1
|
McGurk DT, Knighten LE, Peña Bú MJ, Christofferson FI, Rich SD, Masih PJ, Kesharwani T. DMTSF-mediated electrophilic cyclization for the synthesis of 3-thiomethyl-substituted benzo[ b]furan derivatives. Org Biomol Chem 2024. [PMID: 39422371 DOI: 10.1039/d4ob00958d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Benzofuran is an important backbone for molecules that make up several pharmaceuticals, herbicides/pesticides, and organo-electronics. An environmentally benign dimethyl(methylthio)sulfonium tetrafluoroborate salt was used as an electrophile to induce cyclization of o-alkynyl anisoles to form 2,3-disubstituted benzofurans. The cyclization is performed at ambient reaction conditions, only takes 12 hours to get excellent yields, and shows a high tolerance for various substituted alkynes. Also, a sulfurmethyl group obtained after the cyclization reactions allows for a cascade cyclization, and an alkyne is used in the reaction to create a thieno[3,2-b]benzofuran core structure.
Collapse
Affiliation(s)
- Declan T McGurk
- Department of Chemistry, University of West Florida, 11000 University Pkway, Pensacola, FL 32514, United States.
| | - Langley E Knighten
- Department of Chemistry, University of West Florida, 11000 University Pkway, Pensacola, FL 32514, United States.
| | - Maria J Peña Bú
- Department of Biology, University of West Florida, 11000 University Pkway, Pensacola, FL 32514, United States.
| | - Faith I Christofferson
- Department of Chemistry, University of West Florida, 11000 University Pkway, Pensacola, FL 32514, United States.
| | - Sierra D Rich
- Department of Chemistry, University of West Florida, 11000 University Pkway, Pensacola, FL 32514, United States.
| | - Prerna J Masih
- Department of Biology, University of West Florida, 11000 University Pkway, Pensacola, FL 32514, United States.
| | - Tanay Kesharwani
- Department of Chemistry, University of West Florida, 11000 University Pkway, Pensacola, FL 32514, United States.
| |
Collapse
|
2
|
Gazieva GA, Chegaev K. Special Issue "Development and Synthesis of Biologically Active Compounds". Int J Mol Sci 2024; 25:4015. [PMID: 38612824 PMCID: PMC11012345 DOI: 10.3390/ijms25074015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
The intention of this Special Issue is to focus on new achievements in the design, preparation, and in vitro and in vivo biological evaluation of bioactive molecules that can result in the development of natural or artificial potent compounds looking for promising pharmaceuticals and agrochemicals [...].
Collapse
Affiliation(s)
- Galina A. Gazieva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia
| | - Konstantin Chegaev
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy;
| |
Collapse
|
3
|
Kehoe RA, Lowry A, Light ME, Jones DJ, Byrne PA, McGlacken GP. Regioselective Partial Hydrogenation and Deuteration of Tetracyclic (Hetero)aromatic Systems Using a Simple Heterogeneous Catalyst. Chemistry 2024; 30:e202400102. [PMID: 38214926 DOI: 10.1002/chem.202400102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/13/2024]
Abstract
The introduction of added '3-dimensionality' through late-stage functionalisation of extended (hetero)aromatic systems is a powerful synthetic approach. The abundance of starting materials and cross-coupling methodologies to access the precursors allows for highly diverse products. Subsequent selective partial reduction can alter the core structure in a manner of interest to medicinal chemists. Herein, we describe the precise, partial reduction of multicyclic heteroaromatic systems using a simple heterogeneous catalyst. The approach can be extended to introduce deuterium (again at late-stage). Excellent yields can be obtained using simple reaction conditions.
