1
|
Lukáčová Bujňáková Z, Dutková E, Jakubíková J, Cholujová D, Varhač R, Borysenko L, Melnyk I. Investigation of the Interaction between Mechanosynthesized ZnS Nanoparticles and Albumin Using Fluorescence Spectroscopy. Pharmaceuticals (Basel) 2023; 16:1219. [PMID: 37765027 PMCID: PMC10536685 DOI: 10.3390/ph16091219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
In this paper, ZnS nanoparticles were bioconjugated with bovine serum albumin and prepared in a form of nanosuspension using a wet circulation grinding. The stable nanosuspension with monomodal particle size distribution (d50 = 137 nm) and negative zeta potential (-18.3 mV) was obtained. The sorption kinetics and isotherm were determined. Interactions between ZnS and albumin were studied using the fluorescence techniques. The quenching mechanism, describing both static and dynamic interactions, was investigated. Various parameters were calculated, including the quenching rate constant, binding constant, stoichiometry of the binding process, and accessibility of fluorophore to the quencher. It has been found that tryptophan, in comparison to tyrosine, can be closer to the binding site established by analyzing the synchronous fluorescence spectra. The cellular mechanism in multiple myeloma cells treated with nanosuspension was evaluated by fluorescence assays for quantification of apoptosis, assessment of mitochondrial membrane potential and evaluation of cell cycle changes. The preliminary results confirm that the nontoxic nature of ZnS nanoparticles is potentially applicable in drug delivery systems. Additionally, slight changes in the secondary structure of albumin, accompanied by a decrease in α-helix content, were investigated using the FTIR method after analyzing the deconvoluted Amide I band spectra of ZnS nanoparticles conjugated with albumin. Thermogravimetric analysis and long-term stability studies were also performed to obtain a complete picture about the studied system.
Collapse
Affiliation(s)
- Zdenka Lukáčová Bujňáková
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia; (E.D.); (I.M.)
| | - Erika Dutková
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia; (E.D.); (I.M.)
| | - Jana Jakubíková
- Cancer Research Institute of Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, 84505 Bratislava, Slovakia; (J.J.)
| | - Danka Cholujová
- Cancer Research Institute of Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, 84505 Bratislava, Slovakia; (J.J.)
| | - Rastislav Varhač
- Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154 Košice, Slovakia;
| | - Larysa Borysenko
- Chuiko Institute of Surface Chemistry, National Academy of Science of Ukraine, Generala Naumova 17, 03164 Kyiv, Ukraine;
| | - Inna Melnyk
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia; (E.D.); (I.M.)
| |
Collapse
|
2
|
Nanocrystalline Skinnerite (Cu 3SbS 3) Prepared by High-Energy Milling in a Laboratory and an Industrial Mill and Its Optical and Optoelectrical Properties. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010326. [PMID: 36615519 PMCID: PMC9822502 DOI: 10.3390/molecules28010326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023]
Abstract
Copper, antimony and sulfur in elemental form were applied for one-pot solid-state mechanochemical synthesis of skinnerite (Cu3SbS3) in a laboratory mill and an industrial mill. This synthesis was completed after 30 min of milling in the laboratory mill and 120 min in the industrial mill, as corroborated by X-ray diffraction. XRD analysis confirmed the presence of pure monoclinic skinnerite prepared in the laboratory mill and around 76% monoclinic skinnerite, with the secondary phases famatinite (Cu3SbS4; 15%), and tetrahedrite (Cu11.4Sb4S13; 8%), synthesized in the industrial mill. The nanocrystals were agglomerated into micrometer-sized grains in both cases. Both samples were nanocrystalline, as was confirmed with HRTEM. The optical band gap of the Cu3SbS3 prepared in the laboratory mill was determined to be 1.7 eV with UV-Vis spectroscopy. Photocurrent responses verified with I-V measurements under dark and light illumination and Cu3SbS3 nanocrystals showed ~45% enhancement of the photoresponsive current at a forward voltage of 0.6 V. The optical and optoelectrical properties of the skinnerite (Cu3SbS3) prepared via laboratory milling are interesting for photovoltaic applications.
