1
|
Weirath NA, Haskell-Luevano C. Recommended Tool Compounds for the Melanocortin Receptor (MCR) G Protein-Coupled Receptors (GPCRs). ACS Pharmacol Transl Sci 2024; 7:2706-2724. [PMID: 39296259 PMCID: PMC11406693 DOI: 10.1021/acsptsci.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/21/2024]
Abstract
The melanocortin receptors are a centrally and peripherally expressed family of Class A GPCRs with physiological roles, including pigmentation, steroidogenesis, energy homeostasis, and others yet to be fully characterized. There are five melanocortin receptor subtypes that, apart from the melanocortin-2 receptor (MC2R), are stimulated by a shared set of endogenous agonists. Until 2020, X-ray crystallographic and cryo-electron microscopic (cryo-EM) structures of these receptors were unavailable, and the investigation of their mechanisms of action and putative ligand-receptor interactions was driven by site-directed mutagenesis studies of the receptors and targeted structure-activity relationship (SAR) studies of the endogenous and derivative synthetic ligands. Synthetic derivatives of the endogenous agonist ligand α-MSH have evolved into a suite of powerful ligands such as NDP-MSH (melanotan I), melanotan II (MTII), and SHU9119. This suite of tool compounds now enables the study of the melanocortin receptors and serves as scaffolds for FDA-approved drugs, means of validating stably expressing melanocortin receptor cell lines, core ligands in assessing cryo-EM structures of active and inactive receptor complexes, and essential references for high-throughput discovery and mechanism of action studies. Herein, we review the history and significance of a finite set of these essential tool compounds and discuss how they are being utilized to further the field's understanding of melanocortin receptor physiology and greater druggability.
Collapse
Affiliation(s)
- Nicholas A Weirath
- Department of Medicinal Chemistry & Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry & Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Reynaud S, Laurin SA, Ciolek J, Barbe P, Van Baelen AC, Susset M, Blondel F, Ghazarian M, Boeri J, Vanden Driessche M, Upert G, Mourier G, Kessler P, Konnert L, Beroud R, Keck M, Servent D, Bouvier M, Gilles N. From a Cone Snail Toxin to a Competitive MC4R Antagonist. J Med Chem 2022; 65:12084-12094. [PMID: 36063022 DOI: 10.1021/acs.jmedchem.2c00786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The melanocortin 4 receptor (MC4R) plays a role in energy homeostasis and represents a target for treating energy balance disorders. For decades, synthetic ligands have been derived from MC4R endogenous agonists and antagonists, such as setmelanotide used to treat rare forms of genetic obesity. Recently, animal venoms have demonstrated their capacity to provide melanocortin ligands with toxins from a scorpion and a spider. Here, we described a cone snail toxin, N-CTX-Ltg1a, with a nanomolar affinity for hMC4R but unrelated to any known toxins or melanocortin ligands. We then derived from the conotoxin the linear peptide HT1-0, a competitive antagonist of Gs, G15, and β-arrestin2 pathways with a low nanomolar affinity for hMC4R. Similar to endogenous ligands, HT1-0 needs hydrophobic and basic residues to bind hMC4R. Altogether, it represents the first venom-derived peptide of high affinity on MC4R and paves the way for the development of new MC4R antagonists.