Collapse
Affiliation(s)
- Roberta A Kehoe
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Robert Kane Building, Western Road, Cork
- Synthesis and Solid State Pharmaceutical Centre (SSPC), University of Limerick, Limerick
| | - Amy Lowry
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Robert Kane Building, Western Road, Cork
| | - Mark E Light
- Department of Chemistry, University of, Southampton, SO17 1BJ, United Kingdom
| | - David J Jones
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph-Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Peter A Byrne
- Synthesis and Solid State Pharmaceutical Centre (SSPC), University of Limerick, Limerick
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin Belfield, Dublin 4, Ireland
| | - Gerard P McGlacken
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Robert Kane Building, Western Road, Cork
- Synthesis and Solid State Pharmaceutical Centre (SSPC), University of Limerick, Limerick
| |
Collapse
|
4
|
Napiórkowska M, Kumaravel P, Amboo Mahentheran M, Kiernozek-Kalińska E, Grosicka-Maciąg E. New Derivatives of 1-(3-Methyl-1-Benzofuran-2-yl)Ethan-1-one: Synthesis and Preliminary Studies of Biological Activity. Int J Mol Sci 2024; 25:1999. [PMID: 38396676 PMCID: PMC10888192 DOI: 10.3390/ijms25041999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
A set of nine derivatives, including five brominated compounds, was synthesized and the structures of these novel compounds were confirmed using 1H and 13C NMR as well as ESI MS spectra. These compounds were tested on four different cancer cell lines, chronic myelogenous leukemia (K562), prostate cancer (PC3), colon cancer (SW620), human kidney cancer (Caki 1), and on healthy human keratocytes (HaCaT). MTT results reveal that two newly developed derivatives (6 and 8) exhibit selective action towards K562 cells and no toxic effect in HaCat cells. The biological activity of these two most promising compounds was evaluated by trypan blue assay, reactive oxygen species generation, and IL-6 secretion. To investigate the proapoptotic activity of selected compounds, the two following types of tests were performed: Annexin V Apoptosis Detection Kit I and Caspase-Glo 3/7 assay. The studies of the mechanism showed that both compounds have pro-oxidative effects and increase reactive oxygen species in cancer cells, especially at 12 h incubation. Through the Caspase-Glo 3/7 assay, the proapoptotic properties of both compounds were confirmed. The Annexin V-FITC test revealed that compounds 6 and 8 induce apoptosis in K562 cells. Both compounds inhibit the release of proinflammatory interleukin 6 (IL-6) in K562 cells. Additionally, all compounds were screened for their antibacterial activities using standard and clinical strains. Within the studied group, compound 7 showed moderate activity towards Gram-positive strains in antimicrobial studies, with MIC values ranging from 16 to 64 µg/mL.
Collapse
Affiliation(s)
- Mariola Napiórkowska
- Chair and Department of Biochemistry, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland; (P.K.); (M.A.M.)
| | - Pratheeba Kumaravel
- Chair and Department of Biochemistry, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland; (P.K.); (M.A.M.)
| | - Mithulya Amboo Mahentheran
- Chair and Department of Biochemistry, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland; (P.K.); (M.A.M.)
| | - Ewelina Kiernozek-Kalińska
- Department of Immunology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland
| | - Emilia Grosicka-Maciąg
- Department of Biochemistry and Laboratory Diagnostic, Collegium Medicum Cardinal Stefan Wyszyński University, Kazimierza Wóycickiego 1 Str., 01-938 Warsaw, Poland;
| |
Collapse
|
5
|
Kumar S, Ali I, Abbas F, Khan N, Gupta MK, Garg M, Kumar S, Kumar D. In-silico identification of small molecule benzofuran-1,2,3-triazole hybrids as potential inhibitors targeting EGFR in lung cancer via ligand-based pharmacophore modeling and molecular docking studies. In Silico Pharmacol 2023; 11:20. [PMID: 37575679 PMCID: PMC10412522 DOI: 10.1007/s40203-023-00157-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023] Open
Abstract
