1
|
Luo S, Yang X, Zhang Y, Kuang T, Tang C. Spatial metabolomics method to reveal differential metabolomes in microregions of Panax quinquefolius roots by using ultra-performance liquid chromatography quadrupole/time of flight-mass spectrometry and desorption electrospray ionization mass spectrometry imaging. Food Chem 2024; 435:137504. [PMID: 37813026 DOI: 10.1016/j.foodchem.2023.137504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/11/2023]
Abstract
Panax quinquefolius is a natural homology medicine and food that is rich in bioactive ingredients, such as ginsenosides and polysaccharides. The combination of ultra-performance liquid chromatography quadrupole/time of flight-mass spectrometry (UPLC-Q-TOF/MS) and desorption electrospray ionization mass spectrometry imaging (DESI-MSI) was used for the first time in a spatial metabolomics analysis to comprehensively evaluate the differential components in different microregions of P. quinquefolius. UPLC-Q-TOF/MS and DESI-MSI combined with principal component analysis and orthogonal partial least squares-discriminant analysis were used to screen differential metabolites. UPLC-Q-TOF/MS and DESI-MSI screened 27 and 23 differential metabolites, respectively, among which 15 differential metabolites were identified by both methods. It was found that some components, such as ginsenoside Rg1 and malonyl-ginsenoside Rc, were mainly distributed in P of the transverse slice of P. quinquefolius roots, while ginsenoside Ro and malonyl-ginsenoside Rd were mainly distributed in C. The methods and results of this study could be used to understand the precise localization, biosynthesis, and biological functions of special metabolites in P. quinquefolius.
Collapse
Affiliation(s)
- Shiying Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China
| | - Xuexin Yang
- Waters Technology (Beijing) Co. Ltd., Jinghai Industrial Park, 156 Jinghai 4th Road, Beijing Economic-Technological Development Area, Beijing 100076, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China.
| | - Tingting Kuang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China.
| | - Ce Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China.
| |
Collapse
|
2
|
Sun Y, Fu X, Qu Y, Chen L, Liu X, He Z, Xu J, Yang J, Ma W, Li J, Guo Q, Zhang Y. Characterization of Ginsenosides from the Root of Panax ginseng by Integrating Untargeted Metabolites Using UPLC-Triple TOF-MS. Molecules 2023; 28:molecules28052068. [PMID: 36903315 PMCID: PMC10004652 DOI: 10.3390/molecules28052068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
To compare the chemical distinctions of Panax ginseng Meyer in different growth environments and explore the effects of growth-environment factors on P. ginseng growth, an ultra-performance liquid chromatography-tandem triple quadrupole time-of-flight mass spectrometry (UPLC-Triple-TOF-MS/MS) was used to characterize the ginsenosides obtained by ultrasonic extraction from P. ginseng grown in different growing environments. Sixty-three ginsenosides were used as reference standards for accurate qualitative analysis. Cluster analysis was used to analyze the differences in main components and clarified the influence of growth environment factors on P. ginseng compounds. A total of 312 ginsenosides were identified in four types of P. ginseng, among which 75 were potential new ginsenosides. The number of ginsenosides in L15 was the highest, and the number of ginsenosides in the other three groups was similar, but it was a great difference in specie of ginsenosides. The study confirmed that different growing environments had a great influence on the constituents of P. ginseng, and provided a new breakthrough for the further study of the potential compounds in P. ginseng.
