1
|
Ahmad A, Siddiqui SA, Tyagi P, Gupta L, Dubey KD, Kapat A. The Role of the Carbonyl Group in C-C Triple Bond Cleavage of Ynones via Grob-Type Fragmentation under Acidic Conditions. J Org Chem 2025. [PMID: 40036029 DOI: 10.1021/acs.joc.4c02800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Cleavage of the C-C triple bond is a unique pathway for the generation of new synthons. Nevertheless, the high bond dissociation energy, coupled with the acidic nature of the alkyne proton, renders the highly selective cleavage of the C-C triple bond of ynone via direct activation of the σ bond a challenging task. Herein, we report cleavage of the C-C triple bond via direct activation of the C-C triple bond of ynone by trifluoroacetic acid (TFA)-mediated lowest unoccupied molecular orbital (LUMO) lowering of the carbonyl group. Dehydrogenation of dihydroquinolinone was observed under the same reaction conditions, and this is the first report of this kind. Broad functional group tolerance was observed for trifluoroacetic acid-mediated C-C triple bond cleavage and the dehydrogenation reaction. A detailed mechanistic study using combined experimental and computational studies confirmed Grob-type fragmentation for the C-C triple bond cleavage of ynones.
Collapse
Affiliation(s)
- Asrar Ahmad
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Dadri, Chithera, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Shakir Ali Siddiqui
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Dadri, Chithera, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Priya Tyagi
- Department of Chemistry, Galgotias University, Plot No. 2, Sector 17-A Yamuna Expressway, Opposite Buddha International Circuit, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh 203201, India
| | - Lokesh Gupta
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Dadri, Chithera, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Dadri, Chithera, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Ajoy Kapat
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Dadri, Chithera, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| |
Collapse
|
2
|
González‐Rodríguez J, González‐Granda S, Lavandera I, Gotor‐Fernández V, Mangas‐Sánchez J. L-Cysteine-Catalysed Hydration of Activated Alkynes. Angew Chem Int Ed Engl 2025; 64:e202414046. [PMID: 39344480 PMCID: PMC11720403 DOI: 10.1002/anie.202414046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024]
Abstract
Hydration reactions consist of the introduction of a molecule of water into a chemical compound and are particularly useful to transform alkynes into carbonyls, which are strategic intermediates in the synthesis of a plethora of compounds. Herein we demonstrate that L-cysteine can catalyse the hydration of activated alkynes in a very effective and fully regioselective manner to access important building blocks in synthetic chemistry such as β-ketosulfones, amides and esters, in aqueous media. The mild reaction conditions facilitated the integration with enzyme catalysis to access chiral β-hydroxy sulfones from the corresponding alkynes in a one-pot cascade process in good yields and excellent enantiomeric ratios. These findings pave the way towards establishing a general method for metal-free, cost-effective, and more sustainable alkyne hydration processes.
Collapse
Affiliation(s)
- Jorge González‐Rodríguez
- IUQOEM – Department of Organic and Inorganic ChemistrySchool of ChemistryUniversity of OviedoJulián Clavería 833006OviedoSpain
- Current address: Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 9/163-OC1060WienAustria
| | - Sergio González‐Granda
- IUQOEM – Department of Organic and Inorganic ChemistrySchool of ChemistryUniversity of OviedoJulián Clavería 833006OviedoSpain
- Current address: Department of ChemistryUniversity of Michigan930 N University AveAnn ArborMI-48109USA
| | - Iván Lavandera
- IUQOEM – Department of Organic and Inorganic ChemistrySchool of ChemistryUniversity of OviedoJulián Clavería 833006OviedoSpain
| | - Vicente Gotor‐Fernández
- IUQOEM – Department of Organic and Inorganic ChemistrySchool of ChemistryUniversity of OviedoJulián Clavería 833006OviedoSpain
| | - Juan Mangas‐Sánchez
- IUQOEM – Department of Organic and Inorganic ChemistrySchool of ChemistryUniversity of OviedoJulián Clavería 833006OviedoSpain
| |
Collapse
|
3
|
Vinodkumar R, Nakate AK, Krishna GR, Kontham R. AgOTf-catalyzed cascade annulation of 5-hexyn-1-ols and aldehydes: enabling the diastereoselective synthesis of [6,6,6]-trioxa-fused ketals and hexahydro-2 H-chromenes. Chem Commun (Camb) 2025; 61:973-976. [PMID: 39688279 DOI: 10.1039/d4cc05546b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
We report the unprecedented diastereoselective synthesis of novel [6,6,6]-trioxa-fused ketals via AgOTf-catalyzed cascade annulation of 5-hexyn-1-ols (with primary or secondary hydroxyl groups) and aldehydes through a [2+2+1+1] pathway. In contrast, 5-hexyn-1-ols with tertiary hydroxyl groups yield hexahydro-2H-chromenes via a [3+1+1+1] pathway.
Collapse
Affiliation(s)
- Ramavath Vinodkumar
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashwini K Nakate
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gamidi Rama Krishna
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Centre for Materials Characterization, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India
| | - Ravindar Kontham
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Ćorović M, Ehweiner MA, Hartmann PE, Sbüll F, Belaj F, Boese AD, Lepluart J, Kirk ML, Mösch-Zanetti NC. Understanding the Carbyne Formation from C 2H 2 Complexes. J Am Chem Soc 2024; 146:32392-32402. [PMID: 39546808 PMCID: PMC11613314 DOI: 10.1021/jacs.4c07724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Nature chooses a high-valent tungsten center at the active site of the enzyme acetylene hydratase to facilitate acetylene hydration to acetaldehyde. However, the reactions of tungsten-coordinated acetylene are still not well understood, which prevents the development of sustainable bioinspired alkyne hydration catalysts. Here we report the reactivity of two bioinspired tungsten complexes with the acetylene ligand acting as a four-: [W(CO)(C2H2)(PymS)2] (1) and a two-electron donor: [WO(C2H2)(PymS)2] (3), with PMe3 as a nucleophile to simulate the enzyme's reactivity (PymS = 4-(trifluoromethyl)-6-methylpyrimidine-2-thiolate). In dichloromethane, compound 1 was found to react to the cationic carbyne [W≡CCH2PMe3(CO)(PMe3)2(PymS)]Cl (2-Cl) while 3 reacts to the vinyl compound [WO(CH═CHPMe3)(PMe3)3(PymS)]Cl (4-Cl). The formation of the latter follows the common rules applied to η2-alkyne complexes, whereas the carbyne formation was not expected due to the challenging 1,2-H shift. To understand these differences in behavior between seemingly similar acetylene complexes, stepwise addition of the nucleophile in various solvents was investigated by synthetic, spectroscopic, and computational approaches. In this manuscript, we describe that only a four-electron donor acetylene complex can react to the carbyne over the η1-vinyl intermediate and that 1,2-H shift can be assisted by an H-transfer reagent (in this case, the decoordinated PymS ligand). Furthermore, to favor the attack of PMe3 at W coordinated acetylene, the metal center needs to be electron-poor and crowded enough to prevent nucleophile coordination. Finally, the intricate role of the anionic PymS ligand in the vicinity of the first coordination sphere models the potential involvement of amino acid residues during acetylene transformations in AH.
