied an alternative strategy to screen novel specific ligands for G4s.
Collapse
Affiliation(s)
- Ju Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Junqin Qiao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
- Correspondence: (J.Q.); (H.L.)
| | - Weijuan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Hongzhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
- Correspondence: (J.Q.); (H.L.)
| |
Collapse
|
3
|
Greco F, Marzano M, Falanga AP, Terracciano M, Piccialli G, Roviello GN, D'Errico S, Borbone N, Oliviero G. Cytosine-rich oligonucleotides incorporating a non-nucleotide loop: A further step towards the obtainment of physiologically stable i-motif DNA. Int J Biol Macromol 2022; 219:626-636. [PMID: 35952813 DOI: 10.1016/j.ijbiomac.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 11/05/2022]
Abstract
i-Motifs, also known as i-tetraplexes, are secondary structures of DNA occurring in cytosine-rich oligonucleotides (CROs) that recall increasing interest in the scientific community for their relevance in various biological processes and DNA nanotechnology. This study reports the design of new structurally modified CROs, named Double-Ended-Linker-CROs (DEL-CROs), capable of forming stable i-motif structures. Here, two C-rich strands having sequences d(AC4A) and d(C6) have been attached, in a parallel fashion, to the two linker's edges by their 3' or 5' ends. The resulting DEL-CROs have been investigated for their capability to form i-motif structures by circular dichroism, poly-acrylamide gel electrophoresis, HPLC-size-exclusion chromatography, and NMR studies. This investigation established that DEL-CROs could form more stable i-motif structures than the corresponding unmodified CROs. In particular, the i-motif formed by DEL-5'-d(C6)2 resulted stable enough to be detected even at near physiological conditions (37 °C, pH 7.0). The results open the way to developing pH-switchable nanocarriers and aptamers based on suitably functionalized DEL-CROs.
Collapse
Affiliation(s)
- Francesca Greco
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Maria Marzano
- Istituto di Scienze Applicate e Sistemi Intelligenti - Unità di Napoli, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Andrea Patrizia Falanga
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Monica Terracciano
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; Istituto di Scienze Applicate e Sistemi Intelligenti - Unità di Napoli, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Gennaro Piccialli
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; ISBE Italy, Università degli Studi di Napoli Federico II, 80138 Napoli, Italy
| | - Giovanni Nicola Roviello
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Stefano D'Errico
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Nicola Borbone
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; Istituto di Scienze Applicate e Sistemi Intelligenti - Unità di Napoli, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy; ISBE Italy, Università degli Studi di Napoli Federico II, 80138 Napoli, Italy.
| | - Giorgia Oliviero
- ISBE Italy, Università degli Studi di Napoli Federico II, 80138 Napoli, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy
| |
Collapse
|
4
|
Covalent Bi-Modular Parallel and Antiparallel G-Quadruplex DNA Nanocostructs Reduce Viability of Patient Glioma Primary Cell Cultures. Int J Mol Sci 2021; 22:ijms22073372. [PMID: 33806042 PMCID: PMC8036578 DOI: 10.3390/ijms22073372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
G-quadruplex oligonucleotides (GQs) exhibit specific anti-proliferative activity in human cancer cell lines, and they can selectively inhibit the viability/proliferation of cancer cell lines vs. non-cancer ones. This ability could be translated into a cancer treatment, in particular for glioblastoma multiform (GBM), which currently has a poor prognosis and low-efficiency therapeutic treatments. A novel bi-modular GQ, bi-(AID-1-T), a twin of the previously described three-quartet AID-1-T, was designed and studied in terms of both its structure and function. A covalent conjugation of two AID-1-Ts via three thymidine link, TTT, did not interfere with its initial GQ structure. A comparison of bi-(AID-1-T) with its mono-modular AID-1-T, mono-modular two-quartet HD1, and bi-modular bi-HD1, as well as conventional two-quartet AS1411, was made. Among the five GQs studied, bi-(AID-1-T) had the highest anti-proliferative activity for the neural cancer cell line U87, while not affecting the control cell line, human embryonic fibroblasts. GQs, for the first time, were tested on several primary glioma cultures from patient surgical samples. It turned out that the sensitivity of the patient primary glioma cultures toward GQs varied, with an apparent IC50 of less than 1 μM for bi-(AID-1-T) toward the most sensitive G11 cell culture (glioma, Grade III).
