1
|
Miao P, Zhu D, Du S, Du Y. Synergistic enantioseparation system based on a novel nanomaterial synthesized by chiral metal-organic framework and chiral molecularly imprinted polymer in capillary electrochromatography. Mikrochim Acta 2024; 191:686. [PMID: 39433576 DOI: 10.1007/s00604-024-06773-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/12/2024] [Indexed: 10/23/2024]
Abstract
A capillary electrochromatography (CEC) synergistic enantioseparation system based on a novel nanomaterial synthesized by chiral molecularly imprinted polymers (CMIPs) and chiral metal organic frameworks (CMOFs) was developed. Compared with CMIPs and CMOFs alone, the enantioseparation performance of ofloxacin (OFL) of the CEC with the novel nanomaterial as stationary phases was greatly improved. CMOFs with chiral recognition ability have synergize with CMIPs to greatly improve the chiral selectivity of the novel stationary phases in CEC. As a proof-of-concept demonstration, a coated capillary column was prepared by a sol-gel method using S-OFL (template), iron-based cyclodextrin MOF (Fe-CD-MOF, a CMOF), 3-aminopropyltriethoxysilane (functional monomer), and tetraethyl orthosilicate (cross-linking agent). Then, the newly constructed CEC system has excellent enantioseparation performance of OFL with a resolution of 3.92. Finally, computerized molecular docking revealed that the difference in the binding ability of Fe-CD-MOF to ofloxacin enantiomers was an important mechanism for CEC chiral separation. This innovative development of synergistic chiral stationary phases based on CMOFs and CMIPs creates a highly efficient potential direction for enantiomer separation.
Collapse
Affiliation(s)
- Pandeng Miao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Dongyang Zhu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Shuaijing Du
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, P. R. China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| |
Collapse
|
2
|
Fouad A, Adly FG, Soltan MK, Ghanem A. Lipase as a Chiral Selector Immobilised on Carboxylated Single-Walled Carbon Nanotubes and Encapsulated in the Organic Polymer Monolithic Capillary for Nano-High Performance Liquid Chromatography Enantioseparation of Racemic Pharmaceuticals. Molecules 2023; 28:6663. [PMID: 37764439 PMCID: PMC10534468 DOI: 10.3390/molecules28186663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Herein, we report the preparation of lipase immobilised on single-walled carbon nanotubes (SWCNTs) as an enantioselector for capillary monolithic columns and their application in the chiral separation of racemic pharmaceuticals. The columns were prepared through the encapsulation of functionalised SWCNTs (c-SWCNTs) within an organic monolithic polymer, followed by the immobilisation of lipase over the obtained monolith, over a three-day (L1) and five-day (L2) period. The prepared columns were tested for the enantioselective nano-HPLC separation of 50 racemic drugs. A suitable resolution was achieved for 25 drugs using nano-RP-HPLC conditions for both the L1 and L2 capillaries, while no specific resolution was detected under normal-phase HPLC conditions. The developed c-SWCNT-lipase-based polymeric monolithic capillaries are a promising expansion for separating pharmaceutical enantiomers' using nano-HPLC.
Collapse
Affiliation(s)
- Ali Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt;
| | - Frady G. Adly
- Complementary & Over the Counter Medicines Branch, Medicines Regulation Division, Therapeutic Goods Administration, Australian Department of Health and Aged Care, Canberra, ACT 2609, Australia;
| | - Moustafa K. Soltan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
- Oman College of Health Sciences, Ministry of Health, Muscat 132, Oman
| | - Ashraf Ghanem
- Chirality Program, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2601, Australia
| |
Collapse
|
3
|
Fouad A, El-Sayed DH, Salman BE, Bakr HH, Adel SE, Alzarak TM, Mahmoud A. Macrocyclic Antibiotics as Effective Chiral Selectors in Liquid Chromatography for Enantiomeric Separation of Pharmaceutical Compounds: A Review. Crit Rev Anal Chem 2023; 54:3095-3113. [PMID: 37342891 DOI: 10.1080/10408347.2023.2224442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Chiral separation techniques play a crucial role in the pharmaceutical industry, where the enantiomeric purity of drugs can have a significant impact on their efficacy and safety. Macrocyclic antibiotics are highly effective chiral selectors used in various chiral separation techniques, including LC, HPLC, SMB, and TLC, offering reproducible results and a wide range of applications. However, developing robust and efficient immobilization mechanisms for these chiral selectors remains a challenge. This review article focuses on various immobilization approaches, such as immobilization, coating, encapsulation, and photosynthesis, that have been applied to immobilize macrocyclic antibiotics on their support. Commercially available macrocyclic antibiotics for conventional liquid chromatography include Vancomycin, Norvancomycin, Eremomycin, Teicoplanin, Ristocetin A, Rifamycin, Avoparcin, Bacitracin, and others. In addition, capillary (nano) liquid chromatography has also been used in chiral separation utilizing Vancomycin, Polymyxin B, Daptomycin, and Colistin Sulfate. Macrocyclic antibiotic-based CSPs have been extensively applied due to their reproducible results, ease of use, and broad range of applications, capable of separating a large number of racemates.
