1
|
Böckstiegel L, Schaumann T, Egert B, Kulling SE, Weinert CH. Development of an Untargeted Method for the Analysis of the Volatile Profile of Onions via Solid-Phase Microextraction Arrow-Headspace-Gas Chromatography-Mass Spectrometry Using Design of Experiments. J Sep Sci 2024; 47:e202400305. [PMID: 39363479 DOI: 10.1002/jssc.202400305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
The distinctive aroma of onions, consisting primarily of sulfur-containing compounds, is one of the reasons for the popularity of the vegetable. The rapid enzymatic and chemical reactions that occur after the destruction of onion bulb tissue render the analysis of the volatile profile challenging. Therefore, sample preparation is a crucial step in the analysis of the onion volatilome, but it often does not receive the necessary attention in the literature. In this work, we focused on two aspects: Firstly, we compared different sample preparation approaches to maximize the volatile yield and to enable the description of the onion volatile profile as it would emerge after a solid-phase microextraction (SPME) Arrow sampling procedure. For headspace (HS)-gas chromatography-mass spectrometry analysis, onion juice with the addition of an ammonium sulfate solution proved to be the best option. Secondly, we optimized the HS sampling and desorption parameters (enrichment time, enrichment temperature, agitator speed, desorption time) for onion volatiles using the efficient design of experiments (DoE) approach. The optimal conditions for the analysis with HS-SPME Arrow were an enrichment time of 75 min at 60°C with an agitator speed of 713 rpm and a desorption time of 120 s.
Collapse
Affiliation(s)
- Lea Böckstiegel
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Theresa Schaumann
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Björn Egert
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Christoph H Weinert
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| |
Collapse
|
2
|
Ma S, Ding C, Zhou C, Shi H, Bi Y, Zhang H, Xu X. Peanut oils from roasting operations: An overview of production technologies, flavor compounds, formation mechanisms, and affecting factors. Heliyon 2024; 10:e34678. [PMID: 39144929 PMCID: PMC11320463 DOI: 10.1016/j.heliyon.2024.e34678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/27/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Fragrant peanut oils (FPOs) are commonly defined as edible peanut oils having strong natural roasted peanut flavor without peculiar unpleasant odors and produced from peanut kernels through roasting/steaming and pressing operations, etc. The flavor of FPOs plays a crucial role in their acceptability and applications and their flavor profiles are an important factor in determining their overall quality. This paper presents a systematic literature review of recent advances and knowledge on FPOs, especially their flavors, in which it is focused on the evaluation of volatile compounds, the factors influencing the formation of flavor compounds, and formation mechanisms of those typical flavor compounds. More than 300 volatiles are found in FPOs, while some key aroma-active compounds and their potential formation pathways are examined. Factors that have big influences on flavor are discussed also, including the properties of raw materials, processing technologies, and storage conditions. Ultimately, the paper highlights the challenges facing, including the challenges in flavor analysis, the relationship between volatile compounds and sensory attributes, as well as the opening of the blackboxes of flavor formations during the processing steps, etc.
Collapse
Affiliation(s)
- Sumin Ma
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, China
| | - Caixia Ding
- Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd., Pudong New District, Shanghai, 200137, China
| | - Chuan Zhou
- Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd., Pudong New District, Shanghai, 200137, China
| | - Haiming Shi
- Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd., Pudong New District, Shanghai, 200137, China
| | - Yanlan Bi
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, China
| | - Hong Zhang
- Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd., Pudong New District, Shanghai, 200137, China
| | - Xuebing Xu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, China
- Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd., Pudong New District, Shanghai, 200137, China
| |
Collapse
|
3
|
Zeng W, Liu X, Chao Y, Wu Y, Qiu S, Lin B, Liu R, Tang R, Wu S, Xiao Z, Li C. The effect of extraction methods on the components and quality of Camellia oleifera oil: Focusing on the flavor and lipidomics. Food Chem 2024; 447:139046. [PMID: 38518620 DOI: 10.1016/j.foodchem.2024.139046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/02/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
The objective of this study was to systematically elucidate the effects of conventional (Cold Pressing, CP; Hot Pressing, HP; Soxhlet Extraction; SE) and novel methods (Microwave-Assisted Extraction, MAE) on the physicochemical properties, bio-active substances, flavor and lipidomics of Camellia oleifera oil (COO). The cold-pressed COO contained the highest contents of squalene (176.38 mg/kg), α-tocopherol (330.52 mg/kg), polyphenols (68.33 mg/kg) and phytosterols (2782.55 mg/kg). Oleic acid was observed as the predominant fatty acid with the content of approximately 80%. HS-GC-IMS identified 47 volatile compounds, including 11 aldehydes, 11 ketones, 11 alcohols, 2 acids, 8 esters, 2 pyrazines, 1 furan, and 1 thiophene. A total of 5 lipid classes and 30 lipid subclasses of 339 lipids were identifed, among which TGs and DGs were observed as the major lipids. In summary, both cold-pressed and microwave-assisted technologies provided high-quality COO with high content of bio-active substances and diglycerides/triglycerides.