Collapse
Affiliation(s)
- Miljan
Z. Ćorović
- Institute
of Chemistry, Inorganic Chemistry, University
of Graz, Schubertstrasse 1, 8010 Graz, Austria
| | - Madeleine A. Ehweiner
- Institute
of Chemistry, Inorganic Chemistry, University
of Graz, Schubertstrasse 1, 8010 Graz, Austria
| | - Peter E. Hartmann
- Institute
of Chemistry, Physical and Theoretical Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Felix Sbüll
- Institute
of Chemistry, Physical and Theoretical Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Ferdinand Belaj
- Institute
of Chemistry, Inorganic Chemistry, University
of Graz, Schubertstrasse 1, 8010 Graz, Austria
| | - A. Daniel Boese
- Institute
of Chemistry, Physical and Theoretical Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Jesse Lepluart
- Department
of Chemistry and Chemical Biology, The University
of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Martin L. Kirk
- Department
of Chemistry and Chemical Biology, The University
of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Nadia C. Mösch-Zanetti
- Institute
of Chemistry, Inorganic Chemistry, University
of Graz, Schubertstrasse 1, 8010 Graz, Austria
| |
Collapse
|
5
|
Vinodkumar R, Nakate AK, Gamidi RK, Kontham R. Ready Access to [5,6,5]-Trioxa-spiro and Fused Ketals via Ag-Catalyzed Cascade Annulation of 4-Pentyn-1-ols and Aldehydes. Org Lett 2024; 26:7116-7121. [PMID: 39162258 DOI: 10.1021/acs.orglett.4c02357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
In this study, we unveil the versatility of 4-pentyn-1-ols as carbonyl surrogates for the unprecedented synthesis of diverse oxygen heterocycles, including [5,6,5]-bis-spiroketals (trioxadispiroketals) and [5,6,5]-furano-spiroketals related to bioactive natural products. These reactions commence with the π-activation-induced intramolecular hydroalkoxylation of 4-pentyn-1-ols, yielding cyclic enol ethers, which undergo subsequent three-component annulation with aldehydes in a [2+2+1+1] fashion, resulting in the formation of [5,6,5]-bis-spiroketals. Notably, the distinctive steric features of alkynyl alcohols, particularly those with a secondary or tertiary alcohol functionality, dictate divergent reaction pathways, leading to the formation of [5,6,5]-furano-spiroketals.
Collapse
Affiliation(s)
- Ramavath Vinodkumar
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashwini K Nakate
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rama Krishna Gamidi
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Center for Materials Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Ravindar Kontham
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Nayek P, Mal P. Mimicking Ozonolysis via Mechanochemistry: Internal Alkynes to 1,2-Diketones using H 5IO 6. Chemistry 2024; 30:e202401027. [PMID: 38634437 DOI: 10.1002/chem.202401027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/19/2024]
Abstract
Utilizing periodic acid as an environmentally benign oxidizing agent, this study introduces a novel mechanochemical method that mimics ozonolysis to convert internal alkynes into 1,2-diketones, showcasing effective emulation of ozone's reactivity. Notably, this oxidation occurs at room temperature in aerobic conditions, eliminating the need for toxic transition metals, hazardous oxidants, or expensive solvents. Through control experiments validating the mechanism, substantial evidence supports a concerted reaction pathway. This progress marks a significant stride toward cleaner and more efficient chemical synthesis, mitigating the environmental impact of conventional processes. Assessing the green chemistry metrics in both solvent-free and previously reported solvent-based methods, our eco-friendly protocol demonstrates an E-factor of 7.40, a 51.7 % atom economy, a 45.5 % atom efficiency, 100 % carbon efficiency, and 11.9 % reaction mass efficiency when solvents are not used.
Collapse
Affiliation(s)
- Pravat Nayek
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| |
Collapse
|
7
|
Ponomarev AV, Danilkina NA, Okuneva JS, Vidyakina AA, Khmelevskaya EA, Bunev AS, Rumyantsev AM, Govdi AI, Suarez T, Alabugin IV, Balova IA. Facile synthesis of diiodoheteroindenes and understanding their Sonogashira cross-coupling selectivity for the construction of unsymmetrical enediynes. Org Biomol Chem 2024; 22:4096-4107. [PMID: 38695707 DOI: 10.1039/d4ob00530a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Electrophile-promoted cyclizations of functionalized alkynes offer a useful tool for constructing halogen-substituted heterocycles primed for further derivatization. Preinstallation of an iodo-substituent at the alkyne prior to iodo-cyclization opens access to ortho di-iodinated heterocyclic precursors for the preparation of unsymmetrical heterocycle-fused enediynes. This general approach was used to prepare 2,3-diiodobenzothiophene, 2,3-diiodoindole, and 2,3-diiodobenzofuran, a useful family of substrates for systematic studies of the role of heteroatoms on the regioselectivity of cross-coupling reactions. Diiodobenzothiophene showed much higher regioselectivity for Sonogashira cross-coupling at C2 than diiodoindole and diiodobenzofuran. As a result, benzothiophene can be conveniently involved in a one-pot sequential coupling with two different alkynes, yielding unsymmetrical benzothiophene-fused enediynes. On the other hand, the Sonogashira reaction of diiodoindole and diiodobenzofuran formed considerable amounts of di-substituted enediynes in addition to the monoalkyne product by coupling at C2. Interestingly, no C3-monocoupling products were observed for all of the diiodides, suggesting that the incorporation of the 1st alkyne at C2 activates the C3 position for the 2nd coupling. Additional factors affecting regioselectivity were detected, discussed and connected, through computational analysis, to transmetalation being the rate-determining step for the Sonogashira reaction. Several enediynes synthesized showed cytotoxic activity, which is not associated with DNA strand breaks typical of natural enediyne antibiotics.
Collapse
Affiliation(s)
- Alexander V Ponomarev
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| | - Natalia A Danilkina
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| | - Julia S Okuneva
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| | - Aleksandra A Vidyakina
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| | - Ekaterina A Khmelevskaya
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| | - Alexander S Bunev
- Medicinal Chemistry Center, Tolyatti State University, 445020 Tolyatti, Russia
| | - Andrey M Rumyantsev
- Department of Genetics and Biotechnology, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia
| | - Anastasia I Govdi
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| | - Thomas Suarez
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Irina A Balova
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| |
Collapse
|
8
|
Zhu J, Yang L, Liu H, Sun S, Li J, Zhang L, Sun H, Cheng M, Lin B, Liu Y. Syntheses of Tetracyclic Indoline Derivatives Via Gold(I)-Catalyzed Hydroamination/Cycloisomerization Cascade of 2-Ethynyltryptamides. J Org Chem 2024; 89:3331-3344. [PMID: 38363745 DOI: 10.1021/acs.joc.3c02784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
A gold(I)-catalyzed hydroamination/cycloisomerization cascade reaction was developed to yield indolizino[8,7-b]indole and indolo[2,3-a]-quinolizine derivatives from 2-ethynyltryptamides. The optimal conditions were determined by condition screening, and the functional group tolerances of these reactions were explored based on synthetic substrates. An insight into the explanation on the selectivity of the ring closure was obtained by density functional theory calculations. A plausible mechanism for the cascade reactions was proposed. Derivatization of the indolizino[8,7-b]indole and total synthesis of nauclefidine demonstrated the practicality of this strategy.
