1
|
Hu B, Peng X, Tang C, Geng M, Yao S, Ai J, Ye Y. 13,14-seco withaphysalins from Physalis minima and their inhibitory effects on NLRP3 inflammasome activation. Bioorg Chem 2024; 151:107630. [PMID: 39059073 DOI: 10.1016/j.bioorg.2024.107630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Seven new 13,14-seco withaphysalins including two new skeletons (1 and 9) were isolated from the whole plants of Physalis minima, together with three known analogues (6-8). Among them, compound 1 was an extremely rare steroid with a 6, 8-cyclo ring. Their structures were established by extensive analysis of spectroscopic data, experimental electronic circular dichroism measurements, and single-crystal X-ray crystallographic analysis. In Raw264.7 cells, compounds 1-3, 5, 6, and 8 demonstrated potent ability to reduce the NLRP3-dependent caspase-1 activation. Among these compounds, 1 and 2 showed a superior potential, consistently concentration-dependent downregulating NLRP3-dependent proinflammatory cytokine IL-1β production in macrophage. Mechanistically, compounds 1 and 2 reduced the cleavage of caspase-1 and GSDMD, and exhibited no obvious impact both on the NF-κB activation and the expression of NLRP3 and IL-1β, suggesting that the compounds target the activation of the NLRP3 pathway mainly by inhibiting the NLRP3 inflammasome activation step rather than the priming step.
Collapse
Affiliation(s)
- Bintao Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xia Peng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chunping Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Sheng Yao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| | - Jing Ai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| | - Yang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China.
| |
Collapse
|
2
|
Nguyen NP, Le QG, Truong VN, Nguyen TND, Phan NTT, Tran MH. In vitro inhibition of 5-α reductase and in vivo suppression of benign prostatic hyperplasia by Physalis angulata ethyl acetate extract. Fitoterapia 2024; 175:105950. [PMID: 38599338 DOI: 10.1016/j.fitote.2024.105950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
The inhibitory effect against 5-α reductase of the ethyl acetate (EA) extract from Physalis angulata was evaluated in vitro using mouse prostate homogenates, and the suppression of benign prostatic hyperplasia (BPH) was assessed in a mouse model of testosterone-induced BPH. The EA extract exhibited a potentially inhibitory effect on 5-α reductase with an IC50 of 197 μg/ml. In BPH mice, the EA extract at a dose of 12 mg/kg was comparable to finasteride 5 mg/kg in suppressing BPH in terms of reducing absolute enlarged prostate weight (p < 0.05 vs. BPH group) and mitigating the hypertrophy of glandular elements and prostate connective tissue. Identification of chemical ingredients in the EA extract by UPLC-QTOF-MS revealed 37 substances belonging chiefly to flavonoids and physalins. Further quantification of the EA extract by HPLC-PDA methods revealed that chlorogenic acid, and rutin were the main components. Molecular docking studies of chlorogenic acid and rutin on 5-α reductase showed their high affinity to the enzyme with binding energies of -9.3 and - 9.2 kcal/mol, respectively compared with finasteride (- 10.3 kcal/mol). Additionally, chlorogenic acid inhibited 5-α reductase with an IC50 of 12.07 µM while rutin did not. The presence of chlorogenic acid in the EA extract may explain the inhibitory effects of the EA extract on 5-α reductase, and thus the suppression of BPH.
Collapse
Affiliation(s)
- Ngoc Phuc Nguyen
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Viet Nam
| | - Quoc Giang Le
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Viet Nam
| | - Vinh Nghi Truong
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Viet Nam
| | - Thi Ngoc Dung Nguyen
- Department of Analytical Chemistry and Drug Quality Control, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam
| | | | - Manh Hung Tran
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Viet Nam.
| |
Collapse
|
3
|
Zhang J, Xu X, Zhao Y, Ren C, Gu M, Zhang H, Wu P, Wang Y, Kong L, Han C. Target Separation and Potential Anticancer Activity of Withanolide-Based Glucose Transporter Protein 1 Inhibitors from Physalis angulata var. villosa. JOURNAL OF NATURAL PRODUCTS 2024; 87:2-13. [PMID: 38117981 DOI: 10.1021/acs.jnatprod.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The glucose transporter 1 (GLUT1) protein is involved in the basal-level absorption of glucose in tumor cells. Inhibiting GLUT1 decreases tumor cell proliferation and induces tumor cell damage. Natural GLUT1 inhibitors have been studied only to a small extent, and the structures of known natural GLUT1 inhibitors are limited to a few classes of natural products. Therefore, discovering and researching other natural GLUT1 inhibitors with novel scaffolds are essential. Physalis angulata L. var. villosa is a plant known as Mao-Ku-Zhi (MKZ). Withanolides are the main phytochemical components of MKZ. MKZ extracts and the components of MKZ exhibited antitumor activity in recent pharmacological studies. However, the antitumor-active components of MKZ and their molecular mechanisms remain unknown. A cell membrane-biomimetic nanoplatform (CM@Fe3O4/MIL-101) was used for target separation of potential GLUT1 inhibitors from MKZ. A new withanolide, physagulide Y (2), together with six known withanolides (1, 3-7), was identified as a potential GLUT1 inhibitor. Physagulide Y was the most potent GLUT1 inhibitor, and its antitumor activity and possible mechanism of action were explored in MCF-7 human cancer cells. These findings advance the development of technologies for the targeted separation of natural products and identify a new molecular framework for the investigation of natural GLUT1 inhibitors.