Collapse
Affiliation(s)
- Yizheng Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaojie Fu
- Key Laboratory of Chemical Biology of Ministry of Education, Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Ying Qu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lihua Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoyan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Zichao He
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiao Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jun Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qingmei Guo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (Q.G.); (Y.Z.); Tel.: +86-0531-82805106 (Q.G.); +86-10-82805106 (Y.Z.)
| | - Youbo Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Correspondence: (Q.G.); (Y.Z.); Tel.: +86-0531-82805106 (Q.G.); +86-10-82805106 (Y.Z.)
| |
Collapse
|
3
|
Nontargeted metabolomic analysis of four different parts of Actinidia arguta by UPLC-Q-TOF-MS E. Food Res Int 2023; 163:112228. [PMID: 36596158 DOI: 10.1016/j.foodres.2022.112228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022]
Abstract
Actinidia arguta, an edible berry plant with high nutritional values, has been widely used in Asian countries as a food and traditional medicinal herb. The well-recognized health-promoting properties of A. arguta were associated with its bioactive components in its different botanical parts. To rapidly screen and identify chemical components and simultaneously determine the potential metabolites from different parts of A. arguta, UPLC-Q-TOF-MSE coupled with UNIFI platform and multivariate statistical analysis approach was established in this study. As a result, a total of 107 components were identified from the four different parts of A. arguta, in which 31 characteristic chemical markers were discovered among them, including 12, 8, 6, and 5 compounds from the fruits, leaves, roots, and stems, respectively. These results suggested that the combination of UPLC-Q-TOF-MSE and metabolomic analysis is a powerful method to rapidly screen characteristic markers for the quality control of A. arguta.
Collapse
|
4
|
Liu Z, Moore R, Gao Y, Chen P, Yu L, Zhang M, Sun J. Comparison of Phytochemical Profiles of Wild and Cultivated American Ginseng Using Metabolomics by Ultra-High Performance Liquid Chromatography-High-Resolution Mass Spectrometry. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010009. [PMID: 36615206 PMCID: PMC9821851 DOI: 10.3390/molecules28010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
American ginseng (Panax quinquefolius L.) has been recognized as a valuable herb medicine, and ginsenosides are the most important components responsible for the health-beneficial effects. This study investigated the secondary metabolites responsible for the differentiation of wild and cultivated American ginsengs with ultrahigh-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS)-based metabolomic approach. An in-house ginsenoside library was developed to facilitate data processing and metabolite identification. Data visualization methods, such as heatmaps and volcano plots, were utilized to extract discriminated ion features. The results suggested that the ginsenoside profiles of wild and cultivated ginsengs were significantly different. The octillol (OT)-type ginsenosides were present in greater abundance and diversity in wild American ginsengs; however, a wider distribution of the protopanaxadiol (PPD)-and oleanolic acid (OA)-type ginsenosides were found in cultivated American ginseng. Based on the tentative identification and semi-quantification, the amounts of five ginsenosides (i.e., notoginsenoside H, glucoginsenoside Rf, notoginsenoside R1, pseudoginsenoside RT2, and ginsenoside Rc) were 2.3-54.5 fold greater in wild ginseng in comparison to those in their cultivated counterparts, and the content of six ginsenosides (chicusetsusaponin IVa, malonylginsenoside Rd, pseudoginsenoside Rc1, malonylfloralginsenoside Rd6, Ginsenoside Rd, and malonylginsenoside Rb1) was 2.6-14.4 fold greater in cultivated ginseng compared to wild ginseng. The results suggested that the in-house metabolite library can significantly reduce the complexity of the data processing for ginseng samples, and UHPLC-HRMS is effective and robust for identifying characteristic components (marker compounds) for distinguishing wild and cultivated American ginseng.
Collapse
Affiliation(s)
- Zhihao Liu
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Roderick Moore
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Ying Gao
- School of Agriculture, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Pei Chen
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Mengliang Zhang
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA
- Correspondence: (M.Z.); (J.S.)
| | - Jianghao Sun
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
- Correspondence: (M.Z.); (J.S.)