Collapse
Affiliation(s)
- Jiang Zhu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Lu Yang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Hairui Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Shitao Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Jiaji Li
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Lianjie Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Hanyang Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| |
Collapse
|
9
|
Wang CJ, Meng HJ, Tang Y, Chen J, Zhou L. Aromatic Amine and Chiral Phosphoric Acid Synergistic Catalyzed Cascade Reaction of Alkynylnaphthols with Aldehydes. Org Lett 2024; 26:1489-1494. [PMID: 38358098 DOI: 10.1021/acs.orglett.4c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
A novel approach using aromatic amines and chiral phosphoric acids in a synergistic catalytic cascade reaction of 2-alkynylnaphthols with aldehydes has been established. This method offers a direct route to preparing flavanone analogues with excellent stereoselectivity. Mechanistic studies reveal a sequential process involving addition, elimination, cyclization, and hydrolysis in which aromatic amines and chiral phosphoric acids play key roles via imine-enamine and hydrogen bonding models.
Collapse
Affiliation(s)
- Chuan-Jin Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Hao-Jie Meng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yue Tang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
10
|
Singh V, Kumar D, Mishra BK, Tiwari B. Iodobenzene-Catalyzed Synthesis of Fully Functionalized NH-Pyrazoles and Isoxazoles from α,β-Unsaturated Hydrazones and Oximes via 1,2-Aryl Shift. Org Lett 2024; 26:385-389. [PMID: 38150709 DOI: 10.1021/acs.orglett.3c04057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
An iodine(III)-catalyzed general method for the synthesis of fully functionalized NH-pyrazoles and isoxazoles from α,β-unsaturated hydrazones and oximes, respectively, via cyclization/1,2-aryl shift/aromatization/detosylation, has been developed. The reaction progresses through an anti-Baldwin 5-endo-trig cyclization. It gives direct access to an advanced intermediate for the preparation of valdecoxib and parecoxib, drugs used for COX-inhibition. In addition, a method for N-alkynylation of pyrazoles has also been developed in the presence of TIPS-EBX.
Collapse
Affiliation(s)
- Vikram Singh
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Deepak Kumar
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Bal Krishna Mishra
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Bhoopendra Tiwari
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| |
Collapse
|
11
|
Wang H, Wang SR. Regio- and Stereospecific Hydrative Cloke-Wilson Rearrangement. Org Lett 2023; 25:8356-8360. [PMID: 37962522 DOI: 10.1021/acs.orglett.3c03439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The Cloke-Wilson rearrangement of unsymmetrical β-diketone-derived cyclopropanes inevitably yields a mixture of two 4-acylated 2,3-dihydrofuran regiomers. By using alkynes as masked acyls, Tf2NH-promoted Cloke-Wilson rearrangement of polysubstituted 1-(1-alkynyl)cyclopropyl ketones followed by alkyne hydration is described, regioselectively affording 2,3-dihydrofurans bearing 4-acyls nonequivalent to that involved in the Cloke-Wilson rearrangement. The 2,3-dihydrofuran rings with cis 2,3-diaryls are unexpectedly more stable than their trans diastereomers under the reaction conditions, guaranteeing the regiospecificity of this hydrative Cloke-Wilson rearrangement with high fidelity.
Collapse
Affiliation(s)
- Haoran Wang
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Lu, Shanghai 200241, China and
| | - Sunewang R Wang
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Lu, Shanghai 200241, China and
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 North Zhongshan Lu, Shanghai 200062, China
| |
Collapse
|
12
|
Ramos-Martín M, Ríos-Lombardía N, González-Sabín J, García-Garrido SE, Concellón C, Presa Soto A, Del Amo V, García-Álvarez J. Fe III -Based Eutectic Mixtures as Multi-task and Reusable Reaction Media for Efficient and Selective Conversion of Alkynes into Carbonyl Compounds. Chemistry 2023; 29:e202301736. [PMID: 37439586 DOI: 10.1002/chem.202301736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/14/2023]
Abstract
An efficient, simple and general protocol for the selective hydration of terminal alkynes into the corresponding methyl ketones has been developed by using a cheap, easy-to-synthesise and sustainable FeIII -based eutectic mixture [FeCl3 ⋅ 6H2 O/Gly (3 : 1)] as both promoter and solvent for the hydration reaction, working: i) under mild (45 °C) and bench-type reaction conditions (air); and ii) in the absence of ligands, co-catalysts, co-solvents or toxic, non-abundant and expensive noble transition metals (Au, Ru, Pd). When the final methyl ketones are solid/insoluble in the eutectic mixture, the hydration reaction takes place in 30 min, and the obtained methyl ketones can be isolated by simply decanting the liquid FeIII -DES, allowing the direct isolation of the desired ketones without VOC solvents. By using this straightforward and simple isolation protocol, we have been able to recycle the FeIII -based eutectic mixture system up to eight consecutive times. Furthermore, the FeIII -eutectic mixture is able to promote the selective and efficient formal oxidation of internal alkynes into 1,2-diketones, with the possibility of recycling this system up to three consecutive times. Preliminary investigations into a possible mechanism for the oxidation of the internal alkynes seem to indicate that it proceeds through the formation of the corresponding methyl ketones and α-chloroketones.
Collapse
Affiliation(s)
- Marina Ramos-Martín
- Laboratorio de Química Sintética Sostenible (QuimSinSos), Departamento de Química Orgánica e Inorgánica, (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad de Oviedo, E33071, Oviedo, Spain)
| | - Nicolas Ríos-Lombardía
- Laboratorio de Química Sintética Sostenible (QuimSinSos), Departamento de Química Orgánica e Inorgánica, (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad de Oviedo, E33071, Oviedo, Spain)
- Entrechem SL, Vivero Ciencias de la Salud, Colegio Santo Domingo de Guzmán s/n, 33011, Oviedo, Spain
| | - Javier González-Sabín
- Entrechem SL, Vivero Ciencias de la Salud, Colegio Santo Domingo de Guzmán s/n, 33011, Oviedo, Spain
| | - Sergio E García-Garrido
- Laboratorio de Química Sintética Sostenible (QuimSinSos), Departamento de Química Orgánica e Inorgánica, (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad de Oviedo, E33071, Oviedo, Spain)
| | - Carmen Concellón
- Laboratorio de Química Sintética Sostenible (QuimSinSos), Departamento de Química Orgánica e Inorgánica, (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad de Oviedo, E33071, Oviedo, Spain)
| | - Alejandro Presa Soto
- Laboratorio de Química Sintética Sostenible (QuimSinSos), Departamento de Química Orgánica e Inorgánica, (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad de Oviedo, E33071, Oviedo, Spain)
| | - Vicente Del Amo
- Laboratorio de Química Sintética Sostenible (QuimSinSos), Departamento de Química Orgánica e Inorgánica, (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad de Oviedo, E33071, Oviedo, Spain)
| | - Joaquín García-Álvarez
- Laboratorio de Química Sintética Sostenible (QuimSinSos), Departamento de Química Orgánica e Inorgánica, (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad de Oviedo, E33071, Oviedo, Spain)
| |
Collapse
|
13
|
Kambale DA, Borade BR, Vinodkumar R, Kontham R. Divergent Synthesis of Oxepino-Phthalides and [5,5]-Oxaspirolactones through [2 + 2 + 2]- and [2 + 3]-Annulation of Alkynyl Alcohols with α-Ynone-Esters. J Org Chem 2023; 88:12597-12612. [PMID: 37611259 DOI: 10.1021/acs.joc.3c01301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Unmasking the synthetic potential of alkyne functional group of alkynyl alcohols as surrogates of carbonyl compounds, herein we present the first Brønsted acid (TfOH)-catalyzed [2 + 2 + 2]-annulation of 4-pentyn-1-ols (possessing terminal alkyne) with α-ynone-esters to access tricyclic tetrahydro-oxepino-phthalides. Besides, an unprecedented synthesis of α-acetoaryl or α-alkynyl [5,5]-oxaspirolactones has been demonstrated by employing 4-pentyn-1-ols (possessing an internal alkyne) as an annulation partner, which proceeds through a divergent [2 + 3]-annulation pathway.
