1
|
Klichkhanov NK, Suleimanova MN. Chemical Composition and Therapeutic Effects of Several Astragalus Species (Fabaceae). DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2024; 518:172-186. [PMID: 39128957 DOI: 10.1134/s0012496624701096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/18/2024] [Accepted: 05/29/2024] [Indexed: 08/13/2024]
Abstract
The review integrates information on the component composition and biological activity of some Astragalus L. (Fabaceae) species from studies reported over the past 5-7 years. The aerial and underground parts of 34 Astragalus species contain triterpene saponins, flavonoids, polysacharides, tannins, free organic acids, higher fatty acids, vitamins, trace elements, and other constituents. Among the Astragalus species, A. membranaceus (Fisch.) Bunge is the best studied in terms of component composition and biological activity. Anti-inflammatory, immunomodulatory, antioxidant, anticancer, cardioprotective, and hepathoprotective activities have been experimentally detected in total bioactive substances, fractions, and individual compounds extracted from various parts of A. membranaceus and A. membranaceus var. mongholicus in vitro and in vivo. The composition and biological effects of other Astragalus species are still poorly understood. The review summarizes the recent advances in studying new compounds extracted from Astragalus species and their biological activities.
Collapse
|
2
|
Feng DH, Cui JL. Progress on metabolites of Astragalus medicinal plants and a new factor affecting their formation: Biotransformation of endophytic fungi. Arch Pharm (Weinheim) 2024; 357:e2400249. [PMID: 38838334 DOI: 10.1002/ardp.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
It is generally believed that the main influencing factors of plant metabolism are genetic and environmental factors. However, the transformation and catalysis of metabolic intermediates by endophytic fungi have become a new factor and resource attracting attention in recent years. There are over 2000 precious plant species in the Astragalus genus. In the past decade, at least 303 high-value metabolites have been isolated from the Astragalus medicinal plants, including 124 saponins, 150 flavonoids, two alkaloids, six sterols, and over 20 other types of compounds. These medicinal plants contain abundant endophytic fungi with unique functions, and nearly 600 endophytic fungi with known identity have been detected, but only about 35 strains belonging to 13 genera have been isolated. Among them, at least four strains affiliated to Penicillium roseopurpureum, Alternaria eureka, Neosartorya hiratsukae, and Camarosporium laburnicola have demonstrated the ability to biotransform four saponin compounds from the Astragalus genus, resulting in the production of 66 new compounds, which have significantly enhanced our understanding of the formation of metabolites in plants of the Astragalus genus. They provide a scientific basis for improving the cultivation quality of Astragalus plants through the modification of dominant fungal endophytes or reshaping the endophytic fungal community. Additionally, they open up new avenues for the discovery of specialized, green, efficient, and sustainable biotransformation pathways for complex pharmaceutical intermediates.
Collapse
Affiliation(s)
- Ding-Hui Feng
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi, People's Republic of China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, People's Republic of China
| | - Jin-Long Cui
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi, People's Republic of China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, People's Republic of China
| |
Collapse
|
3
|
Wang P, Wang Z, Zhang Z, Cao H, Kong L, Ma W, Ren W. A review of the botany, phytochemistry, traditional uses, pharmacology, toxicology, and quality control of the Astragalus memeranaceus. Front Pharmacol 2023; 14:1242318. [PMID: 37680711 PMCID: PMC10482111 DOI: 10.3389/fphar.2023.1242318] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Astragali Radix (Huangqi) is mainly distributed in the Northern Hemisphere, South America, and Africa and rarely in North America and Oceania. It has long been used as an ethnomedicine in the Russian Federation, Mongolia, Korea, Kazakhstan, and China. It was first recorded in the Shennong Ben Cao Jing and includes the effects of reinforcing healthy qi, dispelling pathogenic factors, promoting diuresis, reducing swelling, activating blood circulation, and dredging collaterals. This review systematically summarizes the botanical characteristics, phytochemistry, traditional uses, pharmacology, and toxicology of Astragalus to explore the potential of Huangqi and expand its applications. Data were obtained from databases such as PubMed, CNKI, Wan Fang Data, Baidu Scholar, and Google Scholar. The collected material also includes classic works of Chinese herbal medicine, Chinese Pharmacopoeia, Chinese Medicine Dictionary, and PhD and Master's theses. The pharmacological effects of the isoflavone fraction in Huangqi have been studied extensively; The pharmacological effects of Huangqi isoflavone are mainly reflected in its anti-inflammatory, anti-tumor, anti-oxidant, anti-allergic, and anti-diabetic properties and its ability to treat several related diseases. Additionally, the medicinal uses, chemical composition, pharmacological activity, toxicology, and quality control of Huangqi require further elucidation. Here, we provide a comprehensive review of the botany, phytochemistry, traditional uses, pharmacology, toxicology, and quality control of Astragalus to assist future innovative research and to identify and develop new drugs involving Huangqi.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weichao Ren
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
El-Zahar H, Menze ET, Handoussa H, Osman AK, El-Shazly M, Mostafa NM, Swilam N. UPLC-PDA-MS/MS Profiling and Healing Activity of Polyphenol-Rich Fraction of Alhagi maurorum against Oral Ulcer in Rats. PLANTS (BASEL, SWITZERLAND) 2022; 11:455. [PMID: 35161436 PMCID: PMC8838639 DOI: 10.3390/plants11030455] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 05/04/2023]
Abstract
Camelthorn, Alhagi maurorum Boiss, family Fabaceae has long been used in African folk medicine owing to its richness in pharmacologically active metabolites. The crude extract (CEAM), ethyl acetate fraction (EFAM) and n-butanol (BFAM) fraction of A. maurorum aerial parts were investigated for their total polyphenols and oral antiulcer activity using in-vitro and in-vivo models. The major phenolic compound was isolated from the polyphenol-rich EFAM fraction and identified by conventional and spectroscopic methods of analysis as isorhamnetin-3-O-rutinoside. Furthermore, standardization of EAFM using UPLC-PDA-UV quantified isorhamnetin-3-O-rutinoside as 262.91 0.57 g/mg of the fraction. Analysis of EFAM using UPLC-PDA-MS/MS revealed tentative identification of 25 polyphenolic compounds. EFAM exhibited the most potent free radical scavenging activity against DPPH, with an IC50 (27.73 ± 1.85 µg/mL) and an FRAP value of (176.60 ± 5.21 μM Trolox equivalent (TE)/mg fraction) in comparison with CEAM and BFAM. Acetic acid-induced oral ulcers in a rat model were used to evaluate the healing properties of A. maurorum aerial parts. EFAM significantly decreased tumor necrosis factor-alpha (TNF-α) and interleukin-2 (IL-2) by 36.4% and 50.8%, respectively, in the ulcer tissues while, CEAM and BFAM exhibited lower activity at the same dose. In addition, EFAM led to a significant (p < 0.0001) rise in the expression of proliferating cell nuclear antigen (PCNA), a cell proliferation marker. A. maurorum exhibited a potent healing effect in acetic acid-induced oral ulcers in rats by mitigating the release of pro-inflammatory cytokines and improving PCNA expression.