| |
Collapse
|
5
|
DI P, YAN Y, WANG P, YAN M, WANG YP, HUANG LQ. Integrative SMRT sequencing and ginsenoside profiling analysis provide insights into the biosynthesis of ginsenoside in Panax quinquefolium. Chin J Nat Med 2022; 20:614-626. [DOI: 10.1016/s1875-5364(22)60198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/28/2022]
|
6
|
Wen SS, Zhou HS, Zhu CS, Li P, Gao W. Direct infusion electrospray ionization-ion mobility-mass spectrometry for rapid metabolite marker discovery of medicinal Phellodendron Bark. J Pharm Biomed Anal 2022; 219:114939. [PMID: 35908412 DOI: 10.1016/j.jpba.2022.114939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
Abstract
Ion-mobility mass spectrometry (IM-MS) currently serves as a powerful tool for the structural identification of numerous biological compounds and small molecules. In this work, rapid metabolomic analysis of closely-related herbal medicines by direct injection ion mobility-quadrupole time-of-flight mass spectrometry (DI-IM-QTOF MS) was established. Phellodendron chinense Bark (PC) and Phellodendron amurense Bark (PA) were studied as a case. Thirty-three batches of PC and twenty-two batches of PA have been directly injected in electrospray ionization-IM-QTOF MS in positive mode. Without chromatographic separation, each run was completed within 3 min. After data alignment and statistical analysis, a total of seven chemical markers were found (p-value < 0.05, VIP > 1.00). Among them, the ion m/z 342.17 and m/z 356.18 present a single peak in the drift spectrum, respectively, but their drift time has a certain deviation compared with the pure substance of known compounds. In addition, the MS/MS spectra also confirmed that the single peak includes two chemical isomers. To investigate the composition ratio of individual isomers, the calibration curves of relative drift time (rDT) based on the standard superposition method were established, which were found to fit the least square regression. The ion [M]+m/z 342.17 was recognized consisting of magnoflorine (MAG) and phellodendrine (PHE), and their composition ratio in PA and PC samples was calculated. The results were compared with those obtained by the HPLC quantitative method, which produced equivalent quantification results. Our DI-IM-QTOF MS methodology provides an additional methodology for the relative quantification of unresolved isomers in drift tube IM-MS and offers DI-IM-QTOF MS based metabolomics.
Collapse
Affiliation(s)
- Shan-Shan Wen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Hong-Shan Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Chuan-Sheng Zhu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| |
Collapse
|
7
|
Lin H, Wang C, Yu H, Liu Y, Tan L, He S, Li Z, Wang C, Wang F, Li P, Liu J. Protective effect of total Saponins from American ginseng against cigarette smoke-induced COPD in mice based on integrated metabolomics and network pharmacology. Biomed Pharmacother 2022; 149:112823. [PMID: 35334426 DOI: 10.1016/j.biopha.2022.112823] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 11/02/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent respiratory disease. Aiming at assessing the effect of total saponins from American ginseng on COPD, both the chemical composition and anti-COPD activity of total saponins from wild-simulated American ginseng (TSW) and field-grown American ginseng (TSF) were investigated in this study. Firstly, a HPLC-ELSD chromatographic method was established to simultaneously determine the contents of 22 saponins in TSW and TSF. Secondly, CS-induced COPD mouse model was established to evaluate the activity of TSW and TSF. The results indicated that both TSW and TSF had the protective effect against COPD by alleviating oxidative stress and inflammatory response. TSW showed a stronger effect than TSF. Thirdly, an integrated approach involving metabolomics and network pharmacology was used to construct the "biomarker-reaction-enzyme-target" correlation network aiming at further exploring the observed effects. As the results, 15 biomarkers, 9 targets and 5 pathways were identified to play vital roles in the treatment of TSW and TSF on COPD. Fourthly, based on network pharmacology and the CS-stimulated A549 cell model, ginsenoside Rgl, Rc, oleanolic acid, notoginsenoside R1, Fe, silphioside B were certified to be the material basis for the stronger effect of TSW than TSF. Finally, the molecular docking were performed to visualize the binding modes. Our findings suggested that both TSW and TSF could effectively ameliorate the progression of COPD and might be used for the treatment of COPD.