Collapse
Affiliation(s)
- Wenquan Zeng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410004, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China; Hunan Provincial Key Laboratory of Oils and Fats Molecular Structure and Function, Changsha 410004, China
| | - Xudong Liu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China; Hunan Provincial Key Laboratory of Oils and Fats Molecular Structure and Function, Changsha 410004, China
| | - Yan Chao
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China; Hunan Provincial Key Laboratory of Oils and Fats Molecular Structure and Function, Changsha 410004, China
| | - Yiying Wu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China; Hunan Provincial Key Laboratory of Oils and Fats Molecular Structure and Function, Changsha 410004, China
| | - Shukun Qiu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China; Hunan Provincial Key Laboratory of Oils and Fats Molecular Structure and Function, Changsha 410004, China
| | - Baining Lin
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China; Hunan Provincial Key Laboratory of Oils and Fats Molecular Structure and Function, Changsha 410004, China
| | - Rukuan Liu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China; Hunan Provincial Key Laboratory of Oils and Fats Molecular Structure and Function, Changsha 410004, China
| | | | - Suxi Wu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410004, China.
| | - Zhihong Xiao
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China; Hunan Provincial Key Laboratory of Oils and Fats Molecular Structure and Function, Changsha 410004, China.
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China; Hunan Provincial Key Laboratory of Oils and Fats Molecular Structure and Function, Changsha 410004, China.
| |
Collapse
|
4
|
Seo WH, You Y, Baek HH. Changes in volatile flavor compounds of Kimchi cabbage ( Brassica rapa subsp. pekinensis) during salting and fermentation. Food Sci Biotechnol 2024; 33:1623-1632. [PMID: 38623438 PMCID: PMC11016023 DOI: 10.1007/s10068-023-01469-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/21/2023] [Accepted: 10/12/2023] [Indexed: 04/17/2024] Open
Abstract
A main ingredient of Kimchi is Kimchi cabbage, which is soaked in brine to reduce its crispness. Volatile profile of raw Kimchi cabbage (RC) is changed during salting; however, characteristic aroma-active compounds of salted Kimchi cabbage (SC) have not been investigated. The objective of this study was to evaluate changes in aroma characteristics of Kimchi cabbage during salting and fermentation. Sulfur-containing compounds, such as sulfides and isothiocyanates, increased markedly by salting. (Z)-3-Hexen-1-ol, (Z)-3-hexenal, and hexanal decreased by salting. Hexanal was the most intense in RC, followed by 3-(methylthio)butanal, (Z)-3-hexen-1-ol, and benzenepropanenitrile. Dimethyl trisulfide had the highest log3FD in SC. Methyl (methylthio)methyl disulfide, allyl methyl trisulfide, and dimethyl tetrasulfide were detected only in SC. Dimethyl trisulfide, dimethyl tetrasulfide, methyl (methylthio) methyl disulfide, and allyl methyl trisulfide, decreased greatly in SC during fermentation. Our results demonstrated that characteristic odor of Kimchi cabbage could be significantly changed by salting and fermentation.