Collapse
|
5
|
Brylev VA, Ustinov AV, Tsvetkov VB, Barinov NA, Aparin IO, Sapozhnikova KA, Berlina YY, Kokin EA, Klinov DV, Zatsepin TS, Korshun VA. Toehold-Mediated Selective Assembly of Compact Discrete DNA Nanostructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15119-15127. [PMID: 33264013 DOI: 10.1021/acs.langmuir.0c02696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Production of small discrete DNA nanostructures containing covalent junctions requires reliable methods for the synthesis and assembly of branched oligodeoxynucleotide (ODN) conjugates. This study reports an approach for self-assembly of hard-to-obtain primitive discrete DNA nanostructures-"nanoethylenes", dimers formed by double-stranded oligonucleotides using V-shaped furcate blocks. We scaled up the synthesis of V-shaped oligonucleotide conjugates using pentaerythritol-based diazide and alkyne-modified oligonucleotides using copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) and optimized the conditions for "nanoethylene" formation. Next, we designed nanoethylene-based "nanomonomers" containing pendant adapters. They demonstrated smooth and high-yield spontaneous conversion into the smallest cyclic product, DNA tetragon aka "nano-methylcyclobutane". Formation of DNA nanostructures was confirmed using native polyacrylamide gel electrophoresis (PAGE) and atomic force microscopy (AFM) and additionally studied by molecular modeling. The proposed facile approach to discrete DNA nanostructures using precise adapter-directed association expands the toolkit for the realm of DNA origami.
Collapse
Affiliation(s)
- Vladimir A Brylev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Alexey V Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Department of Biology and Biotechnology, Higher School of Economics, Vavilova 7, 117312 Moscow, Russia
| | - Vladimir B Tsvetkov
- Federal Research and Clinical Center of Physico-Chemical Medicine, Malaya Pirogovskaya 1a, 119435 Moscow, Russia
- Computational Oncology Group, I.M. Sechenov First Moscow State Medical University, Trubetskaya str, 8/2, 119146 Moscow, Russia
- A.V. Topchiev Institute of Petrochemical Synthesis of Russian Academy of Sciences, Leninsky Prospect str. 29, 119991 Moscow, Russia
| | - Nikolay A Barinov
- Federal Research and Clinical Center of Physico-Chemical Medicine, Malaya Pirogovskaya 1a, 119435 Moscow, Russia
| | - Ilya O Aparin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Ksenia A Sapozhnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Yana Y Berlina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Department of Chemistry, Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Egor A Kokin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Department of Biology, Moscow State University, 1-12 Leninskie Gory, 119991 Moscow, Russia
| | - Dmitry V Klinov
- Federal Research and Clinical Center of Physico-Chemical Medicine, Malaya Pirogovskaya 1a, 119435 Moscow, Russia
| | - Timofei S Zatsepin
- Department of Chemistry, Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, 143026 Moscow, Russia
| | - Vladimir A Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Department of Biology and Biotechnology, Higher School of Economics, Vavilova 7, 117312 Moscow, Russia
- Gause Institute of New Antibiotics, Bolshaya Pirogovskaya 11, 119021 Moscow, Russia
| |
Collapse
|
6
|
Smirnov IP, Kolganova NA, Surzhikov SA, Grechishnikova IV, Novikov RA, Timofeev EN. Folding topology, structural polymorphism, and dimerization of intramolecular DNA G-quadruplexes with inverted polarity strands and non-natural loops. Int J Biol Macromol 2020; 162:1972-1981. [PMID: 32800956 DOI: 10.1016/j.ijbiomac.2020.08.097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 01/27/2023]
Abstract
Synthetically modified DNA G-quadruplexes (GQs) have great potential in the development of designer molecules for a wide range of applications. Identification of the role of various structural elements in the folding and final topology of artificial GQs is necessary to predict their secondary structure. We report here the results of spectroscopic and electrophoretic studies of GQ scaffolds formed by G-rich sequences comprising four G3-tracts of different polarity connected by either a single-nucleotide thymine loop or a non-natural tetraethyleneglycol loop. Depending on G-strand polarities, loop arrangement and the presence of extra 5'-base G-rich oligonucleotides form monomeric, dimeric, or multimeric species of different topologies. In most cases, oligonucleotides were able to fold into stable parallel or hybrid GQs. However, certain specific arrangements of loops and G-tracts resulted in a diverse mixture of low stable structures. Comparative analysis of topology, stability, and structural heterogeneity of different G-rich sequences suggests the important role of loop type and arrangement, G3-tract polarities, and the presence of 5'-capping residues in the outcome of the folding process. The results also imply that the formation of anti-parallel G-hairpin intermediates is a key event in major favourable folding pathways.