Lung cancer is one of the most common and deadly types of cancer worldwide, and the epidermal growth factor receptor (EGFR) has emerged as a promising therapeutic target for the treatment of this disease. In this study, we designed a library of 1840 benzofuran-1,2,3-triazole hybrids and conducted pharmacophore-based screening to identify potential EGFR inhibitors. The 20 identified compounds were further evaluated using molecular docking and molecular dynamics simulations to understand their binding interactions with the EGFR receptor. In-silico ADME and toxicity studies were also performed to assess their drug-likeness and safety profiles. The results of this study showed the benzofuran-1,2,3-triazole hybrids BENZ-0454, BENZ-0143, BENZ-1292, BENZ-0335, BENZ-0332, and BENZ-1070 dock score of - 10.2, - 10, - 9.9, - 9.8, - 9.7, - 9.6, while reference molecule - 7.9 kcal/mol for EGFR (PDB ID: 4HJO) respectively. The molecular docking and molecular dynamics simulations revealed that the identified compounds formed stable interactions with the active site of the receptor, indicating their potential as inhibitors. The in-silico ADME and toxicity studies suggested that the compounds had good pharmacokinetic and safety profiles, further supporting their potential as therapeutic agents. Finally, performed DFT studies on the best-selected ligands to gain further insights into their electronic properties. The findings of this study provide important insights into the potential of benzofuran-1,2,3-triazole hybrids as promising EGFR inhibitors for the treatment of lung cancer. Overall, this study provides a valuable starting point for the development of novel EGFR inhibitors with improved efficacy and safety profiles. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00157-1.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229 India
| | - Iqra Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad, 45550 Pakistan
| | - Faheem Abbas
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 People’s Republic of China
| | - Nimra Khan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 People’s Republic of China
| | - Manoj K. Gupta
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, H.R. 123031 India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University UP, Sector-125, Noida, 201313 India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229 India
| |
Collapse
|
6
|
Ayoub AJ, El-Achkar GA, Ghayad SE, Hariss L, Haidar RH, Antar LM, Mallah ZI, Badran B, Grée R, Hachem A, Hamade E, Habib A. Fluorinated Benzofuran and Dihydrobenzofuran as Anti-Inflammatory and Potential Anticancer Agents. Int J Mol Sci 2023; 24:10399. [PMID: 37373544 DOI: 10.3390/ijms241210399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Benzofuran and 2,3-dihydrobenzofuran scaffolds are heterocycles of high value in medicinal chemistry and drug synthesis. Targeting inflammation in cancer associated with chronic inflammation is a promising therapy. In the present study, we investigated the anti-inflammatory effects of fluorinated benzofuran and dihydrobenzofuran derivatives in macrophages and in the air pouch model of inflammation, as well as their anticancer effects in the human colorectal adenocarcinoma cell line HCT116. Six of the nine compounds suppressed lipopolysaccharide-stimulated inflammation by inhibiting the expression of cyclooxygenase-2 and nitric oxide synthase 2 and decreased the secretion of the tested inflammatory mediators. Their IC50 values ranged from 1.2 to 9.04 µM for interleukin-6; from 1.5 to 19.3 µM for Chemokine (C-C) Ligand 2; from 2.4 to 5.2 µM for nitric oxide; and from 1.1 to 20.5 µM for prostaglandin E2. Three novel synthesized benzofuran compounds significantly inhibited cyclooxygenase activity. Most of these compounds showed anti-inflammatory effects in the zymosan-induced air pouch model. Because inflammation may lead to tumorigenesis, we tested the effects of these compounds on the proliferation and apoptosis of HCT116. Two compounds with difluorine, bromine, and ester or carboxylic acid groups inhibited the proliferation by approximately 70%. Inhibition of the expression of the antiapoptotic protein Bcl-2 and concentration-dependent cleavage of PARP-1, as well as DNA fragmentation by approximately 80%, were described. Analysis of the structure-activity relationship suggested that the biological effects of benzofuran derivatives are enhanced in the presence of fluorine, bromine, hydroxyl, and/or carboxyl groups. In conclusion, the designed fluorinated benzofuran and dihydrobenzofuran derivatives are efficient anti-inflammatory agents, with a promising anticancer effect and a combinatory treatment in inflammation and tumorigenesis in cancer microenvironments.