Collapse
Affiliation(s)
- Won Ho Seo
- R&D Solution Center, OURHOME, 91 Magokjungang 10-Ro, Gangseo-Gu, Seoul, 07792 Republic of Korea
| | - Youngsang You
- Department of Food Engineering, Dankook University, 119 Dandae-Ro, Dongnam-Gu, Cheonan, Chungcheongnam-Do 31116 Republic of Korea
| | - Hyung Hee Baek
- Department of Food Engineering, Dankook University, 119 Dandae-Ro, Dongnam-Gu, Cheonan, Chungcheongnam-Do 31116 Republic of Korea
| |
Collapse
|
5
|
Chien HJ, Zheng YF, Wang WC, Kuo CY, Hsu YM, Lai CC. Determination of adulteration, geographical origins, and species of food by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:2273-2323. [PMID: 35652168 DOI: 10.1002/mas.21780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Food adulteration, mislabeling, and fraud, are rising global issues. Therefore, a number of precise and reliable analytical instruments and approaches have been proposed to ensure the authenticity and accurate labeling of food and food products by confirming that the constituents of foodstuffs are of the kind and quality claimed by the seller and manufacturer. Traditional techniques (e.g., genomics-based methods) are still in use; however, emerging approaches like mass spectrometry (MS)-based technologies are being actively developed to supplement or supersede current methods for authentication of a variety of food commodities and products. This review provides a critical assessment of recent advances in food authentication, including MS-based metabolomics, proteomics and other approaches.
Collapse
Affiliation(s)
- Han-Ju Chien
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Feng Zheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Chen Wang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Yu Kuo
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Ming Hsu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center For Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
6
|
Xiao L, Wang S, Wang Y, Wang B, Ji C, Lin X, Liang H, Zhang S, Xu X, Dong L. Density functional theory studies on the oleic acid thermal oxidation into volatile compounds. Food Chem X 2023; 19:100737. [PMID: 37780285 PMCID: PMC10534075 DOI: 10.1016/j.fochx.2023.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 10/03/2023] Open
Abstract
Oleic acid oxidation is one of the main sources of food flavor compounds. Volatile profiling was investigated using thermal desorption cryo-trapping combined with gas chromatography-mass spectrometry to analyze the volatile composition of oleic acid oxidation. A total of 43 volatile compounds, including aldehydes (11), ketones (2), alcohols (5), furans (2), acids (8), ester (12) and alkane (3) were identified from oleic acid during heating. Then, density functional theory (DFT) was applied to analyze the oxidative mechanism of oleic acid during heating. A total of 30 reactions were obtained and grouped into the peroxide (ROOH), alkoxy radical (RO•), and peroxide radical (ROO•) pathways. The structures of intermediates, transition states (TS), and products in each reaction were also determined. Results show that the branch chemical reactions were the key reactions in different reaction pathway. Moreover, the reaction priority of the thermal oxidation reaction of oleic acid was the peroxide radical mechanism > the peroxide mechanism > the alkoxy radical mechanism.
Collapse
Affiliation(s)
- Lin Xiao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- China Resources Snow Beer, Beijing 100000, Beijing, China
| | - Shang Wang
- School of Biotechnology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yi Wang
- School of Biotechnology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Binchen Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
| | - Chaofan Ji
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
| | - Xinping Lin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
| | - Huipeng Liang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
| | - Sufang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
| | - Xianbing Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
| | - Liang Dong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
| |
Collapse
|
7
|
Yang X, Pei Z, Du W, Xie J. Characterization of Volatile Flavor Compounds in Dry-Rendered Beef Fat by Different Solvent-Assisted Flavor Evaporation (SAFE) Combined with GC-MS, GC-O, and OAV. Foods 2023; 12:3162. [PMID: 37685095 PMCID: PMC10486796 DOI: 10.3390/foods12173162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
To comprehensively understand the volatile flavor composition of dry-rendered beef fat, solvent-assisted flavor evaporation (SAFE) with four extraction solvents (dichloromethane, pentane, ethyl ether, and methanol) combined with gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactormetry (GC-O) were performed. GC-MS analysis found 96 different volatile compounds in total using the four extraction solvents. According to the GC-MS results and the heat map and principal component analysis (PCA), most of the volatile compounds resulted from dichloromethane and pentane extraction, followed by ethyl ether. Methanol extraction found a few volatile compounds of higher polarity, which was supplementary to the analysis results. Moreover, GC-O analysis found 73 odor-active compounds in total using the four extraction solvents. The GC-O results found that pentane and dichloromethane extraction had a significantly larger number of odor-active compounds than ethyl ether and methanol extraction. This indicated that pentane and dichloromethane were more effective solvents for the extraction of odor-active compounds than the other two solvents. Finally, a total of 15 compounds of odor-active values (OAVs) ≥ 1 were determined to be the key aroma compounds in the dry-rendered beef fat, including 2-methyl-3-furanthiol, 3-methylthiopropanal, (E,E)-2,4-nonadienal, 12-methyltridecanal, and 1-octen-3-one.