Collapse
Affiliation(s)
- Digambar A Kambale
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Balasaheb R Borade
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramavath Vinodkumar
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ravindar Kontham
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
14
|
Hu C, Mena J, Alabugin IV. Design principles of the use of alkynes in radical cascades. Nat Rev Chem 2023:10.1038/s41570-023-00479-w. [PMID: 37117812 DOI: 10.1038/s41570-023-00479-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/30/2023]
Abstract
One of the simplest organic functional groups, the alkyne, offers a broad canvas for the design of cascade transformations in which up to three new bonds can be added to each of the two sterically unencumbered, energy-rich carbon atoms. However, kinetic protection provided by strong π-orbital overlap makes the design of new alkyne transformations a stereoelectronic puzzle, especially on multifunctional substrates. This Review describes the electronic properties contributing to the unique utility of alkynes in radical cascades. We describe how to control the selectivity of alkyne activation by various methods, from dynamic covalent chemistry with kinetic self-sorting to disappearing directing groups. Additionally, we demonstrate how the selection of reactive intermediates directly influences the propagation and termination of the cascade. Diverging from a common departure point, a carefully planned reaction route can allow access to a variety of products.
Collapse
|
15
|
Mann JS, Mai BK, Nguyen TV. Carbocation-Catalyzed Intramolecular and Intermolecular Carbonyl-Alkyne Metathesis Reactions. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Jasnoor S. Mann
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
16
|
The Alkyne Zipper Reaction: A Useful Tool in Synthetic Chemistry. REACTIONS 2022. [DOI: 10.3390/reactions4010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The alkyne zipper reaction is an internal-to-terminal alkyne isomerization reaction with many interesting applications in synthetic chemistry, as it constitutes an efficient means of achieving acetylene functionalization. A review of its applications in synthesis processes is presented in this paper, with a brief overview of the mechanistic features of the alkyne zipper reaction, as well as a brief overview of its future potential.
Collapse
|
17
|
Chen Y, Hee S, Liu X, Das S, Hong D, Leung PH, Li Y, Li J, Liu J. ICl-Mediated Functional Group Interconversion from Methyl Homopropargyl Ether to α-Iodo-γ-chloroketone. J Org Chem 2022; 87:15129-15138. [PMID: 36331559 PMCID: PMC10174042 DOI: 10.1021/acs.joc.2c01638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An ICl-mediated highly chemo- and regioselective functional group interconversion from methyl homopropargyl ether to α-iodo-γ-chloro-ketone is reported. Density functional theory (DFT)-calculated reaction coordinate and potential energy surface support the high chemo-selectivity observed for the formation of α-iodo-γ-chloroketone over furan. The five-membered oxonium ring formation-ring opening mechanism is a potential template for the preparation of polyfunctionalized carbonyl compounds.
Collapse
Affiliation(s)
- Yu Chen
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York11367, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Ave., New York, New York10016, United States
| | - Samual Hee
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York11367, United States
| | - Xiaochen Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York11367, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Ave., New York, New York10016, United States
| | - Sajal Das
- Department of Chemistry, University of North Bengal, Darjeeling734 013, India
| | - Dongsub Hong
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York11367, United States
| | - Pak-Hing Leung
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Yongxin Li
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Jiaming Li
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York11367, United States
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York11367, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Ave., New York, New York10016, United States
| |
Collapse
|
18
|
Li W, Li H, Qiu J, Wang Z, Li X, Pan YM, Hou C, Li H. Synthesis of 2-Pyrazolines with a CF 3- and Alkyne-Substituted Quaternary Carbon Center via [3 + 2] Cycloaddition of β-CF 3-1,3-enynes and Diazoacetates. J Org Chem 2022; 87:12477-12481. [PMID: 36070608 DOI: 10.1021/acs.joc.2c01428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Given the importance of both the CF3 group and the alkyne moiety in synthetic/medicinal chemistry, we report here the first example of efficient synthesis of 2-pyrazolines with a CF3- and alkyne-substituted quaternary carbon center. This methodology has the advantages of high functional group compatibility, the avoidance of base and open-flask conditions, easily available and easy to handle reagent, and broad substrate scope. Notably, this protocol allows for the late-stage functionalization of biologically active molecules and the gram-scale synthesis.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Hengyuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jie Qiu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zhenhui Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiaofeng Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Cheng Hou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Huaifeng Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
19
|
Lei X, Qin Z, Ye B, Guo F, Wu Y, Liu L. Interaction between secondary lipid oxidation products and hemoglobin with multi-spectroscopic techniques and docking studies. Food Chem 2022; 394:133497. [PMID: 35759837 DOI: 10.1016/j.foodchem.2022.133497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
This study aimed to explore the effect of secondary lipid oxidation products (SLOPs) on hemoglobin (Hb) in chicken model. The fluorescence quenching technique and molecular docking were employed, and the apparent binding constants Ksv and the binding site numbers of SLOPs with Hb were calculated. The results revealed that three SLOPs (hexanal, benzaldehyde, and 2-pentanone) obviously promoted the oxidation of Hb, which is consistent with the change of Hb hydrophobicity, particle size, polydispersity index and zeta potential. The SLOPs strongly quenched the intrinsic fluorescence of Hb and triggered the alterations in the Hb structure. Hydrophobic interaction was the main force between SLOPs and Hb. Among the three SLOPs, hexanal demonstrated more stronger oxidation on Hb, which is closely related to its hydrophobic ability and structure characteristic, especially 10 μM hexanal is more prone to form an obvious unfolded structure and caused molecular aggregation than lower concentrations.
Collapse
Affiliation(s)
- Xueqing Lei
- The College of Food Science, Shenyang Agricultural University, Shenyang 110866, Dongling Street No.120, Shenyang, China
| | - Zhiwei Qin
- The College of Food Science, Shenyang Agricultural University, Shenyang 110866, Dongling Street No.120, Shenyang, China
| | - Bo Ye
- The College of Food Science, Shenyang Agricultural University, Shenyang 110866, Dongling Street No.120, Shenyang, China; Liaoning Modern Agricultural Engineering Center, Changjiang North Street No.39, 110031 Shenyang, China
| | - Feng Guo
- The College of Food Science, Shenyang Agricultural University, Shenyang 110866, Dongling Street No.120, Shenyang, China
| | - Yao Wu
- The College of Food Science, Shenyang Agricultural University, Shenyang 110866, Dongling Street No.120, Shenyang, China
| | - Ling Liu
- The College of Food Science, Shenyang Agricultural University, Shenyang 110866, Dongling Street No.120, Shenyang, China.
| |
Collapse
|
20
|
Luo C, Alegre-Requena JV, Sujansky SJ, Pajk SP, Gallegos LC, Paton RS, Bandar JS. Mechanistic Studies Yield Improved Protocols for Base-Catalyzed Anti-Markovnikov Alcohol Addition Reactions. J Am Chem Soc 2022; 144:9586-9596. [PMID: 35605253 DOI: 10.1021/jacs.1c13397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic anti-Markovnikov addition of alcohols to simple alkenes is a longstanding synthetic challenge. We recently disclosed the use of organic superbase catalysis for the nucleophilic addition of alcohols to activated styrene derivatives. This article describes mechanistic studies on this reversible reaction, including thermodynamic and kinetic profiling as well as computational modeling. Our findings show the negative entropy of addition is counterbalanced by an enthalpy that is most favored in nonpolar solvents. However, a large negative alcohol rate order under these conditions indicates excess alcohol sequesters the active alkoxide ion pairs, slowing the reaction rate. These observations led to an unexpected solution to a thermodynamically challenging reaction: use of less alcohol enables faster addition, which in turn allows for lower reaction temperatures to counteract Le Chatelier's principle. Thus, our original method has been improved with new protocols that do not require excess alcohol stoichiometry, enable an expanded alkene substrate scope, and allow for the use of more practical catalyst systems. The generality of this insight for other challenging hydroetherification reactions is also demonstrated through new alkenol cyclization and oxa-Michael addition reactions.