Collapse
Affiliation(s)
- Hongqiang Lin
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Caixia Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Hui Yu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yunhe Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Luying Tan
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Shanmei He
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zhuoqiao Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; Research Center of Natural Drug, Jilin University, Changchun 130021, China
| | - Fang Wang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; Research Center of Natural Drug, Jilin University, Changchun 130021, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; Research Center of Natural Drug, Jilin University, Changchun 130021, China.
| |
Collapse
|
8
|
Si Y, Jiao Y, Li L, Lin H, Wang C, Zhou B, Liu Y, Li Z, Li P. Comprehensive investigation on metabolites of Panax quinquefolium L. in two main producing areas of China based on ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4791. [PMID: 34905806 DOI: 10.1002/jms.4791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/04/2021] [Accepted: 09/23/2021] [Indexed: 06/14/2023]
Abstract
Jilin Province and Shandong Province are two main American ginseng (AG) producing areas in China. The geographical difference existed in these two provinces. Aiming at evaluating the similarities and differences of the secondary metabolites, the comprehensive metabolite profiling of AG from Jilin Province (AGJ) and Shandong Province (AGS) was performed based on UPLC-QTOF-MS for the first time. In screening analysis, a total of 111 shared compounds, with ginsenosides being major components, were identified or tentatively characterized, which indicated that AGJ and AGS were all rich in phytochemicals and contained similar structural types. Untargeted metabolomics analysis indicated that there were significant differences in the contents of certain constituents in AGJ and AGS. Nineteen (12 for AGJ, 7 for AGS) potential producing area-dependent chemical markers were discovered. Based on the contents and MS responses, ginsenoside Rg1, Re, and pseudoginsenoside F11 could be considered as the characteristical markers of AGJ, whereas ginsenoside Rg3 and Rh2 of AGS. This comprehensive phytochemical profile study could provide valuable chemical evidence for evaluating the characteristics qualities of AG from various producing areas.
Collapse
Affiliation(s)
- Yu Si
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Yufeng Jiao
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Le Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Hongqiang Lin
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
- Research Center of Natural Drug, Jilin University, Changchun, Jilin, China
| | - Baisong Zhou
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Yunhe Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Zhuo Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
- Research Center of Natural Drug, Jilin University, Changchun, Jilin, China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
- Research Center of Natural Drug, Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
Jiao Y, Si Y, Li L, Wang C, Lin H, Liu J, Liu Y, Liu J, Li P, Li Z. Comprehensive phytochemical profiling of American ginseng in Jilin province of China based on ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4787. [PMID: 34725896 DOI: 10.1002/jms.4787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/04/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
American ginseng (AG), the underground part of Panax quinquefolium L., is composed of four morphological regions, including main root (MR), lateral root (LR), fibrous root (FR), and rhizome (RH). In the clinical, MR is the main medicinal region, other regions are rarely attention. Aiming at revealing the chemical composition of AG and making better use of AG, screening analysis and metabolomic analysis were both performed to profile MR, LR, FR, and RH. First, in the systematical screening analysis, a total of 134 compounds (including 122 shared components) with various structural patterns were identified and tentatively characterized. The results indicated that the phytochemicals with various structural types were rich in MR, LR, FR, and RH. Second, 6, 4, 8, and 11 chemical markers were identified from MR, LR, FR, and RH, respectively. Seven triterpene saponins (protopanaxatriol, quinquenoside R1 , ginsenoside Rc, Rk1 , Rg1 , Re, and vinaginsenoside R1 ) might be used for rapid differentiation of four morphological regions. This comprehensive profile study of metabolites illustrated the similarities and differences of phytochemicals in four morphological regions of AG. The results could be used for the quality control of AG and furnish a basis for the further development and utilization of AG sources.