Collapse
Affiliation(s)
| | | | | | - Jianchun Xie
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China; (X.Y.); (Z.P.); (W.D.)
| |
Collapse
|
8
|
Beteinakis S, Papachristodoulou A, Kolb P, Rösch P, Schwarzinger S, Mikros E, Halabalaki M. NMR-Based Metabolite Profiling and the Application of STOCSY toward the Quality and Authentication Assessment of European EVOOs. Molecules 2023; 28:1738. [PMID: 36838725 PMCID: PMC9966212 DOI: 10.3390/molecules28041738] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Extra virgin olive oil (EVOO) possesses a high-value rank in the food industry, thus making it a common target for adulteration. Hence, several methods have been essentially made available over the years. However, the issue of authentication remains unresolved with national and food safety organizations globally struggling to regulate and control its market. Over the course of this study, the aim was to determine the origin of EVOOs suggesting a high-throughput, state-of-the-art method that could be easily adopted. A rapid, NMR-based untargeted metabolite profiling method was applied and complemented by multivariate analysis (MVA) and statistical total correlation spectroscopy (STOCSY). STOCSY is a valuable statistical tool contributing to the biomarker identification process and was employed for the first time in EVOO analysis. Market samples from three Mediterranean countries of Spain, Italy, and Greece, blended samples from these countries, as well as monocultivar samples from Greece were analyzed. The NMR spectra were collected, with the help of chemometrics acting as "fingerprints" leading to the discovery of certain chemical classes and single biomarkers that were related to the classification of the samples into groups based on their origin.
Collapse
Affiliation(s)
- Stavros Beteinakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Anastasia Papachristodoulou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Peter Kolb
- NBNC—North Bavarian NMR Centre, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- ALNuMed GmbH, Gottfried-Keim-Strasse 60, 95448 Bayreuth, Germany
| | - Paul Rösch
- NBNC—North Bavarian NMR Centre, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Stephan Schwarzinger
- NBNC—North Bavarian NMR Centre, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- ForN—Research Unit for Food Quality, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- FLMR—Research Unit for German and European Food Law, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Emmanuel Mikros
- Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| |
Collapse
|
9
|
Ríos-Reina R, Aparicio-Ruiz R, Morales MT, García-González DL. Contribution of specific volatile markers to green and ripe fruity attributes in extra virgin olive oils studied with three analytical methods. Food Chem 2023; 399:133942. [DOI: 10.1016/j.foodchem.2022.133942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022]
|
10
|
Quality characteristics and volatile compounds of oil extracted from njangsa seed. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Cheng Z, O'Sullivan MG, Miao S, Kerry JP, Kilcawley KN. Sensorial, cultural and volatile properties of milk, dairy powders, yoghurt and butter: A review. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zeng Cheng
- Food Quality and Sensory Science Teagasc Food Research Centre Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
- Sensory Group, School of Food and Nutritional Sciences University College Cork Cork T12 R229, Ireland
| | - Maurice G O'Sullivan
- Sensory Group, School of Food and Nutritional Sciences University College Cork Cork T12 R229, Ireland
| | - Song Miao
- Department of Food Chemistry and Technology Teagasc Food Research Centre Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
- China‐Ireland International Cooperation Centre for Food Material Science and Structure Design Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Joseph P Kerry
- Food Packaging Group, School of Food and Nutritional Sciences University College Cork Cork T12 R229, Ireland
| | - Kieran N Kilcawley
- Food Quality and Sensory Science Teagasc Food Research Centre Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
- Sensory Group, School of Food and Nutritional Sciences University College Cork Cork T12 R229, Ireland
| |
Collapse
|
12
|
Jing Q, Huang X, Lu C, Di D. Identification of characteristic flavour compounds and quality analysis in extra virgin olive oil based on
HS‐GC‐IMS. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Quan Jing