Collapse
Affiliation(s)
- Chaosheng Luo
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Juan V Alegre-Requena
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Stephen J Sujansky
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Spencer P Pajk
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Liliana C Gallegos
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeffrey S Bandar
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
21
|
Le CC, Bae M, Kiamehr S, Balskus EP. Emerging Chemical Diversity and Potential Applications of Enzymes in the DMSO Reductase Superfamily. Annu Rev Biochem 2022; 91:475-504. [PMID: 35320685 DOI: 10.1146/annurev-biochem-032620-110804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molybdenum- and tungsten-dependent proteins catalyze essential processes in living organisms and biogeochemical cycles. Among these enzymes, members of the dimethyl sulfoxide (DMSO) reductase superfamily are considered the most diverse, facilitating a wide range of chemical transformations that can be categorized as oxygen atom installation, removal, and transfer. Importantly, DMSO reductase enzymes provide high efficiency and excellent selectivity while operating under mild conditions without conventional oxidants such as oxygen or peroxides. Despite the potential utility of these enzymes as biocatalysts, such applications have not been fully explored. In addition, the vast majority of DMSO reductase enzymes still remain uncharacterized. In this review, we describe the reactivities, proposed mechanisms, and potential synthetic applications of selected enzymes in the DMSO reductase superfamily. We also highlight emerging opportunities to discover new chemical activity and current challenges in studying and engineering proteins in the DMSO reductase superfamily. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Chi Chip Le
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| | - Minwoo Bae
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| | - Sina Kiamehr
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| |
Collapse
|
22
|
Saha R, Mukherjee A, Bhattacharya S. Development of a ruthenium–aquo complex for utilization in synthesis and catalysis for selective hydration of nitriles and alkynes. NEW J CHEM 2022. [DOI: 10.1039/d1nj04736a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ruthenium(ii)–aquo complex serves as a precursor for the synthesis of new ternary complexes and also as an efficient catalyst for selective hydration of aryl nitriles to aryl amides and aryl alkynes to aryl aldehydes.
Collapse
Affiliation(s)
- Rumpa Saha
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata – 700 032, India
| | - Aparajita Mukherjee
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata – 700 032, India
| | - Samaresh Bhattacharya
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata – 700 032, India
| |
Collapse
|
23
|
Vasilevsky SF, Stepanov AA. Acetylene derivatives of quinones and their transformation products: methods of synthesis, reactivity and applied aspects. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Vasilevsky SF, Krivenko OL, Sorokina IV, Baev DS, Tolstikova TG, Alabugin IV. Cascade Transformations of 1-R-Ethynyl-9,10-anthraquinones with Amidines: Expanding Access to Isoaporphinoid Alkaloids. Molecules 2021; 26:6883. [PMID: 34833979 PMCID: PMC8621605 DOI: 10.3390/molecules26226883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 11/27/2022] Open
Abstract
The interaction of acetamidine and phenylamidine with peri-R-ethynyl-9,10-anthraquinones in refluxing n-butanol leads to the formation of cascade transformations products: addition/elimination/cyclization-2-R-7H-dibenzo[de,h]quinolin-7-ones and(or) 2-R-3-aroyl-7H-dibenzo[de,h]quinolin-7-ones. The anti-inflammatory and antitumor properties of the new 2-R-7H-dibenzo[de,h]quinolin-7-ones were investigated in vivo, in vitro, and in silico. The synthesized compounds exhibit high anti-inflammatory activity at dose 20 mg/kg (intraperitoneal injection) in the models of exudative (histamine-induced) and immunogenic (concanavalin A-induced) inflammation. Molecular docking data demonstrate that quinolinones can potentially intercalate into DNA similarly to the antitumor drug doxorubicin.
Collapse
Affiliation(s)
- Sergey Francevich Vasilevsky
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia;
| | - Ol’ga Leonidovna Krivenko
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia;
| | - Irina Vasilievna Sorokina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Acad. Lavrent’eva, 630090 Novosibirsk, Russia; (I.V.S.); (D.S.B.); (T.G.T.)
| | - Dmitry Sergeevich Baev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Acad. Lavrent’eva, 630090 Novosibirsk, Russia; (I.V.S.); (D.S.B.); (T.G.T.)
| | - Tatyana Genrikhovna Tolstikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Acad. Lavrent’eva, 630090 Novosibirsk, Russia; (I.V.S.); (D.S.B.); (T.G.T.)
| | - Igor V. Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
25
|
Alabugin IV, Kuhn L, Medvedev MG, Krivoshchapov NV, Vil' VA, Yaremenko IA, Mehaffy P, Yarie M, Terent'ev AO, Zolfigol MA. Stereoelectronic power of oxygen in control of chemical reactivity: the anomeric effect is not alone. Chem Soc Rev 2021; 50:10253-10345. [PMID: 34263287 DOI: 10.1039/d1cs00386k] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although carbon is the central element of organic chemistry, oxygen is the central element of stereoelectronic control in organic chemistry. Generally, a molecule with a C-O bond has both a strong donor (a lone pair) and a strong acceptor (e.g., a σ*C-O orbital), a combination that provides opportunities to influence chemical transformations at both ends of the electron demand spectrum. Oxygen is a stereoelectronic chameleon that adapts to the varying situations in radical, cationic, anionic, and metal-mediated transformations. Arguably, the most historically important stereoelectronic effect is the anomeric effect (AE), i.e., the axial preference of acceptor groups at the anomeric position of sugars. Although AE is generally attributed to hyperconjugative interactions of σ-acceptors with a lone pair at oxygen (negative hyperconjugation), recent literature reports suggested alternative explanations. In this context, it is timely to evaluate the fundamental connections between the AE and a broad variety of O-functional groups. Such connections illustrate the general role of hyperconjugation with oxygen lone pairs in reactivity. Lessons from the AE can be used as the conceptual framework for organizing disjointed observations into a logical body of knowledge. In contrast, neglect of hyperconjugation can be deeply misleading as it removes the stereoelectronic cornerstone on which, as we show in this review, the chemistry of organic oxygen functionalities is largely based. As negative hyperconjugation releases the "underutilized" stereoelectronic power of unshared electrons (the lone pairs) for the stabilization of a developing positive charge, the role of orbital interactions increases when the electronic demand is high and molecules distort from their equilibrium geometries. From this perspective, hyperconjugative anomeric interactions play a unique role in guiding reaction design. In this manuscript, we discuss the reactivity of organic O-functionalities, outline variations in the possible hyperconjugative patterns, and showcase the vast implications of AE for the structure and reactivity. On our journey through a variety of O-containing organic functional groups, from textbook to exotic, we will illustrate how this knowledge can predict chemical reactivity and unlock new useful synthetic transformations.