Collapse
Affiliation(s)
- Steve Reynaud
- Health and Life Sciences Department, Université Paris Saclay, French Alternative Energies and Atomic Energy Commission (CEA), CEA Saclay, Bat 152, 91191 Gif sur Yvette, France
| | - Suli-Anne Laurin
- Institute for Research in Immunology and Cancer, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Justyna Ciolek
- Health and Life Sciences Department, Université Paris Saclay, French Alternative Energies and Atomic Energy Commission (CEA), CEA Saclay, Bat 152, 91191 Gif sur Yvette, France
| | - Peggy Barbe
- Health and Life Sciences Department, Université Paris Saclay, French Alternative Energies and Atomic Energy Commission (CEA), CEA Saclay, Bat 152, 91191 Gif sur Yvette, France
| | - Anne-Cécile Van Baelen
- Health and Life Sciences Department, Université Paris Saclay, French Alternative Energies and Atomic Energy Commission (CEA), CEA Saclay, Bat 152, 91191 Gif sur Yvette, France
| | - Michaël Susset
- Health and Life Sciences Department, Université Paris Saclay, French Alternative Energies and Atomic Energy Commission (CEA), CEA Saclay, Bat 152, 91191 Gif sur Yvette, France
| | - Florian Blondel
- Health and Life Sciences Department, Université Paris Saclay, French Alternative Energies and Atomic Energy Commission (CEA), CEA Saclay, Bat 152, 91191 Gif sur Yvette, France
| | - Marine Ghazarian
- Health and Life Sciences Department, Université Paris Saclay, French Alternative Energies and Atomic Energy Commission (CEA), CEA Saclay, Bat 152, 91191 Gif sur Yvette, France
| | - Julia Boeri
- Health and Life Sciences Department, Université Paris Saclay, French Alternative Energies and Atomic Energy Commission (CEA), CEA Saclay, Bat 152, 91191 Gif sur Yvette, France
| | - Margot Vanden Driessche
- Health and Life Sciences Department, Université Paris Saclay, French Alternative Energies and Atomic Energy Commission (CEA), CEA Saclay, Bat 152, 91191 Gif sur Yvette, France
| | - Grégory Upert
- Health and Life Sciences Department, Université Paris Saclay, French Alternative Energies and Atomic Energy Commission (CEA), CEA Saclay, Bat 152, 91191 Gif sur Yvette, France
| | - Gilles Mourier
- Health and Life Sciences Department, Université Paris Saclay, French Alternative Energies and Atomic Energy Commission (CEA), CEA Saclay, Bat 152, 91191 Gif sur Yvette, France
| | - Pascal Kessler
- Health and Life Sciences Department, Université Paris Saclay, French Alternative Energies and Atomic Energy Commission (CEA), CEA Saclay, Bat 152, 91191 Gif sur Yvette, France
| | - Laure Konnert
- Smartox Biotechnology, 6 Rue des Platanes, 38120 Saint-Egrève, France
| | - Rémy Beroud
- Smartox Biotechnology, 6 Rue des Platanes, 38120 Saint-Egrève, France
| | - Mathilde Keck
- Health and Life Sciences Department, Université Paris Saclay, French Alternative Energies and Atomic Energy Commission (CEA), CEA Saclay, Bat 152, 91191 Gif sur Yvette, France
| | - Denis Servent
- Health and Life Sciences Department, Université Paris Saclay, French Alternative Energies and Atomic Energy Commission (CEA), CEA Saclay, Bat 152, 91191 Gif sur Yvette, France
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Nicolas Gilles
- Health and Life Sciences Department, Université Paris Saclay, French Alternative Energies and Atomic Energy Commission (CEA), CEA Saclay, Bat 152, 91191 Gif sur Yvette, France
| |
Collapse
|
3
|
Ericson MD, Larson CM, Freeman KT, Nicke L, Geyer A, Haskell-Luevano C. Incorporation of Indoylated Phenylalanine Yields a Sub-Micromolar Selective Melanocortin-4 Receptor Antagonist Tetrapeptide. ACS OMEGA 2022; 7:27656-27663. [PMID: 35967074 PMCID: PMC9366794 DOI: 10.1021/acsomega.2c03307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/06/2022] [Indexed: 06/14/2023]
Abstract
The melanocortin family is involved in many physiological functions, including pigmentation, steroidogenesis, and appetite. The centrally expressed melanocortin-3 and melanocortin-4 receptors (MC3R and MC4R) possess overlapping but distinct roles in energy homeostasis. Herein, the third and fourth positions of a tetrapeptide lead compound [Ac-Arg-Arg-(pI)DPhe-Tic-NH2], previously reported to possess MC3R agonist and MC4R antagonist activities, were substituted with indoylated phenylalanine (Wsf/Wrf) residues in an attempt to generate receptor subtype selective compounds. At the third position, d-amino acids were required for melanocortin agonist activity, while both l- and d-residues resulted in MC4R antagonist activity. These results indicate that l-indoylated phenylalanine residues at the third position of the scaffold can generate MC4R over MC3R selective antagonist ligands, resulting in a substitution pattern that may be exploited for novel MC4R ligands that can be used to probe the in vivo activity of the MC4R without involvement of the MC3R.