Collapse
Affiliation(s)
- Ali Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | | | | | - Hanan H Bakr
- Faculty of Science, Tanta University, Tanta, Egypt
| | - Shahd E Adel
- Faculty of Science, Tanta University, Tanta, Egypt
| | | | - Abdelrahman Mahmoud
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
4
|
Daneshvar Tarigh G. Enantioseparation/Recognition based on nano techniques/materials. J Sep Sci 2023:e2201065. [PMID: 37043692 DOI: 10.1002/jssc.202201065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023]
Abstract
Enantiomers show different behaviors in interaction with the chiral environment. Due to their identical chemical structure and their wide application in various industries, such as agriculture, medicine, pesticide, food, and so forth, their separation is of great importance. Today, the term "nano" is frequently encountered in all fields. Technology and measuring devices are moving towards miniaturization, and the usage of nanomaterials in all sectors is expanding substantially. Given that scientists have recently attempted to apply miniaturized techniques known as nano-liquid chromatography/capillary-liquid chromatography, which were originally accomplished in 1988, as well as the widespread usage of nanomaterials for chiral resolution (back in 1989), this comprehensive study was developed. Searching the terms "nano" and "enantiomer separation" on scientific websites such as Scopus, Google Scholar, and Web of Science yields articles that either use miniaturized instruments or apply nanomaterials as chiral selectors with a variety of chemical and electrochemical detection techniques, which are discussed in this article.
Collapse
Affiliation(s)
- Ghazale Daneshvar Tarigh
- Department of Analytical Chemistry, University College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Evaluation of chiral separation by Pirkle-type chiral selector based mixed matrix membranes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Ghanem A, Marzouk AA, El-Adl SM, Fouad A. A Polymer-based Monolithic Capillary Column with Polymyxin-B Chiral Selector for the Enantioselective Nano-High Performance Liquid Chromatographic Pharmaceutical Analysis. J Chromatogr A 2021; 1662:462714. [PMID: 34902721 DOI: 10.1016/j.chroma.2021.462714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/12/2022]
Abstract
Herein, we report the first use of Polymyxin-B antibiotic as a enantio-selector in polymer monolithic capillary. The capillaries were functionalised, characterized and tested for the enantioselective nano-HPLC separation of 50 racemic pharmaceutical drugs. They have been easily prepared by immobilizing Polymyxin-B over the organic polymer for 48 h (P1) or encapsulating Polymyxin-B within the organic polymer (P2) and tested for the enantioselective resolution of racemic drugs. Acceptable resolution was achieved for 21 drugs using RP-HPLC conditions on both (P1) and (P2) capillary columns, while no separation was observed under NP-HPLC conditions. Polymyxin-B is commercially available, easily solubilized and stable in both acidic and neutral media. The developed Polymyxin-B-based polymer monolithic capillaries provide a promising expansion of platform in enantioselective HPLC separations.