Collapse
Affiliation(s)
- Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Leah Kuhn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.,A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova St., 119991 Moscow, Russian Federation
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.,Lomonosov Moscow State University, Leninskie Gory 1 (3), Moscow, 119991, Russian Federation
| | - Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Patricia Mehaffy
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65167, Iran
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65167, Iran
| |
Collapse
|
26
|
1-(4-Formyl-2,6-dimethoxyphenoxy)-4-chlorobut-2-yne. MOLBANK 2021. [DOI: 10.3390/m1252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A reaction of biomass-derived aldehyde synringaldehyde and half an equivalent of 1,4-dichlorobut-2-yne was attempted in order to obtain a bis-aldehyde with an alkyne spacer. The reaction was carried out in a basic media to effect bis O-alkylation, as described in literature for the preparation of structurally similar compounds. Nevertheless, only mono alkylation was observed.
Collapse
|
27
|
Sustainable hydration of alkynes promoted by first row transition metal complexes. Background, highlights and perspectives. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Orel VB, Manzhueva AA. The mechanism of one-pot assembly of tetracyclic derivatives of frontalin from cycloaliphatic ketones and acetylene in KOH/DMSO medium: A quantum-chemical study. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Orel VB, Vitkovskaya NM, Bobkov AS, Semenova NV, Schmidt EY, Trofimov BA. Aldol Condensation Versus Superbase-Catalyzed Addition of Ketones to Acetylenes: A Quantum-Chemical and Experimental Study. J Org Chem 2021; 86:7439-7449. [PMID: 34014087 DOI: 10.1021/acs.joc.1c00388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The mechanism of aldol condensation of ketones in KOH/DMSO superbasic media has been investigated using the B2PLYP(D2)/6-311+G**//B3LYP/6-31+G* quantum-chemical approach. It is found that the interaction of three ketone molecules resulting in the formation of the cyclohex-2-enone structure [isophorone or 3,5-dicyclohexyl-5-methylspiro(5.5)undec-2-en-1-one] is thermodynamically more favorable than the interaction of two, three, or four molecules of ketone, resulting in the formation of linear products of the condensation. The formation of the condensation products with the isophorone skeleton can significantly hinder the cascade reactions of ketones with acetylenes [to afford 6,8-dioxabicyclo(3.2.1)octanes or acylcyclopentenols] promoted by superbases. In particular, the kinetically more preferable reactions of autovinylation of 2-methyl-3-butyn-2-ol and autocondensation of acetone are the reasons why interaction of acetone with acetylene does not lead to the products of the cascade assemblies. The predominant formation of the products of these side reactions is confirmed experimentally.
Collapse
Affiliation(s)
- Vladimir B Orel
- Laboratory of Quantum-Chemical Modeling of Molecular Systems, Irkutsk State University, 1 K. Marx Street, 664003 Irkutsk, Russian Federation.,A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russian Federation
| | - Nadezhda M Vitkovskaya
- Laboratory of Quantum-Chemical Modeling of Molecular Systems, Irkutsk State University, 1 K. Marx Street, 664003 Irkutsk, Russian Federation
| | - Alexander S Bobkov
- Laboratory of Quantum-Chemical Modeling of Molecular Systems, Irkutsk State University, 1 K. Marx Street, 664003 Irkutsk, Russian Federation
| | - Nadezhda V Semenova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russian Federation
| | - Elena Yu Schmidt
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russian Federation
| | - Boris A Trofimov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russian Federation
| |
Collapse
|
30
|
Szécsényi Z, Fülöp F, Ötvös SB. Bismuth Subnitrate-Catalyzed Markovnikov-Type Alkyne Hydrations under Batch and Continuous Flow Conditions. Molecules 2021; 26:molecules26102864. [PMID: 34066109 PMCID: PMC8151695 DOI: 10.3390/molecules26102864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/01/2021] [Accepted: 05/08/2021] [Indexed: 12/04/2022] Open
Abstract
Bismuth subnitrate is reported herein as a simple and efficient catalyst for the atom-economical synthesis of methyl ketones via Markovnikov-type alkyne hydration. Besides an effective batch process under reasonably mild conditions, a chemically intensified continuous flow protocol was also developed in a packed-bed system. The applicability of the methodologies was demonstrated through hydration of a diverse set of terminal acetylenes. By simply switching the reaction medium from methanol to methanol-d4, valuable trideuteromethyl ketones were also prepared. Due to the ready availability and nontoxicity of the heterogeneous catalyst, which eliminated the need for any special additives and/or harmful reagents, the presented processes display significant advances in terms of practicality and sustainability.
Collapse
Affiliation(s)
- Zsanett Szécsényi
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellence Center, Eötvös u. 6, H-6720 Szeged, Hungary;
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellence Center, Eötvös u. 6, H-6720 Szeged, Hungary;
- MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, Interdisciplinary Excellence Center, Eötvös u. 6, H-6720 Szeged, Hungary
- Correspondence: (F.F.); (S.B.Ö.)
| | - Sándor B. Ötvös
- MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, Interdisciplinary Excellence Center, Eötvös u. 6, H-6720 Szeged, Hungary
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
- Correspondence: (F.F.); (S.B.Ö.)
| |
Collapse
|
31
|
Shabalin DA, Dvorko MY, Schmidt EY, Trofimov BA. Regiocontrolled synthesis of 2,4,6-triarylpyridines from methyl ketones, electron-deficient acetylenes and ammonium acetate. Org Biomol Chem 2021; 19:2703-2715. [PMID: 33667288 DOI: 10.1039/d1ob00193k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel one-pot two-step approach for the synthesis of 2,4,6-triarylpyridines via t-BuOK/DMSO-promoted C-vinylation of a variety of methyl ketones with electron-deficient acetylenes (alkynones) followed by a cyclization of the in situ generated unsaturated 1,5-dicarbonyl species with ammonium acetate has been developed. This approach possesses competitive advantages such as high regioselectivity, available starting materials and the absence of transition-metal catalysts, oxidants and undesirable byproducts. A wide synthetic utility of the developed approach was demonstrated by the synthesis of trisubstituted, tetrasubstituted and fused pyridines.
Collapse
Affiliation(s)
- Dmitrii A Shabalin
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St, Irkutsk, 664033, Russian Federation.
| | | | | | | |
Collapse
|
32
|
Capaldo L, Ravelli D. Decatungstate as Direct Hydrogen Atom Transfer Photocatalyst for SOMOphilic Alkynylation. Org Lett 2021; 23:2243-2247. [PMID: 33656899 PMCID: PMC8041368 DOI: 10.1021/acs.orglett.1c00381] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
A versatile approach
for the alkynylation of a variety of aliphatic
hydrogen donors, including alkanes, is reported. We used tetrabutylammonium
decatungstate as photocatalyst to generate organoradicals from C–H/Si–H
bonds via hydrogen atom transfer. The latter intermediates underwent
SOMOphilic alkynylation by methanesulfonyl alkynes to afford internal
alkynes upon loss of a sulfonyl radical. The effect of different radicofugal
groups on the reaction outcome was evaluated and rationalized via
a combined experimental and computational approach.
