1
|
Liang Y, Liu T, Wang D, Liu Q. Exploring the antimicrobial, anti-inflammatory, antioxidant, and immunomodulatory properties of Chrysanthemum morifolium and Chrysanthemum indicum: a narrow review. Front Pharmacol 2025; 16:1538311. [PMID: 40176916 PMCID: PMC11963160 DOI: 10.3389/fphar.2025.1538311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Infectious diseases continue to be a major global public health concern, which is exacerbated by the increasing prevalence of antimicrobial resistance. This review investigates the potential of herbal medicine, particularly Chrysanthemum morifolium (CM) and Chrysanthemum indicum (CI), in addressing these challenges. Both herbs, documented in traditional Chinese medicine (TCM) and the Pharmacopoeia of the People's Republic of China (2020 edition), are renowned for their heat-clearing and detoxifying properties. Phytochemical studies reveal that these botanicals contain diverse bioactive compounds, including flavonoids, terpenoids, and phenylpropanoids, which exhibit antimicrobial, anti-inflammatory, and antioxidant properties, among other effects. Comparative analysis reveals that distinct compound profiles and differential concentrations of core phytochemicals between CM and CI may lead to differentiated therapeutic advantages in anti-infective applications. By systematically examining their ethnopharmacological origins, phytochemical fingerprints, and pharmacological mechanisms, this review highlights their synergistic potential with conventional antimicrobial therapies through multi-target mechanisms, proposing novel integrative approaches for global health challenges.
Collapse
Affiliation(s)
- Yuqing Liang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tengwen Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| |
Collapse
|
2
|
Wang X, He Z, Zhang W, Liu X, Yu S, Qian Z. The Influence of Planting Sites on the Chemical Compositions of Chrysanthemum morifolium Flowers (Chuju) as Revealed by Py-GC/MS Combined with Multivariate Statistical Analysis. Chem Biodivers 2024; 21:e202401383. [PMID: 39146472 DOI: 10.1002/cbdv.202401383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
Chuju, a cultivar of Chrysanthemum morifolium, has been traditionally cultivated for over 2000 years in China for both ornamental and medicinal purposes. To date, investigations into the chemical composition of this plant have indicated that it contains compounds with extensive biological activities, although detailed information on the chemical composition of Chuju remains scarce. In the present study, the chemical compositions of Chuju flowers were investigated across five sites in the core Chuju planting area in Anhui province, China. Analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was used to explore variations in flower chemical fingerprints from different Chuju planting sites. The study identified approximately 200 components in Chuju flowers and stems, including high levels of fatty acids, lipids, polysaccharides and terpenoids. Multivariate statistical analysis indicated that 16 chemical compounds were influential determinants of the chemical fingerprint and could be used to distinguish two clusters in the five core planting areas. The established Py-GC/MS analytical workflow could provide a basis for determining the chemical fingerprints of Chuju and help elucidate that products contain a reproducible content of bioactive compounds and overall quality for potential development of health and medicinal purposes.
Collapse
Affiliation(s)
- Xuhui Wang
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
- Anhui Province Engineering Research Center of Chuju Planting and Deep Processing, Chuzhou, Anhui, China
| | - Zhen He
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Weiwei Zhang
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
- Anhui Province Engineering Research Center of Chuju Planting and Deep Processing, Chuzhou, Anhui, China
| | - Xiaoran Liu
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Shijun Yu
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
- Anhui Province Engineering Research Center of Chuju Planting and Deep Processing, Chuzhou, Anhui, China
- School of Biological Science and Food Engineering, Chuzhou University, No 1. Huifeng Road, Chuzhou, Anhui 239001, China
| | - Zongyao Qian
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
- Anhui Province Engineering Research Center of Chuju Planting and Deep Processing, Chuzhou, Anhui, China
- School of Biological Science and Food Engineering, Chuzhou University, No 1. Huifeng Road, Chuzhou, Anhui 239001, China
| |
Collapse
|
3
|
Sharma N, Radha, Kumar M, Kumari N, Puri S, Rais N, Natta S, Dhumal S, Navamaniraj N, Chandran D, Mohankumar P, Muthukumar M, Senapathy M, Deshmukh V, Damale RD, Anitha T, Balamurugan V, Sathish G, Lorenzo JM. Phytochemicals, therapeutic benefits and applications of chrysanthemum flower: A review. Heliyon 2023; 9:e20232. [PMID: 37860517 PMCID: PMC10582400 DOI: 10.1016/j.heliyon.2023.e20232] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/04/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023] Open
Abstract