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS) Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xin‐Yi Huang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS) Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Cong‐Hui Lu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS) Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Duo‐Long Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS) Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
13
|
Aparicio-Ruiz R, Ortiz Romero C, Casadei E, García-González DL, Servili M, Selvaggini R, Lacoste F, Escobessa J, Vichi S, Quintanilla-Casas B, Golay PA, Lucci P, Moret E, Valli E, Bendini A, Gallina Toschi T. Collaborative peer validation of a harmonized SPME-GC-MS method for analysis of selected volatile compounds in virgin olive oils. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Psathas D, Lioupi A, Rebholz AM, Zinoviadou K, Tsaftaris A, Theodoridis G, Papoti VT. Volatile profile and quality characteristics of the Greek “Chondrolia Chalkidikis” virgin olive oils: effect of ripening stage. Eur Food Res Technol 2022; 248:1977-1990. [PMID: 35462632 PMCID: PMC9016700 DOI: 10.1007/s00217-022-04020-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 11/24/2022]
Abstract
Among the various parameters affecting olive oil quality, ripening stage is one of the most important. Optimal harvest time ensuring target quality for the final product varies in relation to the effect of many intrinsic and extrinsic factors. Therefore, its determination necessitates thorough examination of each case. The present study explores the impact of six harvest times on volatile profile and quality attributes of olive oils from “Chondrolia Chalkidikis” Greek cultivar. All samples examined were classified “Virgin Olive Oils” (VOOs) according to findings of acidity, peroxide, and K values. The low values for the principal official quality indices, the high oleic acid percentages (76–78%), the high oxidative stabilities (up to 36 h induction period), and phenols content (606–290 mg/kg) were considered nutritionally promising. Total phenols, carotenoids and chlorophylls contents, as well as oxidative stability (induction period values) decreased with ripening. Harvest time had a strong impact on HS-SPME–GC–MS volatile fingerprint. Optimal volatile profiles were related to intermediate examined ripening stages. Fatty acid composition did not show remarkable trends. Chondrolia Chalkidikis VOOs perform as interesting candidates of high quality. Findings of the study may support existing databases with scientific records for Chondrolia Chalkidikis VOOs, boost their competitiveness in the global market, and encourage worldwide exploitation of VOOs from similar cultivars (table olives oriented).
Collapse
|
15
|
Yuxiang B, Jian D, Chen X, Wang M, Binchen W, Lin X, Kunya C, Dong L. Detailed Temperature‐dependent Study of Linoleic acid Oxidative Decomposition into Volatile Compounds in the Heating Process. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bao Yuxiang
- School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
- National Engineering Research Center of Seafood Dalian Liaoning China
| | - Du Jian
- Food Additives & Ingredients Association(CFAA) Beijing Beijing China
| | - Xu Chen
- Food Additives & Ingredients Association(CFAA) Beijing Beijing China
| | - Meiting Wang
- School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
- National Engineering Research Center of Seafood Dalian Liaoning China
| | - Wang Binchen
- School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
- National Engineering Research Center of Seafood Dalian Liaoning China
| | - Xiao Lin
- School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
- National Engineering Research Center of Seafood Dalian Liaoning China
| | - Cheng Kunya
- School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
- National Engineering Research Center of Seafood Dalian Liaoning China
| | - Liang Dong
- School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
- National Engineering Research Center of Seafood Dalian Liaoning China
| |
Collapse
|
16
|
Yin W, Shi R, Li S, Ma X, Wang X, Wang A. Changes in key aroma‐active compounds and sensory characteristics of sunflower oils induced by seed roasting. J Food Sci 2022; 87:699-713. [DOI: 10.1111/1750-3841.16044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/04/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Wen‐ting Yin
- College of Food Science and Technology Henan University of Technology Zhengzhou China
- Institute of Special Oilseed Processing and Technology, College of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Rui Shi
- College of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Shi‐jia Li