Collapse
Affiliation(s)
- Mark D. Ericson
- Department
of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Courtney M. Larson
- Department
of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katie T. Freeman
- Department
of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lennart Nicke
- Faculty
of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse 4, Marburg 35032, Germany
| | - Armin Geyer
- Faculty
of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse 4, Marburg 35032, Germany
| | - Carrie Haskell-Luevano
- Department
of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Ericson MD, Doering SR, Larson CM, Freeman KT, LaVoi TM, Donow HM, Santos RG, Cho RH, Koerperich ZM, Giulianotti MA, Pinilla C, Houghten RA, Haskell-Luevano C. Functional Mixture-Based Positional Scan Identifies a Library of Antagonist Tetrapeptide Sequences (LAtTeS) with Nanomolar Potency for the Melanocortin-4 Receptor and Equipotent with the Endogenous AGRP(86-132) Antagonist. J Med Chem 2021; 64:14860-14875. [PMID: 34592820 DOI: 10.1021/acs.jmedchem.1c01417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The melanocortin-4 receptor (MC4R) plays an important role in appetite. Agonist ligands that stimulate the MC4R decrease appetite, while antagonist compounds increase food consumption. Herein, a functional mixture-based positional scan identified novel MC4R antagonist sequences. Mixtures comprising a library of 12,960,000 tetrapeptides were screened in the presence and absence of the NDP-MSH agonist. These results led to the synthesis of 48 individual tetrapeptides, of which 40 were screened for functional activity at the melanocortin receptors. Thirteen compounds were found to possess nanomolar antagonist potency at the MC4R, with the general tetrapeptide sequence Ac-Aromatic-Basic-Aromatic-Basic-NH2. The most notable results include the identification of tetrapeptide 48 [COR1-25, Ac-DPhe(pI)-Arg-Nal(2')-Arg-NH2], an equipotent MC4R antagonist to agouti-related protein [AGRP(86-132)], more potent than miniAGRP(87-120), and possessing 15-fold selectivity for the MC4R versus the MC3R. These tetrapeptides may serve as leads for novel appetite-inducing therapies to treat states of negative energy balance, such as cachexia and anorexia.
Collapse
Affiliation(s)
- Mark D Ericson
- Department of Medicinal Chemistry and Institute for Translation Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Skye R Doering
- Department of Medicinal Chemistry and Institute for Translation Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Courtney M Larson
- Department of Medicinal Chemistry and Institute for Translation Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katie T Freeman
- Department of Medicinal Chemistry and Institute for Translation Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Travis M LaVoi
- Florida International University, Port St. Lucie, Florida 34987, United States
| | - Haley M Donow
- Florida International University, Port St. Lucie, Florida 34987, United States
| | - Radleigh G Santos
- Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, Florida 33314, United States
| | - Rachel H Cho
- Department of Medicinal Chemistry and Institute for Translation Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zoe M Koerperich
- Department of Medicinal Chemistry and Institute for Translation Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A Giulianotti
- Florida International University, Port St. Lucie, Florida 34987, United States
| | - Clemencia Pinilla
- Florida International University, Port St. Lucie, Florida 34987, United States
| | - Richard A Houghten
- Florida International University, Port St. Lucie, Florida 34987, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry and Institute for Translation Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Ericson MD, Shaikh R, Larson CM, Freeman KT, Haskell-Luevano C. Multiresidue Tetrapeptide Substitutions Yield a 140-fold Selective Melanocortin-3 over Melanocortin-4 Receptor Agonist. ACS Med Chem Lett 2021; 12:115-120. [PMID: 33488972 DOI: 10.1021/acsmedchemlett.0c00561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022] Open
Abstract
The five melanocortin receptors regulate numerous physiological functions. Although many ligands have been developed for the melanocortin-4 receptor (MC4R), the melanocortin-3 receptor (MC3R) has been less-well characterized, in part due to the lack of potent, selective tool compounds. Previously an Ac-His-Arg-(pI)DPhe-Tic-NH2 scaffold, inverting the Phe-Arg motif of the native melanocortin signal sequence, was identified to possess mMC3R over mMC4R selective agonist activity. In this study, a library of 12 compounds derived from this scaffold was synthesized and assayed at the mouse melanocortin receptors (MCRs), utilizing substitutions previously shown to increase mMC3R agonist potency and/or selectivity. One compound (8, Ac-Val-Gln-DBip-DTic-NH2) was identified as greater than 140-fold selective for the mMC3R over the mMC4R, possessed 70 nM potency at the mMC3R, and partially stimulated the mMC4R at 100 μM concentrations without antagonist activity. This pharmacological profile may be useful in developing new tool and therapeutic ligands that selective signal through the MC3R.
Collapse
Affiliation(s)
- Mark D. Ericson
- Department of Medicinal Chemistry & Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Romessa Shaikh
- Department of Medicinal Chemistry & Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Courtney M. Larson
- Department of Medicinal Chemistry & Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katie T. Freeman
- Department of Medicinal Chemistry & Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry & Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|