Chrysanthemum is a flowering plant belonging to a genus of the dicotyledonous herbaceous annual flowering plant of the Asteraceae (Compositae) family. It is a perpetual flowering plant, mostly cultivated for medicinal purposes; generally, used in popular drinks due to its aroma and flavor. It is primarily cultivated in China, Japan, Europe, and United States. These flowers were extensively used in various healthcare systems and for treating various diseases. Chrysanthemum flowers are rich in phenolic compounds and exhibit strong properties including antioxidant, antimicrobial, anti-inflammatory, anticancer, anti-allergic, anti-obesity, immune regulation, hepatoprotective, and nephroprotective activities. The main aim of the present review was to investigate the nutritional profile, phytochemistry, and biological activities of flowers of different Chrysanthemum species. Also, a critical discussion of the diverse metabolites or bioactive constituents of the Chrysanthemum flowers is highlighted in the present review. Moreover, the flower extracts of Chrysanthemum have been assessed to possess a rich phytochemical profile, including compounds such as cyanidin-3-O-(6″-O-malonyl) glucoside, delphinidin 3-O-(6" -O-malonyl) glucoside-3', rutin, quercetin, isorhamnetin, rutinoside, and others. These profiles exhibit potential health benefits, leading to their utilization in the production of supplementary food products and pharmaceutical drugs within the industry. However, more comprehensive research studies/investigations are still needed to further discover the potential benefits for human and animal utilization.
Collapse
Affiliation(s)
- Niharika Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Neeraj Kumari
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Nadeem Rais
- Department of Pharmacy, Bhagwant University, Ajmer, 305004, India
| | - Suman Natta
- ICAR—National Research Centre for Orchids, Pakyong, 737106, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur, 416004, India
| | - Nelson Navamaniraj
- Seed Centre, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| | - Deepak Chandran
- Department of Animal Husbandry, Government of Kerala, Palakkad 679335, Kerela, India
| | - Pran Mohankumar
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Muthamilselvan Muthukumar
- Department of Entomology, SRM College of Agricultural Sciences, SRM Institute of Science and Technology, Chengalpattu 603201, Tamil Nadu, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Vishal Deshmukh
- Bharati Vidyapeeth (Deemed to be University), Yashwantrao Mohite Institute of Management, Karad, India
| | - Rahul D. Damale
- ICAR—National Research Centre on Pomegranate, Solapur 413255, Maharashtra, India
| | - T. Anitha
- Department of Postharvest Technology, Horticultural College and Research Institute, Periyakulam, 625604, India
| | - V. Balamurugan
- Department of Agricultural Economics, Agricultural College and Research Institute, Madurai, India
| | - G. Sathish
- Department of Postharvest Technology, Horticultural College and Research Institute, Periyakulam, 625604, India
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n◦ 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900, Ourense, Spain
| |
Collapse
|
4
|
Liu X, Wang S, Cui L, Zhou H, Liu Y, Meng L, Chen S, Xi X, Zhang Y, Kang W. Flowers: precious food and medicine resources. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Zhang Z, Pang X, Wei Y, Chen H, Jin X, Lv Q. Neuroprotective effects of Chrysanthemum morifolium on cerebral ischemia- reperfusion injury contributes to the oxidative stress suppression and related Keap1/Nrf2 pathway. Brain Inj 2023; 37:269-281. [PMID: 36567616 DOI: 10.1080/02699052.2022.2158225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Ischemic stroke, the cause of death and disability worldwide, is closely related to oxidative stress damage. Chrysanthemum has profound antiantioxidant activity. We aimed to verify whether Chrysanthemum morifolium extract (CME) influences brain injury in cerebral ischemia-reperfusion injury (CR/RI) model. METHODS In vitro, rat hippocampal H19-7 neurons were pretreated with CME, CR/RI was simulated with oxygen glucose deprivation/reoxygenation (OGD/R). The cell viability, apoptosis, lactate dehydrogenase release, reactive oxygen species (ROS) generation, malonaldehyde (MDA) content and superoxide dismutase(SOD) activity were detected. In vivo, middle cerebral artery occlusion (MCAO) model rats were pre-administered with CME, and then behavioral test, triphenyltetrazolium chloride (TTC), hematoxylin-eosin staining (HE), terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL), ROS immunofluorescence, MDA and SOD activity were tested. Furthermore, Keap1/Nrf2 signaling of CME in CI/RI was investigated. RESULTS In OGD/R induced in H19-7 cells, CME increased OGD/R-induced cell viability and reduced cell apoptosis, which was reversed by siNrf2 transfection . In MCAO rats, CME improved the neurological deficits and alleviated brain injury. However, co-treatment with MLK385 counteracted these neuroprotective effects of CME on MCAO rats. CONCLUSION CME could significantly reduce oxidative stress and nerve injury in vitro and in vivo models of CI/RI by regulating the Keap1/Nrf2 pathway.