Collapse
Affiliation(s)
- Yufeng Jiao
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yu Si
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Le Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Hongqiang Lin
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Junli Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yunhe Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Research Center of Natural Drug, Jilin University, Changchun, China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Research Center of Natural Drug, Jilin University, Changchun, China
| | - Zhuo Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| |
Collapse
|
10
|
Xiong F, Nie X, Yang L, Wang L, Li J, Zhou G. Non-target metabolomics revealed the differences between Rh. tanguticum plants growing under canopy and open habitats. BMC PLANT BIOLOGY 2021; 21:119. [PMID: 33639841 PMCID: PMC7913229 DOI: 10.1186/s12870-021-02897-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/21/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Rheum tanguticum (Rh. tanguticum) is an important traditional Chinese medicine plant, "Dahuang", which contains productive metabolites and occupies wide habitats on the Qinghai-Tibet plateau. Plants occupying wide habitats usually vary in phenotypes such as in morphology and metabolism, thereby developing into different ecotypes. Under canopy and open habitats are a pair of dissimilar habitats which possess Rh. tanguticum plants. However, few studies have focused on the effect of habitats on Rh. tanguticum growth, particularly combining morphological and metabolic changes. This study focused on Rh. tanguticum plants growing in under canopy and open habitats where morphology and metabolism changes were quantified using non-target metabolism methods. RESULTS The obtained results indicated that the two dissimilar habitats led to Rh. tanguticum developing into two distinct ecotypes where the morphology and metabolism were simultaneously changed. Under canopy habitats bred morphologically smaller Rh. tanguticum plants which had a higher level of metabolites (22 out of 31) which included five flavonoids, four isoflavonoids, and three anthracenes. On the other hand, the open habitats produced morphologically larger Rh. tanguticum plants having a higher level of metabolites (9 out of 31) including four flavonoids. 6 of the 31 metabolites were predicted to have effect targets, include 4 represent for under canopy habitats and 2 for open habitats. Totally, 208 targets were connected, among which 42 were communal targets for both under canopy and open habitats represent compounds, and 100 and 66 were unique targets for under canopy superior compounds and open habitats superior compounds, respectively. In addition, aloe-emodin, emodin, chrysophanol, physcion, sennoside A and sennoside B were all more accumulated in under canopy habitats, and among which aloe-emodin, emodin, chrysophanol and physcion were significantly higher in under canopy habitats. CONCLUSIONS This study determined that Rh. tanguticum growing in under canopy and in open habitats developed into two distinct ecotypes with morphological and metabolic differences. Results of network pharmacology study has indicated that "Dahuang" coming from different habitats, such as under canopy and open habitats, are different in effect targets and thus may have different medicinal use. According to target metabolomics, under canopy habitats may grow better "Dahuang".
Collapse
Affiliation(s)
- Feng Xiong
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, 810008, China
- College of Resources and Environment, University of Chinese Academy of Science, Beijing, 100049, China
| | - Xiuqing Nie
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Nature Protected Area Chinese Academy of Forestry, Beijing, 100091, China
| | - Lucun Yang
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, 810008, China
| | - Lingling Wang
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, 810008, China
- College of Resources and Environment, University of Chinese Academy of Science, Beijing, 100049, China
| | - Jingjing Li
- College of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Guoying Zhou
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, 810008, China.
| |
Collapse
|
11
|
Chu LL, Montecillo JAV, Bae H. Recent Advances in the Metabolic Engineering of Yeasts for Ginsenoside Biosynthesis. Front Bioeng Biotechnol 2020; 8:139. [PMID: 32158753 PMCID: PMC7052115 DOI: 10.3389/fbioe.2020.00139] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/11/2020] [Indexed: 01/03/2023] Open
Abstract
Ginsenosides are a group of glycosylated triterpenes isolated from Panax species. Ginsenosides are promising candidates for the prevention and treatment of cancer as well as food additives. However, owing to a lack of efficient approaches for ginsenoside production from plants and chemical synthesis, ginsenosides may not yet have reached their full potential as medicinal resources. In recent years, an alternative approach for ginsenoside production has been developed using the model yeast Saccharomyces cerevisiae and non-conventional yeasts such as Yarrowia lipolytica and Pichia pastoris. In this review, various metabolic engineering strategies, including heterologous gene expression, balancing, and increasing metabolic flux, and enzyme engineering, have been described as recent advanced engineering techniques for improving ginsenoside production. Furthermore, the usefulness of a systems approach and fermentation strategy has been presented. Finally, the present challenges and future research direction for industrial cell factories have been discussed.