Collapse
Affiliation(s)
- Luca Capaldo
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.,PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Davide Ravelli
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
33
|
Wang Y, Lu R, Yao J, Li H. 1,5,7-Triazabicyclo[4.4.0]dec-5-ene Enhances Activity of Peroxide Intermediates in Phosphine-Free α-Hydroxylation of Ketones. Angew Chem Int Ed Engl 2021; 60:6631-6638. [PMID: 33289252 DOI: 10.1002/anie.202014478] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/28/2020] [Indexed: 12/29/2022]
Abstract
The critical role of double hydrogen bonds was addressed for the aerobic α-hydroxylation of ketones catalyzed by 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), in the absence of either a metal catalyst or phosphine reductant. Experimental and theoretical investigations were performed to study the mechanism. In addition to initiating the reaction by proton abstraction, a more important role of TBD was revealed, that is, to enhance the oxidizing ability of peroxide intermediates, allowing DMSO to be used rather than commonly used phosphine reductants. Further characterizations with nuclear Overhauser effect spectroscopy (NOESY) confirmed the presence of double hydrogen bonds between TBD and the ketone, and kinetic studies suggested the attack of dioxygen on the TBD-enol adduct to be the rate-determining step. This work should encourage the application of TBD as a catalyst for oxidations.
Collapse
Affiliation(s)
- Yongtao Wang
- Department of Chemistry and ZJU-NHU United R&D Center, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Rui Lu
- Department of Chemistry and ZJU-NHU United R&D Center, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Jia Yao
- Department of Chemistry and ZJU-NHU United R&D Center, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Haoran Li
- Department of Chemistry and ZJU-NHU United R&D Center, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China.,State Key Laboratory of Chemical Engineering and College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| |
Collapse
|
34
|
Wang Y, Lu R, Yao J, Li H. 1,5,7‐Triazabicyclo[4.4.0]dec‐5‐ene Enhances Activity of Peroxide Intermediates in Phosphine‐Free α‐Hydroxylation of Ketones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yongtao Wang
- Department of Chemistry and ZJU-NHU United R&D Center Zhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
| | - Rui Lu
- Department of Chemistry and ZJU-NHU United R&D Center Zhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
| | - Jia Yao
- Department of Chemistry and ZJU-NHU United R&D Center Zhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
| | - Haoran Li
- Department of Chemistry and ZJU-NHU United R&D Center Zhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
- State Key Laboratory of Chemical Engineering and College of Chemical and Biological Engineering Zhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
| |
Collapse
|
35
|
Schulthoff S, Hamilton JY, Heinrich M, Kwon Y, Wirtz C, Fürstner A. The Formosalides: Structure Determination by Total Synthesis. Angew Chem Int Ed Engl 2021; 60:446-454. [PMID: 32946141 PMCID: PMC7821135 DOI: 10.1002/anie.202011472] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 01/08/2023]
Abstract
Total synthesis allowed the constitution of the cytotoxic marine macrolides of the formosalide family to be confirmed and their previously unknown stereostructure to be assigned with confidence. The underlying blueprint was inherently modular to ensure that each conceivable isomer could be reached. This flexibility derived from the use of strictly catalyst controlled transformations to set the stereocenters, except for the anomeric position, which is under thermodynamic control; as an extra safety measure, all stereogenic centers were set prior to ring closure to preclude any interference of the conformation adopted by the macrolactone rings of the different diastereomers. Late-stage macrocyclization by ring-closing alkyne metathesis was followed by a platinum-catalyzed transannular 6-exo-dig hydroalkoxylation/ketalization to craft the polycyclic frame. The side chain featuring a very labile unsaturation pattern was finally attached to the core by Stille coupling.
Collapse
Affiliation(s)
| | | | - Marc Heinrich
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| | - Yonghoon Kwon
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| | - Conny Wirtz
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| |
Collapse
|
36
|
Schulthoff S, Hamilton JY, Heinrich M, Kwon Y, Wirtz C, Fürstner A. The Formosalides: Structure Determination by Total Synthesis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | | | - Marc Heinrich
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| | - Yonghoon Kwon
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| | - Conny Wirtz
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| |
Collapse
|
37
|
Tocco G, Eloh K, Laus A, Sasanelli N, Caboni P. Electron-Deficient Alkynes as Powerful Tools against Root-Knot Nematode Melodogyne incognita: Nematicidal Activity and Investigation on the Mode of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11088-11095. [PMID: 32924513 PMCID: PMC8011909 DOI: 10.1021/acs.jafc.0c00835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/20/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
The present study reports on the powerful nematicidal activity of a series of electron-deficient alkynes against the root-knot nematode Meloidogyne incognita (Kofoid and White) Chitwood. Interestingly, we found that the conjugation of electron-withdrawing carbonyl groups to an alkyne triple bond was extremely proficient in inducing nematode paralysis and death. In particular, dimethylacetylenedicarboxylate (10), 3-butyn-2-one (1), and methyl propiolate (4), with EC50/48 h of 1.54 ± 0.16, 2.38 ± 0.31, and 2.83 ± 0.28 mg/L, respectively, were shown to be the best tested compounds. Earlier studies reported on the ability of alkynoic esters and alkynones to induce a chemoselective cysteine modification of unprotected peptides. Thus, also following our previous findings on the impairment of vacuolar-type proton translocating ATPase functionality by activated carbonyl derivatives, we speculate that the formation of a vinyl sulfide linkage might be responsible for the nematicidal activity of the presented electron-deficient alkynes.
Collapse
Affiliation(s)
- Graziella Tocco
- Department
of Life and Environmental Sciences, University
of Cagliari, Cittadella Universitaria
di Monserrato, Via Ospedale 72, 09042 Monserrato, Cagliari, Italy
| | - Kodjo Eloh
- University
of Kara, Post Office Box 404, Kara, Togo
| | - Antonio Laus
- Department
of Life and Environmental Sciences, University
of Cagliari, Cittadella Universitaria
di Monserrato, Via Ospedale 72, 09042 Monserrato, Cagliari, Italy
| | - Nicola Sasanelli
- Istituto
per la Protezione delle Piante, Consiglio
Nazionale delle Ricerche, Via G. Amendola 122/D, 70126 Bari, Italia
| | - Pierluigi Caboni
- Department
of Life and Environmental Sciences, University
of Cagliari, Cittadella Universitaria
di Monserrato, Via Ospedale 72, 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
38
|
Gonzalez-Rodriguez E, Abdo MA, Dos Passos Gomes G, Ayad S, White FD, Tsvetkov NP, Hanson K, Alabugin IV. Twofold π-Extension of Polyarenes via Double and Triple Radical Alkyne peri-Annulations: Radical Cascades Converging on the Same Aromatic Core. J Am Chem Soc 2020; 142:8352-8366. [PMID: 32249571 DOI: 10.1021/jacs.0c01856] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A versatile synthetic route to distannyl-substituted polyarenes was developed via double radical peri-annulations. The cyclization precursors were equipped with propargylic OMe traceless directing groups (TDGs) for regioselective Sn-radical attack at the triple bonds. The two peri-annulations converge at a variety of polycyclic cores to yield expanded difunctionalized polycyclic aromatic hydrocarbons (PAHs). This approach can be extended to triple peri-annulations, where annulations are coupled with a radical cascade that connects two preexisting aromatic cores via a formal C-H activation step. The installed Bu3Sn groups serve as chemical handles for further functionalization via direct cross-coupling, iodination, or protodestannylation and increase solubility of the products in organic solvents. Photophysical studies reveal that the Bu3Sn-substituted PAHs are moderately fluorescent, and their protodestannylation results in an up to 10-fold fluorescence quantum yield enhancement. DFT calculations identified the most likely possible mechanism of this complex chemical transformation involving two independent peri-cyclizations at the central core.