Collapse
Affiliation(s)
- Abeer J Ayoub
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath 1104, Lebanon
- Department of Biological Sciences, School of Arts and Sciences, Lebanese International University, Bekaa Campus, Bekaa 146404, Lebanon
| | - Ghewa A El-Achkar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Faculty of Medicine, Saint George University of Beirut, Achrafieh, Beirut 1100-2807, Lebanon
| | - Sandra E Ghayad
- Department of Biology, Faculty of Sciences II, EDST, Lebanese University, Fanar 90656, Lebanon
- Center for CardioVascular and Nutrition Research (C2VN), INSERM 1263, INRAE 1260, Aix-Marseille University, 13385 Marseille, France
| | - Layal Hariss
- Laboratory for Medicinal Chemistry and Natural Products, Faculty of Sciences I, PRASE-EDST, Lebanese University, Hadath 1104, Lebanon
| | - Razan H Haidar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath 1104, Lebanon
| | - Leen M Antar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath 1104, Lebanon
| | - Zahraa I Mallah
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath 1104, Lebanon
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath 1104, Lebanon
| | - René Grée
- Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000 Rennes, France
| | - Ali Hachem
- Laboratory for Medicinal Chemistry and Natural Products, Faculty of Sciences I, PRASE-EDST, Lebanese University, Hadath 1104, Lebanon
| | - Eva Hamade
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath 1104, Lebanon
| | - Aida Habib
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| |
Collapse
|
7
|
BTEAC Catalyzed Ultrasonic-Assisted Synthesis of Bromobenzofuran-Oxadiazoles: Unravelling Anti-HepG-2 Cancer Therapeutic Potential through In Vitro and In Silico Studies. Int J Mol Sci 2023; 24:ijms24033008. [PMID: 36769327 PMCID: PMC9917671 DOI: 10.3390/ijms24033008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
In this work, BTEAC (benzyl triethylammonium chloride) was employed as a phase transfer catalyst in an improved synthesis (up to 88% yield) of S-alkylated bromobenzofuran-oxadiazole scaffolds BF1-9. These bromobenzofuran-oxadiazole structural hybrids BF1-9 were evaluated in vitro against anti-hepatocellular cancer (HepG2) cell line as well as for their in silico therapeutic potential against six key cancer targets, such as EGFR, PI3K, mTOR, GSK-3β, AKT, and Tubulin polymerization enzymes. Bromobenzofuran structural motifs BF-2, BF-5, and BF-6 displayed the best anti-cancer potential and with the least cell viabilities (12.72 ± 2.23%, 10.41 ± 0.66%, and 13.08 ± 1.08%), respectively, against HepG2 liver cancer cell line, and they also showed excellent molecular docking scores against EGFR, PI3K, mTOR, and Tubulin polymerization enzymes, which are major cancer targets. Bromobenzofuran-oxadiazoles BF-2, BF-5, and BF-6 displayed excellent binding affinities with the active sites of EGFR, PI3K, mTOR, and Tubulin polymerization enzymes in the molecular docking studies as well as in MMGBSA and MM-PBSA studies. The stable bindings of these structural hybrids BF-2, BF-5, and BF-6 with the enzyme targets EGFR and PI3K were further confirmed by molecular dynamic simulations. These investigations revealed that 2,5-dimethoxy-based bromobenzofuran-oxadiazole BF-5 (10.41 ± 0.66% cell viability) exhibited excellent cytotoxic therapeutic efficacy. Moreover, computational studies also suggested that the EGFR, PI3K, mTOR, and Tubulin polymerization enzymes were the probable targets of this BF-5 scaffold. In silico approaches, such as molecular docking, molecular dynamics simulations, and DFT studies, displayed excellent association with the experimental biological data of bromobenzofuran-oxadiazoles BF1-9. Thus, in silico and in vitro results anticipate that the synthesized bromobenzofuran-oxadiazole hybrid BF-5 possesses prominent anti-liver cancer inhibitory effects and can be used as lead for further investigation for anti-HepG2 liver cancer therapy.
Collapse
|
8
|
Design, synthesis, anticancer activity of new amide derivatives derived from 1,2,3-triazole-benzofuran hybrids: An insights from molecular docking, molecular dynamics simulation and DFT studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Rana G, Kar A, Kundal S, Musib D, Jana U. DDQ/Fe(NO 3) 3-Catalyzed Aerobic Synthesis of 3-Acyl Indoles and an In Silico Study for the Binding Affinity of N-Tosyl-3-acyl Indoles toward RdRp against SARS-CoV-2. J Org Chem 2023; 88:838-851. [PMID: 36622749 DOI: 10.1021/acs.joc.2c02009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the present study, we herein report a DDQ-catalyzed new protocol for the synthesis of substituted 3-acylindoles. Being a potential system for virtual hydrogen storage, introduction of catalytic DDQ in combination with Fe(NO3)3·9H2O and molecular oxygen as co-catalysts offers a regioselective oxo-functionalization of C-3 alkyl-/aryllidine indolines even with scale-up investigations. Intermediate isolation, their spectroscopic characterization, and the density functional theory calculations indicate that the method involves dehydrogenative allylic hydroxylation and 1,3-functional group isomerization/aromatization followed by terminal oxidation to afford 3-acylindoles quantitatively with very high regioselectivity. This method is very general for a large number of substrates with varieties of functional groups tolerance emerging high-yield outcome. Moreover, molecular docking studies were performed for some selected ligands with an RNA-dependent RNA polymerase complex (RdRp complex) of SARS-CoV-2 to illustrate the binding potential of those ligands. The docking results revealed that few of the ligands possess the potential to inhibit the RdRp of SARS-Cov-2 with binding energies (-6.7 to -8.19 kcal/mol), which are comparably higher with respect to the reported binding energies of the conventional re-purposed drugs such as Remdesivir, Ribavirin, and so forth (-4 to -7 kcal/mol).