Collapse
Affiliation(s)
- Ashraf Ghanem
- Chirality Program, Faculty of Science and Technology, University of Canberra, ACT, 2601, Australia.
| | - Adel A Marzouk
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt.
| | - Sobhy M El-Adl
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Ali Fouad
- Chirality Program, Faculty of Science and Technology, University of Canberra, ACT, 2601, Australia; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt.
| |
Collapse
|
7
|
Dal Bosco C, Bonoli F, Gentili A, Fanali C, D’Orazio G. Chiral Nano-Liquid Chromatography and Dispersive Liquid-Liquid Microextraction Applied to the Analysis of Antifungal Drugs in Milk. Molecules 2021; 26:molecules26237094. [PMID: 34885676 PMCID: PMC8659161 DOI: 10.3390/molecules26237094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
A novel chromatographic application in chiral separation by using the nano-LC technique is here reported. The chiral recognition of 12 antifungal drugs was obtained through a 75 µm I.D. fused-silica capillary, which was packed with a CSP-cellulose 3,5-dichlorophenylcarbamate (CDCPC), by means of a lab-made slurry packing procedure. The mobile phase composition and the experimental conditions were optimized in order to find the optimum chiral separation for some selected racemic mixtures of imidazole and triazole derivatives. Some important parameters, such as retention faction, enantioresolution, peak efficiency, and peak shape, were investigated as a function of the mobile phase (pH, water content, type and concentration of both the buffer and the organic modifier, and solvent dilution composition). Within one run lasting 25 min, at a flow rate of approximately 400 nL min-1, eight couples of enantiomers were baseline-resolved and four of them were separated in less than 25 min. The method was then applied to milk samples, which were pretreated using a classical dispersive liquid-liquid microextraction technique preceded by protein precipitation. Finally, the DLLME-nano-LC-UV method was validated in a matrix following the main FDA guidelines for bioanalytical methods.
Collapse
Affiliation(s)
- Chiara Dal Bosco
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (C.D.B.); (F.B.); (A.G.)
| | - Flavia Bonoli
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (C.D.B.); (F.B.); (A.G.)
| | - Alessandra Gentili
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (C.D.B.); (F.B.); (A.G.)
| | - Chiara Fanali
- Unit of Food Science and Nutrition, Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Giovanni D’Orazio
- Istituto per i Sistemi Biologici (ISB), CNR-Consiglio Nazionale delle Ricerche, Monterotondo, 00015 Rome, Italy
- Correspondence: ; Tel.: +39-0690672256
| |
Collapse
|
8
|
Chiral Monolithic Silica-Based HPLC Columns for Enantiomeric Separation and Determination: Functionalization of Chiral Selector and Recognition of Selector-Selectand Interaction. Molecules 2021; 26:molecules26175241. [PMID: 34500675 PMCID: PMC8434329 DOI: 10.3390/molecules26175241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/25/2022] Open
Abstract
This review draws attention to the use of chiral monolithic silica HPLC columns for the enantiomeric separation and determination of chiral compounds. Properties and advantages of monolithic silica HPLC columns are also highlighted in comparison to conventional particle-packed, fused-core, and sub-2-µm HPLC columns. Nano-LC capillary monolithic silica columns as well as polymeric-based and hybrid-based monolithic columns are also demonstrated to show good enantioresolution abilities. Methods for introducing the chiral selector into the monolithic silica column in the form of mobile phase additive, by encapsulation and surface coating, or by covalent functionalization are described. The application of molecular modeling methods to elucidate the selector–selectand interaction is discussed. An application for enantiomeric impurity determination is also considered.
Collapse
|
9
|
Fedorenko D, Bartkevics V. Recent Applications of Nano-Liquid Chromatography in Food Safety and Environmental Monitoring: A Review. Crit Rev Anal Chem 2021; 53:98-122. [PMID: 34392753 DOI: 10.1080/10408347.2021.1938968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In recent years, a trend toward instrument miniaturization has led to the development of new and sophisticated analytical systems, such as nano-liquid chromatography (nano-LC), which has enabled improvements of sensitivity, as well as chromatographic resolution. The growing interest in nano-LC methodology has resulted in a variety of innovative and promising applications. In this article, we review the applications of nano-LC separation methods coupled with mass spectrometry in the analysis of food and environmental samples. An assessment of sample preparation methods and analytical performance are provided, along with comparison to other, more established analytical techniques. Three main groups of compounds that are crucial for food safety assessment are considered in this review: pharmaceuticals (including antibiotics), pesticides, and mycotoxins. Recent practical applications of the nano-LC method in the determination of these compounds are discussed. Furthermore, we also focus on methods for the determination of various environmental contaminants using nano-LC methods. Future perspectives for the development of nano-LC methods are discussed.