Collapse
Affiliation(s)
- Luan Luong Chu
- Department of Biotechnology, Yeungnam University, Gyeongsan-si, South Korea
| | | | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan-si, South Korea
| |
Collapse
|
12
|
Yang N, Wang H, Lin H, Liu J, Zhou B, Chen X, Wang C, Liu J, Li P. Comprehensive metabolomics analysis based on UPLC-Q/TOF-MS E and the anti-COPD effect of different parts of Celastrus orbiculatus Thunb. RSC Adv 2020; 10:8396-8420. [PMID: 35497836 PMCID: PMC9049960 DOI: 10.1039/c9ra09965d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/18/2020] [Indexed: 11/26/2022] Open
Abstract
The root, stem and leaf of Celastrus orbiculatus Thunb. (COT) have all been used as Chinese folk medicine. Aiming at revealing the secondary metabolites and screening the anti-COPD effect of COT, the comprehensive phytochemical and bioassay studies were performed. Based on the ultra-high performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MSE), the screening analysis of components in COT was conducted with the UNIFI platform, the metabolomics of the three parts were analyzed with multivariate statistical analysis. Cigarette smoke extract (CSE)-stimulated inflammatory model in A549 cells was used to investigate the biological effect of the three parts. A total of 120 compounds were identified or tentatively characterized from COT. Metabolomics analysis showed that the three parts of COT were differentiated, and there were 13, 8 and 5 potential chemical markers discovered from root, stem and leaf, respectively. Five robust chemical markers with high responses could be used for further quality control in different parts of COT. The root, stem and leaf of COT could evidently reduce the levels of pro-inflammatory factors in a dose-dependent way within a certain concentration range. The stem part had a stronger anti-COPD effect than root and leaf parts. This study clarified the structural diversity of secondary metabolites and the various patterns in different parts of COT, and provided a theoretical basis for further utilization and development of COT.
Collapse
Affiliation(s)
- Na Yang
- School of Pharmaceutical Sciences, Jilin University Fujin Road 126 Changchun 130021 Jilin China +86-431-85619803
| | - Han Wang
- School of Pharmaceutical Sciences, Jilin University Fujin Road 126 Changchun 130021 Jilin China +86-431-85619803
| | - Hongqiang Lin
- School of Pharmaceutical Sciences, Jilin University Fujin Road 126 Changchun 130021 Jilin China +86-431-85619803
| | - Junli Liu
- School of Pharmaceutical Sciences, Jilin University Fujin Road 126 Changchun 130021 Jilin China +86-431-85619803
| | - Baisong Zhou
- School of Pharmaceutical Sciences, Jilin University Fujin Road 126 Changchun 130021 Jilin China +86-431-85619803
| | - Xiaoling Chen
- School of Pharmaceutical Sciences, Jilin University Fujin Road 126 Changchun 130021 Jilin China +86-431-85619803
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University Fujin Road 126 Changchun 130021 Jilin China +86-431-85619803
- Research Center of Natural Drug, Jilin University Changchun 130021 Jilin China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University Fujin Road 126 Changchun 130021 Jilin China +86-431-85619803
- Research Center of Natural Drug, Jilin University Changchun 130021 Jilin China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University Fujin Road 126 Changchun 130021 Jilin China +86-431-85619803
| |
Collapse
|
13
|
Yang Y, Ju Z, Yang Y, Zhang Y, Yang L, Wang Z. Phytochemical analysis of Panax species: a review. J Ginseng Res 2020; 45:1-21. [PMID: 33437152 PMCID: PMC7790905 DOI: 10.1016/j.jgr.2019.12.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022] Open
Abstract