Collapse
Affiliation(s)
- Gopal Rana
- Department of Chemistry, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Abhishek Kar
- Department of Chemistry, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Sandip Kundal
- Department of Chemistry, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Dulal Musib
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal 795004, Manipur, India
| | - Umasish Jana
- Department of Chemistry, Jadavpur University, Kolkata 700 032, West Bengal, India
| |
Collapse
|
10
|
Qureshi F, Nawaz M, Hisaindee S, Almofty SA, Ansari MA, Jamal QMS, Ullah N, Taha M, Alshehri O, Huwaimel B, Bin Break MK. Microwave assisted synthesis of 2-amino-4-chloro-pyrimidine derivatives: Anticancer and computational study on potential inhibitory action against COVID-19. ARAB J CHEM 2022; 15:104366. [PMID: 36276298 PMCID: PMC9580235 DOI: 10.1016/j.arabjc.2022.104366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
We report microwave synthesis of seven unique pyrimidine anchored derivatives (1–7) incorporating multifunctional amino derivatives along with their in vitro anticancer activity and their activity against COVID-19 in silico. 1–7 were characterized by different analytical and spectroscopic techniques. Cytotoxic activity of 1–7 was tested against HCT116 and MCF7 cell lines, whereby 6 exhibited highest anticancer activity on HCT116 and MCF7 with EC50 values of 89.24 ± 1.36 µM and 89.37 ± 1.17 µM, respectively. Molecular docking was performed for derivatives (1–7) on main protease for SARS-CoV-2 (PDB ID: 6LU7). Results revealed that most of the derivatives had superior or equivalent affinity for the 3CLpro, as determined by docking and binding energy scores. 6 topped the rest with highest binding energy score of −8.12 kcal/mol with inhibition constant reported as 1.11 µM. ADME, drug-likeness, and pharmacokinetics properties of 1–7 were tested using Swiss ADME tool. Toxicity analysis was done with pkCSM online server. All derivatives showed high GI absorption. Except 1 and 3, all derivatives showed blood brain barrier permeability. Most derivatives showed negative logKp values suggesting derivatives are less skin permeable and bioavailability score of all derivatives was 0.55. The toxicity analysis demonstrated that all derivatives have no skin sensitization properties. 6 and 7 showed maximum tolerated dose (Human) values of −0.03 and −0.018, respectively and absence of AMES toxicity.
Collapse
Affiliation(s)
- Faiza Qureshi
- Deanship of Scientific Research, Imam Abdulrahman Bin Faisal University, P.0. Box 1982, Dammam 31441, Saudi Arabia.,Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Soleiman Hisaindee
- Chemistry Department, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates
| | - Sarah Ameen Almofty
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.0. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah, Saudi Arabia
| | - Nisar Ullah
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ohood Alshehri
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.,Department of Chemistry, College of Science and Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | | |
Collapse
|
11
|
Ultrasonic-Assisted Synthesis of Benzofuran Appended Oxadiazole Molecules as Tyrosinase Inhibitors: Mechanistic Approach through Enzyme Inhibition, Molecular Docking, Chemoinformatics, ADMET and Drug-Likeness Studies. Int J Mol Sci 2022; 23:ijms231810979. [PMID: 36142889 PMCID: PMC9500974 DOI: 10.3390/ijms231810979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Furan-oxadiazole structural hybrids belong to the most promising and biologically active classes of oxygen and nitrogen containing five member heterocycles which have expanded therapeutic scope and potential in the fields of pharmacology, medicinal chemistry and pharmaceutics. A novel series 5a-j of benzofuran-oxadiazole molecules incorporating S-alkylated amide linkage have been synthesized using ultrasonic irradiation and screened for bacterial tyrosinase inhibition activity. Most of the synthesized furan-oxadiazole structural motifs exhibited significant tyrosinase inhibition activity in the micromolar range, with one of the derivatives being more potent than the standard drug ascorbic acid. Among the tested compounds, the scaffold 5a displayed more tyrosinase inhibition efficacy IC50 (11 ± 0.25 μM) than the ascorbic acid IC50 (11.5 ± 0.1 μM). Compounds 5b, 5c and 5d efficiently inhibited bacterial tyrosinase with IC50 values in the range of 12.4 ± 0.0-15.5 ± 0.0 μM. The 2-fluorophenylacetamide containing furan-oxadiazole compound 5a may be considered as a potential lead for tyrosinase inhibition with lesser side effects as a skin whitening and malignant melanoma anticancer agent.