Collapse
Affiliation(s)
- Zibin Zhang
- Department of Neurosurgery, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, China
| | - Xiaojun Pang
- Department of Neurosurgery, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, China
| | - Yuyu Wei
- Department of Neurosurgery, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, China
| | - Huai Chen
- Department of Neurosurgery, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, China
| | - Xuhong Jin
- Department of Neurosurgery, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, China
| | - Qingping Lv
- Department of Neurosurgery, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Hu Y, Chen X, Hu M, Zhang D, Yuan S, Li P, Feng L. Medicinal and edible plants in the treatment of dyslipidemia: advances and prospects. Chin Med 2022; 17:113. [PMID: 36175900 PMCID: PMC9522446 DOI: 10.1186/s13020-022-00666-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
Dyslipidemia is an independent risk factor of cardiovascular diseases (CVDs), which lead to the high mortality, disability, and medical expenses in the worldwide. Based on the previous researches, the improvement of dyslipidemia could efficiently prevent the occurrence and progress of cardiovascular diseases. Medicinal and edible plants (MEPs) are the characteristics of Chinese medicine, and could be employed for the disease treatment and health care mostly due to their homology of medicine and food. Compared to the lipid-lowering drugs with many adverse effects, such as rhabdomyolysis and impaired liver function, MEPs exhibit the great potential in the treatment of dyslipidemia with high efficiency, good tolerance and commercial value. In this review, we would like to introduce 20 kinds of MEPs with lipid-lowering effect in the following aspects, including the source, function, active component, target and underlying mechanism, which may provide inspiration for the development of new prescription, functional food and complementary therapy for dyslipidemia.
Collapse
Affiliation(s)
- Ying Hu
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xingjuan Chen
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China
| | - Mu Hu
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dongwei Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Shuo Yuan
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Ping Li
- Beijing University of Chinese Medicine, Beijing, 100029, China.
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China.
| | - Ling Feng
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China.
- China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
7
|
Zhang Z, Zhang Y, Wang L, Cui T, Wang Y, Chen J, Li W. On-line screening of natural antioxidants and the antioxidant activity prediction for the extracts from flowers of Chrysanthemum morifolium ramat. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115336. [PMID: 35568113 DOI: 10.1016/j.jep.2022.115336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Chrysanthemum morifolium Ramat. (Flos Chrysanthemi, FC) the most economically significant "food and drug dual-use" plants, with positive effects on relieving eye fatigue, and reduce internal heat, shows significant activities, such as anti-inflammatory, antioxidant, and neuroprotective, as well as alleviating diabetes effects. AIM OF THE STUDY This study was undertaken to a screening of natural antioxidants in five kinds of medicinal FC and development of an integrated quality control method based on the antioxidant activity. MATERIALS AND METHODS A novel quality control method for FC was established by combining the on-line HPLC-DPPH, ESI-MS, and NIR spectra analysis. Firstly, the on-line HPLC-DPPH-MS system was employed to identify the antioxidants in FC extracts. Then, the relationship between the NIR spectra and antioxidant activities of FC samples was calibrated to evaluate the total antioxidant capacity of FC rapidly. RESULTS The established antioxidant activity-fingerprints contain both chemical information and antioxidant activity characteristics of FC. A total of 16 antioxidants were identified by on-line HPLC-ESI-MS analysis. The results of heat map analysis and cluster analysis showed that the classification method based on antioxidants in FC can be used to identify different cultivars of FC. The optimal pretreatment of the NIR spectra was determined to be row center (RC) 1st der + multiple-scatter correction (MSC) with an optimal LV value of 11. The developed spectral-antioxidant activity model had the excellent predictive ability and was successfully used to evaluate new batches of FC samples, where Rcal = 0.9445 and Rval = 0.8821. CONCLUSIONS This comprehensive strategy may prove to be a powerful technique for the rapid screening, identification, and activity prediction of antioxidants, which could be used for the quality control of FC, and can serve as reference for design of quality control of other herbs and foods samples.