Collapse
Affiliation(s)
- Edgar Gonzalez-Rodriguez
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Miguel A Abdo
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Gabriel Dos Passos Gomes
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Suliman Ayad
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Frankie D White
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Nikolay P Tsvetkov
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Kenneth Hanson
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
39
|
Shabalin DA, Dubovtsev AY, Schmidt EY, Trofimov BA. Calcium Carbide as Acetylene Source in Cascade Assemblies of Hydroxypyrrolines and 3H‐Pyrroles from Ketoximes. ChemistrySelect 2020. [DOI: 10.1002/slct.202000392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Dmitrii A. Shabalin
- A. E. Favorsky Irkutsk Institute of ChemistrySiberian Branch of the Russian Academy of Sciences 1 Favorsky St 664033 Irkutsk Russian Federation
| | - Alexey Yu. Dubovtsev
- Institute of ChemistrySaint Petersburg State University Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
| | - Elena Yu. Schmidt
- A. E. Favorsky Irkutsk Institute of ChemistrySiberian Branch of the Russian Academy of Sciences 1 Favorsky St 664033 Irkutsk Russian Federation
| | - Boris A. Trofimov
- A. E. Favorsky Irkutsk Institute of ChemistrySiberian Branch of the Russian Academy of Sciences 1 Favorsky St 664033 Irkutsk Russian Federation
| |
Collapse
|
40
|
Gordeev EG, Pentsak EO, Ananikov VP. Carbocatalytic Acetylene Cyclotrimerization: A Key Role of Unpaired Electron Delocalization. J Am Chem Soc 2020; 142:3784-3796. [PMID: 32058705 DOI: 10.1021/jacs.9b10887] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Development of sustainable catalysts for synthetic transformations is one of the most challenging and demanding goals. The high prices of precious metals and the unavoidable leaching of toxic metal species leading to environmental contamination make the transition metal-free catalytic systems especially important. Here we demonstrate that carbene active centers localized on carbon atoms at the zigzag edge of graphene represent an alternative platform for efficient catalytic carbon-carbon bond formation in the synthesis of benzene. The studied acetylene trimerization reaction is an efficient atom-economic route to build an aromatic ring-a step ubiquitously important in organic synthesis and industrial applications. Computational modeling of the reaction mechanism reveals a principal role of the reversible spin density oscillations that govern the overall catalytic cycle, facilitate the product formation, and regenerate the catalytically active centers. Dynamic π-electron interactions in 2D carbon systems open new opportunities in the field of carbocatalysis, unachievable by means of transition metal-catalyzed transformations. The theoretical findings are confirmed experimentally by generating key moieties of the carbon catalyst and performing the acetylene conversion to benzene.
Collapse
Affiliation(s)
- Evgeniy G Gordeev
- Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky prospekt 47 , Moscow 119991 , Russia
| | - Evgeniy O Pentsak
- Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky prospekt 47 , Moscow 119991 , Russia
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky prospekt 47 , Moscow 119991 , Russia
| |
Collapse
|
41
|
Ramsingh Girase T, Bhilare S, Sankar Murthy Bandaru S, Chrysochos N, Schulzke C, Sanghvi YS, Kapdi AR. Carbazole‐Based N‐Heterocyclic Carbenes for the Promotion of Copper‐Catalyzed Palladium‐Free Homo‐/Hetero‐Coupling of Alkynes and Sonogashira Reactions. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Shatrughn Bhilare
- Department of ChemistryInstitute of Chemical Technology Nathalal Parekh road, Matunga Mumbai 400019 India
| | | | - Nicolas Chrysochos
- Institut für BiochemieUniversität Greifswald Felix-Hausdorff-Straße 4 D-17487 Greifswald Germany
| | - Carola Schulzke
- Institut für BiochemieUniversität Greifswald Felix-Hausdorff-Straße 4 D-17487 Greifswald Germany
| | - Yogesh S. Sanghvi
- Rasayan Inc. 2802, Crystal Ridge Road Encinitas, California 92024-6615 USA
| | - Anant R. Kapdi
- Department of ChemistryInstitute of Chemical Technology Nathalal Parekh road, Matunga Mumbai 400019 India
- Institute of Chemical Technology-Indian Oil Odisha CampusIIT Kharagpur extension Centre Mouza Samantpuri Bhubaneswar 751013, Odisha India
| |
Collapse
|
42
|
Aziz J, Hamze A. An update on the use of sulfinate derivatives as versatile coupling partners in organic chemistry. Org Biomol Chem 2020; 18:9136-9159. [PMID: 33006352 DOI: 10.1039/d0ob01718c] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The use of sulfinic acids and their salts continues to be extensively developed in organic chemistry. This is attributable to their dual capacity for acting as nucleophilic or electrophilic reagents, as well as their ease of preparation and stability on storage. This report highlights the research accomplished since 2015 on this topic, updating a previous review published by our team in 2014.
Collapse
Affiliation(s)
- Jessy Aziz
- Almac Group, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, UK.
| | - Abdallah Hamze
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.
| |
Collapse
|
43
|
Danilkina NA, Vasileva AA, Balova IA. A.E.Favorskii’s scientific legacy in modern organic chemistry: prototropic acetylene – allene isomerization and the acetylene zipper reaction. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alexei Evgrafovich Favorskii was an outstanding organic chemist who left a great scientific legacy as a result of long time and fruitful work. Most of the theoretically and practically important discoveries of A.E.Favorskii were made in the chemistry of acetylene and its derivatives. Nowadays, the reactions discovered by him, which include acetylene – allene isomerization, the Favorskii and retro-Favorskii reactions, the Favorskii rearrangement and the vinylation reaction, are widely used in industry and in laboratory synthesis. This review summarizes the main scientific achievements of A.E.Favorskii, as well as their development in modern organic chemistry. Much consideration is given to acetylene – allene isomerization as a convenient method for the synthesis of methyl-substituted acetylenes and to the acetylene zipper reaction as a synthetic tool for obtaining terminal acetylenes. The review presents examples of the application of these reactions in modern organic synthesis of complex molecules, including natural compounds and their analogues.
The bibliography includes 266 references.
Collapse
|
44
|
Tikhov RM, Kuznetsov NY. Construction of piperidine-2,4-dione-type azaheterocycles and their application in modern drug development and natural product synthesis. Org Biomol Chem 2020; 18:2793-2812. [DOI: 10.1039/d0ob00287a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The review surveys the existing routes to piperidine-2,4-dione-type heterocycles including derivatives with the most vital types of biological activity. This heterocyclic platform is ideal for the construction of modern drugs and natural products.
Collapse
Affiliation(s)
- Rabdan M. Tikhov
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Nikolai Yu. Kuznetsov
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russian Federation
| |
Collapse
|
45
|
Lyapustin DN, Ulomsky EN, Zanakhov TO, Rusinov VL. Three-Component Coupling of Aromatic Aldehydes, 1-Morpholino-2-nitroalkenes, and 3-Aminoazoles via Boron Trifluoride Etherate Catalysis: Reaction Pathway and Features of the Formation of Intermediates. J Org Chem 2019; 84:15267-15275. [DOI: 10.1021/acs.joc.9b02286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Daniil N. Lyapustin
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Mira St. 19, 620002 Ekaterinburg, Russia
| | - Evgeny N. Ulomsky
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Mira St. 19, 620002 Ekaterinburg, Russia
| | - Timur O. Zanakhov
- Institute of Chemistry, Saint-Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Vladimir L. Rusinov
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Mira St. 19, 620002 Ekaterinburg, Russia
| |
Collapse
|