Collapse
|
12
|
Sachdeva H, Khaturia S, Saquib M, Khatik N, Khandelwal AR, Meena R, Sharma K. Oxygen- and Sulphur-Containing Heterocyclic Compounds as Potential Anticancer Agents. Appl Biochem Biotechnol 2022; 194:6438-6467. [PMID: 35900713 DOI: 10.1007/s12010-022-04099-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/28/2022]
Abstract
Oxygen- and sulphur-based heterocycles form the core structure of many biologically active molecules as well as U.S. FDA-approved drugs. Moreover, they possess broad range of biological activities, viz. anticancer, antiinflammatory, antioxidant, antitumour, antibacterial, antiviral, antidiabetic, anticonvulsant, anti-tubercular, analgesic, anti-leishmanial, antimalarial, antifungal, and anti-histaminic, Hence, O- and S-based heterocycles are gaining more attention in recent years on the road to the discovery of innovative anticancer drugs after the extensive investigation of nitrogen-based heterocycles as anticancer agents. Several attempts have been made to synthesize fused oxygen- and sulphur-based heterocyclic derivatives as joining one heterocyclic moiety with another may lead to improvement in the biological profile of a molecule. Humans have been cursed with cancer since long time. Despite the development of several heterocyclic anticancer medications such as 5-fluorouracil, doxorubicin, methotrexate, and daunorubicin, cure of cancer is difficult. Hence, researchers are trying to synthesize new fused/spiro heterocyclic molecules to discover novel anticancer drugs which may show promising anticancer effects with fewer side effects. Furthermore, fused heterocycles behave as DNA intercalating agents which have the ability to interact with DNA, leading to cell death thereby exerting anticancer effect. This review article highlights the synthesis and anticancer potentiality of oxygen- and sulphur-containing heterocyclic compounds covering the period from 2011 to 2021.
Collapse
Affiliation(s)
- Harshita Sachdeva
- Department of Chemistry, University of Rajasthan, 302004, Jaipur, Rajasthan, India.
| | - Sarita Khaturia
- Department of Chemistry, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh (Sikar), Rajasthan, India
| | - Mohammad Saquib
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Narsingh Khatik
- Department of Chemistry, University of Rajasthan, 302004, Jaipur, Rajasthan, India
| | | | - Ravina Meena
- Department of Chemistry, University of Rajasthan, 302004, Jaipur, Rajasthan, India
| | - Khushboo Sharma
- Department of Chemistry, University of Rajasthan, 302004, Jaipur, Rajasthan, India
| |
Collapse
|
13
|
Hadiyal SD, Lalpara JN, Dhaduk BB, Joshi HS. Rational synthesis, anticancer activity, and molecular docking studies of novel benzofuran liked thiazole hybrids. Mol Divers 2022:10.1007/s11030-022-10493-7. [DOI: 10.1007/s11030-022-10493-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/02/2022] [Indexed: 12/19/2022]
|
14
|
Structure-Activity Relationship of Benzofuran Derivatives with Potential Anticancer Activity. Cancers (Basel) 2022; 14:cancers14092196. [PMID: 35565325 PMCID: PMC9099631 DOI: 10.3390/cancers14092196] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/17/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Cancer is the leading cause of death worldwide and responsible for killing approximately 10 million people per year. Fused heterocyclic ring systems such as benzofuran have emerged as important scaffolds with many biological properties. Furthermore, derivatives of benzofurans demonstrate a wide range of biological and pharmacological activities, including anticancer properties. The main aim of this review is to highlight and discuss the contribution of benzofuran derivatives as anticancer agents by considering and discussing the chemical structure of 20 different compounds. Evaluating the chemical structure of these compounds will guide future medicinal chemists in designing new drugs for cancer therapy that might give excellent results in in vivo/in vitro applications. Abstract Benzofuran is a heterocyclic compound found naturally in plants and it can also be obtained through synthetic reactions. Multiple physicochemical characteristics and versatile features distinguish benzofuran, and its chemical structure is composed of fused benzene and furan rings. Benzofuran derivatives are essential compounds that hold vital biological activities to design novel therapies with enhanced efficacy compared to conventional treatments. Therefore, medicinal chemists used its core to synthesize new derivatives that can be applied to a variety of disorders. Benzofuran exhibited potential effectiveness in chronic diseases such as hypertension, neurodegenerative and oxidative conditions, and dyslipidemia. In acute infections, benzofuran revealed anti-infective properties against microorganisms like viruses, bacteria, and parasites. In recent years, the complex nature and the number of acquired or resistant cancer cases have been largely increasing. Benzofuran derivatives revealed potential anticancer activity with lower incidence or severity of adverse events normally encountered during chemotherapeutic treatments. This review discusses the structure–activity relationship (SAR) of several benzofuran derivatives in order to elucidate the possible substitution alternatives and structural requirements for a highly potent and selective anticancer activity.