Collapse
Affiliation(s)
- Deniss Fedorenko
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia.,University of Latvia, Faculty of Chemistry, Riga, Latvia
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia.,University of Latvia, Faculty of Chemistry, Riga, Latvia
| |
Collapse
|
10
|
Vashistha VK, Kumar A, Das DK, Alwera S, Vyas R, Sharma V, Sethi S, Pullabhotla R, Nagar H. Different approaches in thin-layer chromatography for enantioresolution of acebutolol using colistin sulfate as chiral selector. JPC-J PLANAR CHROMAT 2021. [DOI: 10.1007/s00764-021-00109-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Fouad A, Marzouk AA, Shaykoon MSA, Ibrahim SM, El-Adl SM, Ghanem A. Daptomycin: A Novel Macrocyclic Antibiotic as a Chiral Selector in an Organic Polymer Monolithic Capillary for the Enantioselective Analysis of a Set of Pharmaceuticals. Molecules 2021; 26:molecules26123527. [PMID: 34207780 PMCID: PMC8227699 DOI: 10.3390/molecules26123527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Daptomycin, a macrocyclic antibiotic, is here used as a new chiral selector in preparation of chiral stationary phase (CSP) in a recently prepared polymer monolithic capillary. The latter is prepared using the copolymerization of the monomers glycidyl methacrylate (GMA) and ethylene glycol dimethacrylate (EGDMA) in the presence of daptomycin in water. Under reversed phase conditions (RP), the prepared capillaries were tested for the enantioselective nanoliquid chromatographic separation of fifty of the racemic drugs of different pharmacological groups, such as adrenergic blockers, H1-blockers, NSAIDs, antifungal drugs, and others. Baseline separation was attained for many drugs under RP-HPLC. Daptomycin expands the horizon of chiral selectors in HPLC.
Collapse
Affiliation(s)
- Ali Fouad
- Chirality Program, Faculty of Science and Technology, University of Canberra, Bruce, Canberra 2601, Australia;
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; (A.A.M.); (M.S.A.S.)
| | - Adel A. Marzouk
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; (A.A.M.); (M.S.A.S.)
| | - Montaser Sh. A. Shaykoon
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; (A.A.M.); (M.S.A.S.)
| | - Samy M. Ibrahim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (S.M.I.); (S.M.E.-A.)
| | - Sobhy M. El-Adl
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (S.M.I.); (S.M.E.-A.)
| | - Ashraf Ghanem
- Chirality Program, Faculty of Science and Technology, University of Canberra, Bruce, Canberra 2601, Australia;
- Correspondence:
| |
Collapse
|
12
|
Enantioselective Synthesis, Enantiomeric Separations and Chiral Recognition. Molecules 2020; 25:molecules25071713. [PMID: 32276494 PMCID: PMC7180735 DOI: 10.3390/molecules25071713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 11/17/2022] Open
|
13
|
|
14
|
Recent advances in preparation and applications of monolithic chiral stationary phases. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115774] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Hu LF, Yin SJ, Zhang H, Yang FQ. Recent developments of monolithic and open-tubular capillary electrochromatography (2017-2019). J Sep Sci 2020; 43:1942-1966. [PMID: 31909566 DOI: 10.1002/jssc.201901168] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/26/2019] [Accepted: 12/28/2019] [Indexed: 12/21/2022]
Abstract
Capillary electrochromatography, which combined the high selectivity of high-performance liquid chromatography and the high separation efficiency of capillary electrophoresis, is an attractive separation tool. In this review, the developments on monolithic and open tubular capillary electrochromatography during 2017 to August 2019 are summarized. Considering the development of novel stationary phases is the most active research field in capillary electrochromatography, monolithic capillary electrochromatography is classified according to the polymer-based and hybrid monolithic columns, while open-tubular capillary electrochromatography is categorized by cyclodextrin, silica, polymer, nanomaterials, microporous materials, and biomaterials-based open tubular columns.
Collapse
Affiliation(s)
- Lin-Feng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, P.R. China
| | - Shi-Jun Yin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P.R. China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P.R. China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P.R. China
| |
Collapse
|