Collapse
Affiliation(s)
- Hala El-Zahar
- Department of Pharmaceutical Sciences, Faculty of Dentistry, British University in Egypt (BUE), Cairo 11837, Egypt
| | - Esther T Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Heba Handoussa
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Ahmed K Osman
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Mohamed El-Shazly
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Nada M Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Noha Swilam
- Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo 11837, Egypt
| |
Collapse
|
5
|
Hyphenated LC-ABTS•+ and LC-DAD-HRMS for simultaneous analysis and identification of antioxidant compounds in Astragalus emarginatus Labill. extracts. J Pharm Anal 2021; 12:253-262. [PMID: 35582407 PMCID: PMC9091927 DOI: 10.1016/j.jpha.2021.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/30/2021] [Accepted: 09/15/2021] [Indexed: 01/20/2023] Open
Abstract
The compounds in leaf and stem extracts of Astragalus emarginatus Labill. (AEL), a plant species used in traditional Lebanese medicine, were investigated for antioxidant properties. First, the activity of various extracts was assessed using the Trolox equivalent antioxidant capacity, oxygen radical absorption capacity, and 2,2-diphenyl-1-picryl-hydrazyl-hydrate assays. The extract obtained using 30% ethanol showed the greatest activity. The antioxidant compounds in this extract were screened using a hyphenated high-performance liquid chromatography-2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) radical (ABTS·+) system before being separated by ultra-high-performance liquid chromatography and identified using high-resolution mass spectrometry and ultra-violet-visible diode array detection. Approximately 40 compounds were identified. Hydroxycinnamates (caffeic, ferulic, and p-coumaric acid derivatives) and flavonoids (quercetin, luteolin, apigenin, and isorhamnetin derivatives) were the two main categories of the identified compounds. The active compounds were identified as caffeic acid derivatives and quercetin glycosides. In addition, the catechol moiety was shown to be key to antioxidant activity. This study showed that AEL is a source of natural antioxidants, which may explain its medicinal use. Antioxidant activity of 30% ethanol extract from Astragalus emarginatus Labill was shown by an on-line HPLC-ABTS •+ assay. Caffeic acid derivatives and quercetin glycosides were responsible for antioxidant activity. Approximately forty compounds were tentatively identified using UHPLC-DAD-HRMS. Structure-activity investigations showed that the catechol moiety is central to the detected antioxidant activity.
Collapse
|
6
|
Mrudulakumari Vasudevan U, Lee EY. Flavonoids, terpenoids, and polyketide antibiotics: Role of glycosylation and biocatalytic tactics in engineering glycosylation. Biotechnol Adv 2020; 41:107550. [PMID: 32360984 DOI: 10.1016/j.biotechadv.2020.107550] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Flavonoids, terpenoids, and polyketides are structurally diverse secondary metabolites used widely as pharmaceuticals and nutraceuticals. Most of these molecules exist in nature as glycosides, in which sugar residues act as a decisive factor in their architectural complexity and bioactivity. Engineering glycosylation through selective trimming or extension of the sugar residues in these molecules is a prerequisite to their commercial production as well to creating novel derivatives with specialized functions. Traditional chemical glycosylation methods are tedious and can offer only limited end-product diversity. New in vitro and in vivo biocatalytic tools have emerged as outstanding platforms for engineering glycosylation in these three classes of secondary metabolites to create a large repertoire of versatile glycoprofiles. As knowledge has increased about secondary metabolite-associated promiscuous glycosyltransferases and sugar biosynthetic machinery, along with phenomenal progress in combinatorial biosynthesis, reliable industrial production of unnatural secondary metabolites has gained momentum in recent years. This review highlights the significant role of sugar residues in naturally occurring flavonoids, terpenoids, and polyketide antibiotics. General biocatalytic tools used to alter the identity and pattern of sugar molecules are described, followed by a detailed illustration of diverse strategies used in the past decade to engineer glycosylation of these valuable metabolites, exemplified with commercialized products and patents. By addressing the challenges involved in current bio catalytic methods and considering the perspectives portrayed in this review, exceptional drugs, flavors, and aromas from these small molecules could come to dominate the natural-product industry.
Collapse
Affiliation(s)
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|