- College of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Xue‐ting Ma
- College of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Xue‐de Wang
- College of Food Science and Technology Henan University of Technology Zhengzhou China
- Institute of Special Oilseed Processing and Technology, College of Food Science and Technology Henan University of Technology Zhengzhou China
| | - An‐na Wang
- College of Food Science and Technology Henan University of Technology Zhengzhou China
| |
Collapse
|
17
|
Li J, Cui H, Xu X, Li J, Lu M, Yu Y, Song H, Zhu D, Liu H. Effects of pectic fat mimetics and transglutaminase on the regularity of protein and fat degradation and flavour compounds in Cheddar cheese during ripening. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun Li
- College of Food Science and Technology Bohai University Jinzhou 121013 China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou 121013 China
| | - Huaitian Cui
- College of Food Science and Technology Bohai University Jinzhou 121013 China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
| | - Xinyue Xu
- College of Food Science and Technology Bohai University Jinzhou 121013 China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
| | - Jiayi Li
- College of Food Science and Technology Bohai University Jinzhou 121013 China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
| | - Miaomiao Lu
- College of Food Science and Technology Bohai University Jinzhou 121013 China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
| | - Yue Yu
- College of Food Science and Technology Bohai University Jinzhou 121013 China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
| | - Hong Song
- College of Food Science and Technology Bohai University Jinzhou 121013 China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou 121013 China
| | - Danshi Zhu
- College of Food Science and Technology Bohai University Jinzhou 121013 China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou 121013 China
| | - He Liu
- College of Food Science and Technology Bohai University Jinzhou 121013 China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou 121013 China
| |
Collapse
|
18
|
Authentication of the Botanical and Geographical Origin and Detection of Adulteration of Olive Oil Using Gas Chromatography, Infrared and Raman Spectroscopy Techniques: A Review. Foods 2021; 10:foods10071565. [PMID: 34359435 PMCID: PMC8306465 DOI: 10.3390/foods10071565] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 01/18/2023] Open
Abstract
Olive oil is among the most popular supplements of the Mediterranean diet due to its high nutritional value. However, at the same time, because of economical purposes, it is also one of the products most subjected to adulteration. As a result, authenticity is an important issue of concern among authorities. Many analytical techniques, able to detect adulteration of olive oil, to identify its geographical and botanical origin and consequently guarantee its quality and authenticity, have been developed. This review paper discusses the use of infrared and Raman spectroscopy as candidate tools to examine the authenticity of olive oils. It also considers the volatile fraction as a marker to distinguish between different varieties and adulterated olive oils, using SPME combined with gas chromatography technique.
Collapse
|
19
|
A method for gaining a deeper insight into the aroma profile of olive oil. NPJ Sci Food 2021; 5:16. [PMID: 34210992 PMCID: PMC8249399 DOI: 10.1038/s41538-021-00098-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/06/2021] [Indexed: 01/18/2023] Open
Abstract
Volatile compounds in food play a crucial role in affecting food quality and consumer preference, but the volatile compounds in olive oil are not fully understood due to the matrix effect of oil. The oiling-out assisted liquid-liquid extraction (OA-LLE), which we previously reported, is an effective method for isolating volatile compounds from edible oils with a strong matrix effect. However, when we apply OA-LLE to extra virgin olive oil (EVOO), the aromatic extracts contain non-volatile compounds such as pigments because of solvent-based extraction. Solvent-assisted flavor evaporation (SAFE) can remove such non-volatiles from extracts, but SAFE is affected by a matrix effect during distillation, resulting in a decrease in performance. By combining the advantages of OA-LLE and SAFE, we propose an effective approach, OA-LLE followed by SAFE (OA-LLE + SAFE), for extracting aroma compounds from EVOO. The "two assists" should help to better understand the native aroma profile of EVOO.