Collapse
Affiliation(s)
- Igor P Smirnov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Natalia A Kolganova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sergei A Surzhikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Irina V Grechishnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Roman A Novikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Edward N Timofeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| |
Collapse
|
7
|
Fik-Jaskółka MA, Mkrtchyan AF, Saghyan AS, Palumbo R, Belter A, Hayriyan LA, Simonyan H, Roviello V, Roviello GN. Biological macromolecule binding and anticancer activity of synthetic alkyne-containing L-phenylalanine derivatives. Amino Acids 2020; 52:755-769. [PMID: 32430874 DOI: 10.1007/s00726-020-02849-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/29/2020] [Indexed: 01/17/2023]
Abstract
Herein, we described the synthesis of two L-phenylalanines α-derivatized with a terminal alkyne moiety whose structures differed by phenyl ring halogen substitution (two o-Cl in 1 vs. one p-Br in 2) and investigated their effect on biological macromolecules and living cells. We explored their interaction with quadruplex DNA (G4 DNA), using tel26 and c-myc as models, and bovine serum albumin (BSA). By CD spectroscopy, we found that 1 caused minor tel26 secondary structure changes, leading also to a slight thermal stabilization of this hybrid antiparallel/parallel G4 structure, while the c-myc parallel topology remained essentially unchanged upon 1 binding. Other CD evidences showed the ability of 1 to bind BSA, while molecular docking studies suggested that the same molecule could be housed into the hydrophobic cavity between sub-domains IIA, IIB, and IIIA of the protein. Furthermore, preliminary aggregation studies, based on concentration-dependent spectroscopic experiments, suggested the ability of 1 to aggregate forming noncovalent polymeric systems in aqueous solution. Differently from 1, the bromine-modified compound was able to bind Cu(II) ion, likely with the formation of a CuL2 complex, as found by UV spectroscopy. Finally, cell tests excluded any cytotoxic effect of both compounds toward normal cells, but showed slight antiproliferative effects of 2 on PC3 cancerous cells at 24 h, and of 1 on both T98G and MDA-MB-231 cancer cells at 48 h.
Collapse
Affiliation(s)
- Marta A Fik-Jaskółka
- Department of Bioinorganic Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego Str. 8, 61-614, Poznan, Poland.,Centre for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego Str. 10, 61-614, Poznan, Poland.,Istituto di Biostrutture e Bioimmagini, IBB-CNR, Via Mezzocannone 16, 80134, Naples, Italy
| | - Anna F Mkrtchyan
- Scientific and Production Center, Armbiotechnology" of NAS RA, 14 Gyurjyan Str., 0056, Yerevan, Armenia.,Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., 0025, Yerevan, Armenia
| | - Ashot S Saghyan
- Scientific and Production Center, Armbiotechnology" of NAS RA, 14 Gyurjyan Str., 0056, Yerevan, Armenia.,Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., 0025, Yerevan, Armenia
| | - Rosanna Palumbo
- Istituto di Biostrutture e Bioimmagini, IBB-CNR, Via Mezzocannone 16, 80134, Naples, Italy
| | - Agnieszka Belter
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Liana A Hayriyan
- Scientific and Production Center, Armbiotechnology" of NAS RA, 14 Gyurjyan Str., 0056, Yerevan, Armenia.,Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., 0025, Yerevan, Armenia
| | - Hayarpi Simonyan
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., 0025, Yerevan, Armenia
| | - Valentina Roviello
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), University of Naples Federico II, Piazzale V. Tecchio 80, 80125, Naples, Italy
| | - Giovanni N Roviello
- Istituto di Biostrutture e Bioimmagini, IBB-CNR, Via Mezzocannone 16, 80134, Naples, Italy.
| |
Collapse
|