Collapse
|
3
|
Dutková E, Bujňáková ZL, Sphotyuk O, Jakubíková J, Cholujová D, Šišková V, Daneu N, Baláž M, Kováč J, Kováč J, Briančin J, Demchenko P. SDS-Stabilized CuInSe 2/ZnS Multinanocomposites Prepared by Mechanochemical Synthesis for Advanced Biomedical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E69. [PMID: 33396849 PMCID: PMC7823814 DOI: 10.3390/nano11010069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
The CuInSe2/ZnS multiparticulate nanocomposites were first synthesized employing two-step mechanochemical synthesis. In the first step, tetragonal CuInSe2 crystals prepared from copper, indium and selenium precursors were co-milled with zinc acetate dihydrate and sodium sulfide nonahydrate as precursors for ZnS in different molar ratios by mechanochemical route in a planetary mill. In the second step, the prepared CuInSe2/ZnS nanocrystals were further milled in a circulation mill in sodium dodecyl sulphate (SDS) solution (0.5 wt.%) to stabilize the synthesized nanoparticles. The sodium dodecyl sulphate capped CuInSe2/ZnS 5:0-SDS nanosuspension was shown to be stable for 20 weeks, whereas the CuInSe2/ZnS 4:1-SDS one was stable for about 11 weeks. After sodium dodecyl sulphate capping, unimodal particle size distribution was obtained with particle size medians approaching, respectively, 123 nm and 188 nm for CuInSe2/ZnS 5:0-SDS and CuInSe2/ZnS 4:1-SDS nanocomposites. Successful stabilization of the prepared nanosuspensions due to sodium dodecyl sulphate covering the surface of the nanocomposite particles was confirmed by zeta potential measurements. The prepared CuInSe2/ZnS 5:0-SDS and CuInSe2/ZnS 4:1-SDS nanosuspensions possessed anti-myeloma sensitizing potential assessed by significantly reduced viability of multiple myeloma cell lines, with efficient fluorescence inside viable cells and higher cytotoxic efficacy in CuInSe2/ZnS 4:1-SDS nanosuspension.
Collapse
Affiliation(s)
- Erika Dutková
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia; (Z.L.B.); (M.B.); (J.B.)
| | - Zdenka Lukáčová Bujňáková
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia; (Z.L.B.); (M.B.); (J.B.)
| | - Oleh Sphotyuk
- Faculty of Science and Technology, Jan Dlugosz University, Al. Armii Krajowej, 13/15, 42201 Czestochowa, Poland;
- Department of Optical Glass and Ceramics, Vlokh Institute of Physical Optics, 23, Dragomanov Str., 79005 Lviv, Ukraine
| | - Jana Jakubíková
- Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (J.J.); (D.C.); (V.Š.)
- Centre of Advanced Material Application, Slovak Academy of Sciences, Dúbravská cesta 5807/9, 84511 Bratislava, Slovakia
| | - Danka Cholujová
- Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (J.J.); (D.C.); (V.Š.)
- Centre of Advanced Material Application, Slovak Academy of Sciences, Dúbravská cesta 5807/9, 84511 Bratislava, Slovakia
| | - Viera Šišková
- Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (J.J.); (D.C.); (V.Š.)
| | - Nina Daneu
- Advanced Materials Department, Jozef Štefan Institute, Jamova 39, 1000 Ljubljana, Slovenia;
| | - Matej Baláž
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia; (Z.L.B.); (M.B.); (J.B.)
| | - Jaroslav Kováč
- Institute of Electronics and Photonics, Slovak University of Technology, 81219 Bratislava, Slovakia; (J.K.); (J.K.J.)
| | - Jaroslav Kováč
- Institute of Electronics and Photonics, Slovak University of Technology, 81219 Bratislava, Slovakia; (J.K.); (J.K.J.)
| | - Jaroslav Briančin
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia; (Z.L.B.); (M.B.); (J.B.)
| | - Pavlo Demchenko
- Department of Inorganic Chemistry, Ivan Franko National University of Lviv, 107, Tarnavskogo Str., 79017 Lviv, Ukraine;
| |
Collapse
|
5
|
Structural and Optical Characterization of ZnS Ultrathin Films Prepared by Low-Temperature ALD from Diethylzinc and 1.5-Pentanedithiol after Various Annealing Treatments. MATERIALS 2019; 12:ma12193212. [PMID: 31575000 PMCID: PMC6804116 DOI: 10.3390/ma12193212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 11/17/2022]
Abstract
The structural and optical evolution of the ZnS thin films prepared by atomic layer deposition (ALD) from the diethylzinc (DEZ) and 1,5-pentanedithiol (PDT) as zinc and sulfur precursors was studied. A deposited ZnS layer (of about 60 nm) is amorphous, with a significant S excess. After annealing, the stoichiometry improved for annealing temperatures ≥400 °C and annealing time ≥2 h, and 1:1 stoichiometry was obtained when annealed at 500 °C for 4 h. ZnS crystallized into small crystallites (1–7 nm) with cubic sphalerite structure, which remained stable under the applied annealing conditions. The size of the crystallites (D) tended to decrease with annealing temperature, in agreement with the EDS data (decreased content of both S and Zn with annealing temperature); the D for samples annealed at 600 °C (for the time ≤2 h) was always the smallest. Both reflectivity and ellipsometric spectra showed characteristics typical for quantum confinement (distinct dips/peaks in UV spectral region). It can thus be concluded that the amorphous ZnS layer obtained at a relatively low temperature (150 °C) from organic S precursor transformed into the layers built of small ZnS nanocrystals of cubic structure after annealing at a temperature range of 300–600 °C under Ar atmosphere.
Collapse
|