Collapse
Affiliation(s)
- Zhiyong Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yazhong Zhang
- Anhui Institute for Food and Drug Control, Hefei, 230051, China
| | - Long Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tongcan Cui
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuxin Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Junhui Chen
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Qingdao Key Lab on Analytical Technology Development and Standardization of Chinese Medicines, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
8
|
Rivas-García L, Navarro-Hortal MD, Romero-Márquez JM, Forbes-Hernández TY, Varela-López A, Llopis J, Sánchez-González C, Quiles JL. Edible flowers as a health promoter: An evidence-based review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Hypolipidemic Effects and Preliminary Mechanism of Chrysanthemum Flavonoids, Its Main Components Luteolin and Luteoloside in Hyperlipidemia Rats. Antioxidants (Basel) 2021; 10:antiox10081309. [PMID: 34439559 PMCID: PMC8389196 DOI: 10.3390/antiox10081309] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/25/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022] Open
Abstract
This study aimed to investigate the key constituents and preliminary mechanism for the hypolipidemic activity of chrysanthemum flavonoids. Hyperlipidemia (HPL) rats were divided into five groups: the model control group (MC); Chrysanthemum flavone intervention group (CF); luteolin intervention group; luteoloside intervention group and simvastatin intervention group. The body weight, organ coefficient, serum lipids, antioxidant activity, and lipid metabolism enzymes were detected. Hematoxylin and eosin (H&E) staining was used to observe the liver and adipose tissue. Chrysanthemum flavonoids, luteolin, and luteoloside can reduce the weight and levels of total cholesterol (TC), triglycerides (TG), and LDL-C, and increase the level of HDL-C in the blood and reduce liver steatosis. Indicators of liver function (AST, ALT, and ALP) improved. The antioxidant activity (GSH-Px, CAT, SOD) and enzymes associated with lipid catabolism (FAβO, CYP7A1, and HL) increased, while lipid peroxidation products (MDA) and enzymes associated with lipid synthesis (FAS, HMG-CoA, and DGAT) decreased. Chrysanthemum flavonoids had a better effect on the antioxidant level and lipid metabolism-related enzyme activity. There was no significant difference in the effects of the chrysanthemum flavonoids, luteolin, and Luteoloside on improving blood lipids and hepatic steatosis—mechanisms that may be related to antioxidant levels and regulating enzymes involved in the metabolism of fatty acids, cholesterol, and triglycerides in the liver. However, chrysanthemum flavonoids had a stronger antioxidant and lipid metabolism regulation ability, and the long-term effects may be better.
Collapse
|
10
|
Therapeutic Single Compounds for Osteoarthritis Treatment. Pharmaceuticals (Basel) 2021; 14:ph14020131. [PMID: 33562161 PMCID: PMC7914480 DOI: 10.3390/ph14020131] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is an age-related degenerative disease for which an effective disease-modifying therapy is not available. Natural compounds derived from plants have been traditionally used in the clinic to treat OA. Over the years, many studies have explored the treatment of OA using natural extracts. Although various active natural extracts with broad application prospects have been discovered, single compounds are more important for clinical trials than total natural extracts. Moreover, although natural extracts exhibit minimal safety issues, the cytotoxicity and function of all single compounds in a total extract remain unclear. Therefore, understanding single compounds with the ability to inhibit catabolic factor expression is essential for developing therapeutic agents for OA. This review describes effective single compounds recently obtained from natural extracts and the possibility of developing therapeutic agents against OA using these compounds.