Collapse
|
15
|
Irfan A, Faiz S, Rasul A, Zafar R, Zahoor AF, Kotwica-Mojzych K, Mojzych M. Exploring the Synergistic Anticancer Potential of Benzofuran-Oxadiazoles and Triazoles: Improved Ultrasound- and Microwave-Assisted Synthesis, Molecular Docking, Hemolytic, Thrombolytic and Anticancer Evaluation of Furan-Based Molecules. Molecules 2022; 27:1023. [PMID: 35164286 PMCID: PMC8838991 DOI: 10.3390/molecules27031023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 01/06/2023] Open
Abstract
Ultrasound- and microwave-assisted green synthetic strategies were applied to furnish benzofuran-oxadiazole 5a-g and benzofuran-triazole 7a-h derivatives in good to excellent yields (60-96%), in comparison with conventional methods (36-80% yield). These synthesized derivatives were screened for hemolysis, thrombolysis and anticancer therapeutic potential against an A549 lung cancer cell line using an MTT assay. Derivatives 7b (0.1%) and 5e (0.5%) showed the least toxicity against RBCs. Hybrid 7f showed excellent thrombolysis activity (61.4%) when compared against reference ABTS. The highest anticancer activity was displayed by the 5d structural hybridwith cell viability 27.49 ± 1.90 and IC50 6.3 ± 0.7 μM values, which were considerably lower than the reference drug crizotinib (IC50 8.54 ± 0.84 μM). Conformational analysis revealed the spatial arrangement of compound 5d, which demonstrated its significant potency in comparison with crizotinib; therefore, scaffold 5d would be a promising anticancer agent on the basis of cytotoxicity studies, as well as in silico modeling studies.
Collapse
Affiliation(s)
- Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (S.F.)
| | - Sadia Faiz
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (S.F.)
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Rehman Zafar
- Department of Pharmaceutical Chemistry, Riphah International University, Islamabad 44000, Pakistan;
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (S.F.)
| | - Katarzyna Kotwica-Mojzych
- Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3-Go Maja 54, 08-110 Siedlce, Poland
| |
Collapse
|
16
|
Cong NT, Trang HTX, Dung PD, Phuong TH, Trung VQ, Dat ND, Anh DTT, Tuyen NV, Van Meervelt L. Synthesis, structure and in vitro cytotoxicity testing of some 2-aroylbenzofuran-3-ols. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2020; 76:874-882. [PMID: 32887858 DOI: 10.1107/s2053229620011018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/11/2020] [Indexed: 11/10/2022]
Abstract
Five 2-aroyl-5-bromobenzo[b]furan-3-ol compounds (two of which are new) and four new 2-aroyl-5-iodobenzo[b]furan-3-ol compounds were synthesized starting from salicylic acid. The compounds were characterized by mass spectrometry and 1H NMR and 13C NMR spectroscopy. Single-crystal X-ray diffraction studies of four compounds, namely, (5-bromo-3-hydroxybenzofuran-2-yl)(4-fluorophenyl)methanone, C15H8BrFO3, (5-bromo-3-hydroxybenzofuran-2-yl)(4-chlorophenyl)methanone, C15H8BrClO3, (5-bromo-3-hydroxybenzofuran-2-yl)(4-bromophenyl)methanone, C15H8Br2O3, and (4-bromophenyl)(3-hydroxy-5-iodobenzofuran-2-yl)methanone, C15H8BrIO3, were also carried out. The compounds were tested for their in vitro cytotoxicity on the four human cancer cell lines KB, Hep-G2, Lu-1 and MCF7. Six compounds show good inhibiting abilities on Hep-G2 cells, with IC50 values of 1.39-8.03 µM.