Collapse
|
20
|
Mota MFS, Waktola HD, Nolvachai Y, Marriott PJ. Gas chromatography ‒ mass spectrometry for characterisation, assessment of quality and authentication of seed and vegetable oils. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Yang Y, Deng Q, Jia X, Shi J, Wan C, Zhou Q, Wang Q. Characterization of key odorants in peeled and unpeeled flaxseed powders using solvent-assisted flavor evaporation and odor activity value calculation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
22
|
Evolution of Flavors in Extra Virgin Olive Oil Shelf-Life. Antioxidants (Basel) 2021; 10:antiox10030368. [PMID: 33671068 PMCID: PMC7997466 DOI: 10.3390/antiox10030368] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
Extra virgin olive oil (EVOO) is one of the most distinctive ingredients of the Mediterranean diet. There are many properties related to this golden ingredient, from supreme organoleptic characteristics to benefits for human health. EVOO contains in its composition molecules capable of exerting bioactivities such as cardio protection, antioxidant, anti-inflammatory, antidiabetic, and anticancer activity, among others, mainly caused by unsaturated fatty acids and certain minor compounds such as tocopherols or phenolic compounds. EVOO is considered the highest quality vegetable oil, which also implies a high sensory quality. The organoleptic properties related to the flavor of this valued product are also due to the presence of a series of compounds in its composition, mainly some carbonyl compounds found in the volatile fraction, although some minor compounds such as phenolic compounds also contribute. However, these properties are greatly affected by the incidence of certain factors, both intrinsic, such as the olive variety, and extrinsic, such as the growing conditions, so that each EVOO has a particular flavor. Furthermore, these flavors are susceptible to change under the influence of other factors throughout the oil's shelf-life, such as oxidation or temperature. This work offers a description of some of the most remarkable compounds responsible for EVOO's unique flavor and aroma, the factors affecting them, the mechanism that lead to the degradation of EVOO, and how flavors can be altered during the shelf-life of the oil, as well as several strategies suggested for the preservation of this flavor, on which the quality of the product also depends.
Collapse
|
23
|
Cecchi L, Migliorini M, Mulinacci N. Virgin Olive Oil Volatile Compounds: Composition, Sensory Characteristics, Analytical Approaches, Quality Control, and Authentication. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2013-2040. [PMID: 33591203 DOI: 10.1021/acs.jafc.0c07744] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Volatile organic compounds strongly contribute to both the positive and negative sensory attributes of virgin olive oil, and more and more studies have been published in recent years focusing on several aspects regarding these molecules. This Review is aimed at giving an overview on the state of the art about the virgin olive oil volatile compounds. Particular emphasis was given to the composition of the volatile fraction, the analytical issues and approaches for analysis, the sensory characteristics and interaction with phenolic compounds, and the approaches for supporting the Panel Test in virgin olive oil classification and in authentication of the botanical and geographic origin based on volatile compounds. A pair of detailed tables with a total of approximately 700 volatiles identified or tentatively identified to date and tables dealing with analytical procedures, sensory characteristics of volatiles, and specific chemometric approaches for quality assessment are also provided.