Collapse
|
11
|
Yuan H, Jiang S, Liu Y, Daniyal M, Jian Y, Peng C, Shen J, Liu S, Wang W. The flower head of Chrysanthemum morifolium Ramat. (Juhua): A paradigm of flowers serving as Chinese dietary herbal medicine. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113043. [PMID: 32593689 DOI: 10.1016/j.jep.2020.113043] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dietary herbal medicines are widely used for the prevention and treatment of a variety of diseases due to their pharmacological activities in China. Juhua (the flower head of Chrysanthemum morifolium Ramat.), the most representative flower-derived one, which is mainly used for the treatment of respiratory and cardiovascular diseases, shows significant activities, such as antimicrobial, anti-inflammatory, and anticancer, and, neuroprotective, as well as effects on the cardiovascular system. AIMS OF THIS REVIEW This review aims to provide an overview of the crucial roles of flowers in Chinese dietary herbal medicine, and the pharmaceutical research progress of Juhua (the paradigm of dietary herbal medicine derived from the flower) including its applications in Traditional Chinese medicine and diet, cultivars, phytochemistry, quality control, pharmacology, and toxicity, along with chrysanthemum breeding and biotechnology. METHOD The information associated with Chinese dietary herbal medicine, flower-derived medicine, dietary flower, and pharmaceutical research of Juhua, was collected from government reports, classic books of Traditional Chinese medicine, the thesis of doctors of philosophy and maters, and database including Pubmed, Scifinder, Web of Science, Google Scholar, China National Knowledge Internet; and others. RESULT All flower-originated crude medicines recorded in Chinese pharmacopeia and their applications were summarized for the first time in this paper. The edible history and development of flowers in China, the theory of Chinese dietary herbal medicines, as well as flowers serving as dietary herbal medicines, were discussed. Moreover, applications in Traditional Chinese medicine and diet, cultivars, phytochemistry, quality control, pharmacology, and safety evaluation of Juhua, together with chrysanthemum breeding and biotechnology, were summarized in this paper. CONCLUSION The theory of dietary herbal medicines, which are an important part of the Traditional Chinese medicine system, has a history of thousands of years. Many herbal flowers, serving as dietary herbal medicines, contribute significantly to the prevention and treatment of a variety of diseases for Chinese people. To better benefit human health, more effective supervision practice for dietary herbal medicines is needed. Although various investigations on Juhua have been done, there is a lack of analytical methods for discrimination of cultivar flowers and identification of authenticity. Research on the major compounds with bioactivities, especially those related to its clinical application or healthcare function, as well as their possible mechanize, need be strengthened. More safety evaluation of Juhua should be carried out. The research limitations Juhua is facing exist in all dietary herbal medicine.
Collapse
Affiliation(s)
- Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Sai Jiang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yingkai Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Muhammad Daniyal
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yuqing Jian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Jianliang Shen
- Hunan Kangdejia Forestry Technology Co., Ltd., Yongzhou, 425600, China
| | - Shifeng Liu
- Hunan Kangdejia Forestry Technology Co., Ltd., Yongzhou, 425600, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
12
|
Liu W, Li J, Zhang X, Zu Y, Yang Y, Liu W, Xu Z, Gao H, Sun X, Jiang X, Zhao Q. Current Advances in Naturally Occurring Caffeoylquinic Acids: Structure, Bioactivity, and Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10489-10516. [PMID: 32846084 DOI: 10.1021/acs.jafc.0c03804] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Caffeoylquinic acids (CQAs) are a broad class of secondary metabolites that have been found in edible and medicinal plants from various families. It has been 100 years since the discovery of chlorogenic acid in 1920. In recent years, a number of naturally derived CQAs have been isolated and structurally elucidated. Accumulated evidence demonstrate that CQAs have a wide range of biological activities, such as antioxidation, antibacterial, antiparasitic, neuroprotective, anti-inflammatory, anticancer, antiviral, and antidiabetic effects. Up to date, some meaningful progresses on the biosynthesis and total synthesis of CQAs have also been made. Therefore, it is necessary to comprehensively summarize the structure, biological activity, biosynthesis, and chemical synthesis of CQAs. This review provides extensive coverage of naturally occurring CQAs discovered from 1990 until 2020. Modern isolation techniques, chemical data (including structure, biosynthesis, and total synthesis), and bioactivity are summarized. This would be helpful for further research of CQAs as potential pharmaceutical agents.
Collapse
Affiliation(s)
- Wenwu Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning 110840, People's Republic of China
| | - Jingda Li
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
| | - Xuemei Zhang
- School of Life Sciences, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
| | - Yuxin Zu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
| | - Yue Yang
- School of Life Sciences, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
| | - Wenjie Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
| | - Zihua Xu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning 110840, People's Republic of China
| | - Huan Gao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning 110840, People's Republic of China
| | - Xue Sun
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning 110840, People's Republic of China
| | - Xiaowen Jiang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning 110840, People's Republic of China
| | - Qingchun Zhao
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning 110840, People's Republic of China
| |
Collapse
|