Panax species have gained numerous attentions because of their various biological effects on cardiovascular, kidney, reproductive diseases known for a long time. Recently, advanced analytical methods including thin layer chromatography, high-performance thin layer chromatography, gas chromatography, high-performance liquid chromatography, ultra-high performance liquid chromatography with tandem ultraviolet, diode array detector, evaporative light scattering detector, and mass detector, two-dimensional high-performance liquid chromatography, high speed counter-current chromatography, high speed centrifugal partition chromatography, micellar electrokinetic chromatography, high-performance anion-exchange chromatography, ambient ionization mass spectrometry, molecularly imprinted polymer, enzyme immunoassay, 1H-NMR, and infrared spectroscopy have been used to identify and evaluate chemical constituents in Panax species. Moreover, Soxhlet extraction, heat reflux extraction, ultrasonic extraction, solid phase extraction, microwave-assisted extraction, pressurized liquid extraction, enzyme-assisted extraction, acceleration solvent extraction, matrix solid phase dispersion extraction, and pulsed electric field are discussed. In this review, a total of 219 articles published from 1980 to 2018 are investigated. Panax species including P. notoginseng, P. quinquefolius, sand P. ginseng in the raw and processed forms from different parts, geographical origins, and growing times are studied. Furthermore, the potential biomarkers are screened through the previous articles. It is expected that the review can provide a fundamental for further studies.
Collapse
Affiliation(s)
- Yuangui Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China
| | - Zhengcai Ju
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China
| | - Yingbo Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China
| | - Yanhai Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China.,Shanghai R&D Center for Standardization of Chinese Medicines, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China.,Shanghai R&D Center for Standardization of Chinese Medicines, China
| |
Collapse
|
14
|
Guo YL, Wang Y, Zhao YL, Xu XY, Zhang H, Zhao CB, Zheng MZ, Liu SY, Wu YZ, Liu JS. Chemical Comparison of White Ginseng before and after Extrusion by UHPLC-Q-Orbitrap-MS/MS and Multivariate Statistical Analysis. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2020; 2020:4764219. [PMID: 33083092 PMCID: PMC7563053 DOI: 10.1155/2020/4764219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/16/2020] [Indexed: 05/15/2023]
Abstract
Ultrahigh-performance liquid chromatography Quadrupole-Orbitrap tandem mass spectrometry (UHPLC-Q-Orbitrap-MS/MS) was used to compare the composition of ginsenosides in white ginseng (WG) and extruded white ginseng (EWG). A total of 45 saponins, including original neutral ginsenosides, malonyl-ginsenosides, and chemical transformation of ginsenosides, were successfully identified in both WG and EWG. Multivariate statistical analyses including supervised orthogonal partial least squared discrimination analysis (OPLS-DA) and hierarchical clustering analysis (HCA) were used to analyze components of white ginseng before and after extrusion. As a result, three ginsenosides (malonyl (M)-Rb1, M-Rb2, and M-Rc) were found to be increased in WG, while three ginsenosides (Rb2, Rc, and Rg1) were elevated in EWG. In the OPLS-DA S-plot, the different compositions of ginsenoside that were distinguished between WG and EWG were screened out. Experimental results indicate that the UHPLC-Q-Orbitrap-MS/MS is a useful tool to characterize variations of ginsenosides in WG and EWG.
Collapse
Affiliation(s)
- Yun-Long Guo
- College of Food Science and Engineering, National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, China
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yi-Lin Zhao
- College of Food Science and Engineering, National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, China
| | - Xiu-Ying Xu
- College of Food Science and Engineering, National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, China
| | - Hao Zhang
- College of Food Science and Engineering, National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, China
| | - Cheng-Bin Zhao
- College of Food Science and Engineering, National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, China
| | - Ming-Zhu Zheng
- College of Food Science and Engineering, National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, China
| | - Shu-Ying Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yu-Zhu Wu
- College of Food Science and Engineering, National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, China
| | - Jing-Sheng Liu
- College of Food Science and Engineering, National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|