Collapse
Affiliation(s)
- Lorenzo Cecchi
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto F.no, Florence, Italy
| | - Marzia Migliorini
- Carapelli Firenze S.p.A., Via Leonardo da Vinci 31, 50028 Tavarnelle Val di Pesa, Florence, Italy
| | - Nadia Mulinacci
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto F.no, Florence, Italy
| |
Collapse
|
24
|
Lolis A, Badeka A, Kontominas M. Quality retention of extra virgin olive oil, Koroneiki cv. packaged in bag-in-box containers under long term storage: A comparison to packaging in dark glass bottles. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100549] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Neugebauer A, Granvogl M, Schieberle P. Characterization of the Key Odorants in High-Quality Extra Virgin Olive Oils and Certified Off-Flavor Oils to Elucidate Aroma Compounds Causing a Rancid Off-Flavor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5927-5937. [PMID: 32323988 DOI: 10.1021/acs.jafc.0c01674] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To identify the odorants responsible for a rancid off-flavor in olive oils, first, the key aroma compounds in a premium extra virgin olive oil (PreOO1) were characterized by the sensomics approach and were then compared to those present in a certified rancid off-flavor olive oil (RanOO1) obtained from the International Olive Council (IOC). By application of an aroma extract dilution analysis, 46 odorants were detected and subsequently identified in PreOO1 and 35 odorants in RanOO1, respectively. After quantitation by stable isotope dilution assays, calculation of odor activity values (OAVs; ratio of concentration to odor threshold) revealed only 5 odorants with OAVs > 10 in PreOO1, while 13 odorants showed OAVs > 100 in RanOO1, with (E,Z)-2,4-decadienal, hexanoic acid, octanal, hexanal, (E)-2-octenal, and (Z)-2-nonenal being among the most odor-active compounds. Thus, marker aroma compounds for this off-flavor type could be suggested. Additionally, based on the OAVs obtained, the overall aroma profiles of both oils were mimicked by aroma recombination experiments. As proof of concept, 16 marker odorants were quantitated in two additional extra virgin olive oils and in eight further olive oils eliciting a rancid off-flavor. Application of a principal component analysis (PCA) and a hierarchical cluster analysis successfully discriminated both categories of olive oils. In the 12 olive oils used, acetic acid showed the highest Pearson coefficient between the perceived intensity of the rancid defect and the odorant concentration. In particular, (E,Z)- and (E,E)-2,4-decadienal and (Z)-2-nonenal can be suggested as chemical markers for olive oil rancidity in combination with positive aroma markers, for example, acetaldehyde and (Z)-3-hexenal.
Collapse
Affiliation(s)
- Anja Neugebauer
- Lebensmittelchemie, Technische Universität München, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Michael Granvogl
- Lebensmittelchemie, Technische Universität München, Lise-Meitner-Straße 34, D-85354 Freising, Germany
- Universität Hohenheim, Institut für Lebensmittelchemie, Fachgebiet Lebensmittelchemie und Analytische Chemie (170a), Garbenstraße 28, 70599 Stuttgart, Germany
| | - Peter Schieberle
- Lebensmittelchemie, Technische Universität München, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| |
Collapse
|
26
|
Gu S, Li L, Huang H, Wang B, Zhang T. Antitumor, Antiviral, and Anti-Inflammatory Efficacy of Essential Oils from Atractylodes macrocephala Koidz. Produced with Different Processing Methods. Molecules 2019; 24:molecules24162956. [PMID: 31443182 PMCID: PMC6719198 DOI: 10.3390/molecules24162956] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/31/2022] Open
Abstract
Atractylodes macrocephala Koidz. has been used as an invigorating spleen drug for eliminating dampness and phlegm in China. According to recent researches, different processing methods may affect the drug efficacy, so we collected A. macrocephala from the Zhejiang Province, produced with different processing methods, crude A. macrocephala (CA) and bran-processed A. macrocephala (BA), then analyzed its essential oils (EOs) by GC/MS. The results showed 34 components representing 98.44% of the total EOs of CA were identified, and 46 components representing 98.02% of the total EOs of BA were identified. Atractylone is the main component in A. macrocephala. Compared with CA, BA has 46 detected compounds, 28 of which were identical, and 6 undetected compounds. Pharmacodynamic results revealed that the EOs of CA and atractylone exhibited more effective anticancer activity in HepG2, MCG803, and HCT-116 cells than the EOs of BA; while the EOs of BA exhibited simple antiviral effect on viruses H3N2, both the EOs and atractylone show anti-inflammatory activity by inhibiting the lipopolysaccharide (LPS)-induced nitric oxide (NO) production in ANA-1 cells.
Collapse
Affiliation(s)
- Sihao Gu
- School of Pharmacy, Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cai-lun Rd, Shanghai 201203, China
| | - Ling Li
- School of Pharmacy, Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cai-lun Rd, Shanghai 201203, China
| | - Hai Huang
- Experimental Teaching Center of Pharmaceutical Sciences, School of Pharmacy, Fudan University, 826 Zhang-heng Rd, Shanghai 201203, China
| | - Bing Wang
- School of Pharmacy, Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cai-lun Rd, Shanghai 201203, China.
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai-ke Rd, Shanghai 201203, China.
| | - Tong Zhang
- School of Pharmacy, Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cai-lun Rd, Shanghai 201203, China.
| |
Collapse
|