Collapse
Affiliation(s)
- Nguyen Tien Cong
- Faculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District No. 5, Ho Chi Minh City, Vietnam
| | - Huynh Thi Xuan Trang
- Faculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District No. 5, Ho Chi Minh City, Vietnam
| | - Pham Duc Dung
- Faculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District No. 5, Ho Chi Minh City, Vietnam
| | - Tran Hoang Phuong
- Faculty of Chemistry, University of Sciences, Vietnam National University, 227 Nguyen Van Cu Street, District No. 5, Ho Chi Minh City 721337, Vietnam
| | - Vu Quoc Trung
- Faculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay District, Hanoi 100000, Vietnam
| | - Nguyen Dang Dat
- Faculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay District, Hanoi 100000, Vietnam
| | - Dang Thi Tuyet Anh
- Institute of Chemistry, Viet Nam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi 100000, Vietnam
| | - Nguyen Van Tuyen
- Institute of Chemistry, Viet Nam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi 100000, Vietnam
| | - Luc Van Meervelt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, PO box 2404, Leuven (Heverlee), B-3001, Belgium
| |
Collapse
|
17
|
Nazmy MH, Mekheimer RA, Shoman ME, Abo-Elsebaa M, Abd-Elmonem M, Sadek KU. Densely functionalized cinnolines: Controlled microwave-assisted facile one-pot multi-component synthesis and in vitro anticancer activity via apoptosis induction. Bioorg Chem 2020; 101:103932. [PMID: 32506019 DOI: 10.1016/j.bioorg.2020.103932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 11/25/2022]
Abstract
There is an urging continuous need for novel anti-cancer agents due to persistent chemoresistance. Herein, newly synthesized cinnolines are evaluated for their possible anticancer activities and suggested mechanisms. In the current study, a simple and efficient synthesis of densely functionalized cinnolines has been developed that relied on multi-component reaction of ethyl 5-cyano-4-methyl-1-aryl-6-oxo-1,6-dihydropyridazine-3-carboxylates with aromatic aldehydes and nitromethane in dioxane/pipridine under controlled microwave heating. Selected cinnolines (4a-c, e, h, j-n, q-v) were tested for possible anticancer activity using in vitro one dose assay at National Cancer institute, USA. Only cinnoline 4b stood out as the most potent cinnoline derivative (mean GI%=26.33) with broad-spectrum antitumor activity against the most tested cancer cell lines from all subpanels. The target cinnoline 4b emerged as the most active derivative against both leukemia RPMI-8226 and melanoma LOX IMVI cell lines (GI% = 106.06 and 82.1) respectively, with IC50 values equal to 17.12 ± 1.31 and 12.32 ± 0.75 μg/mL, which are comparable to those of staurosporin; 24.97 ± 1.47 and 8.45 ± 0.42 μg/mL, respectively. Cinnoline 4b influenced cell cycle distribution causing pre-G1 apoptosis and cell growth arrest at G2/M phase. It also induced apoptosis in both cell lines as manifested by significant increase in the percent of annexin V-FITC positive apoptotic cells in leukemia RPMI-8226 cells (from 1.09% to 12.47%) and melanoma LOX IMVI (from 1.32% to 19.05%). In addition, it showed lower expression levels of anti-apoptotic Bcl-2 protein, and higher expression levels of pro-apoptotic proteins; Bax, p53, cytochrome c, caspases 3 and 9. CONCLUSION: Induction of mitochondrial intrinsic pathway of apoptosis is a possible mechanism by which cinnoline 4b may confer its anticancer activity.
Collapse
Affiliation(s)
- Maiiada Hassan Nazmy
- Biochemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | | | - Mai E Shoman
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Mohamed Abo-Elsebaa
- Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mohamed Abd-Elmonem
- Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Kamal Usef Sadek
- Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|