Collapse
Affiliation(s)
- Jinghan Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P.R. China
| | - Xiao Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P.R. China
| | - Yu Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P.R. China
| | - Chunling Ren
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P.R. China
| | - Mengzhen Gu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P.R. China
| | - Haili Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P.R. China
| | - Peiye Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P.R. China
| | - Yun Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P.R. China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P.R. China
| | - Chao Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P.R. China
| |
Collapse
|
4
|
Dembitsky VM. Fascinating Furanosteroids and Their Pharmacological Profile. Molecules 2023; 28:5669. [PMID: 37570639 PMCID: PMC10419491 DOI: 10.3390/molecules28155669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
This review article delves into the realm of furanosteroids and related isoprenoid lipids derived from diverse terrestrial and marine sources, exploring their wide array of biological activities and potential pharmacological applications. Fungi, fungal endophytes, plants, and various marine organisms, including sponges, corals, molluscs, and other invertebrates, have proven to be abundant reservoirs of these compounds. The biological activities exhibited by furanosteroids and related lipids encompass anticancer, cytotoxic effects against various cancer cell lines, antiviral, and antifungal effects. Notably, the discovery of exceptional compounds such as nakiterpiosin, malabaricol, dysideasterols, and cortistatins has revealed their potent anti-tuberculosis, antibacterial, and anti-hepatitis C attributes. These compounds also exhibit activity in inhibiting protein kinase C, phospholipase A2, and eliciting cytotoxicity against cancer cells. This comprehensive study emphasizes the significance of furanosteroids and related lipids as valuable natural products with promising therapeutic potential. The remarkable biodiversity found in both terrestrial and marine ecosystems offers an extensive resource for unearthing novel biologically active compounds, paving the way for future drug development and advancements in biomedical research. This review presents a compilation of data obtained from various studies conducted by different authors who employed the PASS software 9.1 to evaluate the biological activity of natural furanosteroids and compounds closely related to them. The utilization of the PASS software in this context offers valuable advantages, such as screening large chemical libraries, identifying compounds for subsequent experimental investigations, and gaining insights into potential biological activities based on their structural features. Nevertheless, it is crucial to emphasize that experimental validation remains indispensable for confirming the predicted activities.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
5
|
Liu W, Zhang H, Wan H, Hou J, Lee D, Xu J, Guo Y. Anti-inflammatory withanolides from the aerial parts of Physalis minima. PHYTOCHEMISTRY 2022; 202:113301. [PMID: 35780926 DOI: 10.1016/j.phytochem.2022.113301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Eight undescribed and two known withanolides were obtained from the aerial parts of Physalis minima. The structures of these compounds were defined by spectroscopic methods including 1D and 2D NMR, HRESIMS, and electronic circular dichroism (ECD) data analysis. Physminin E was elucidated to be a rare 13,14-seco-withanolide. Inhibitory effects of these compounds on nitric oxide (NO) production were evaluated by using LPS-activated RAW264.7 macrophages, and physminin C was shown to be the most active with an IC50 value of 3.5 μM. The further mechanistic analysis of NO inhibition was performed by molecular docking and Western blotting.
Collapse
Affiliation(s)
- Wenhui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, People's Republic of China
| | - Han Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, People's Republic of China
| | - Hongxu Wan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, People's Republic of China
| | - Jiantong Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, People's Republic of China
| | - Dongho Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
6
|
Kowalczyk T, Merecz-Sadowska A, Rijo P, Mori M, Hatziantoniou S, Górski K, Szemraj J, Piekarski J, Śliwiński T, Bijak M, Sitarek P. Hidden in Plants-A Review of the Anticancer Potential of the Solanaceae Family in In Vitro and In Vivo Studies. Cancers (Basel) 2022; 14:1455. [PMID: 35326606 PMCID: PMC8946528 DOI: 10.3390/cancers14061455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Many of the anticancer agents that are currently in use demonstrate severe side effects and encounter increasing resistance from the target cancer cells. Thus, despite significant advances in cancer therapy in recent decades, there is still a need to discover and develop new, alternative anticancer agents. The plant kingdom contains a range of phytochemicals that play important roles in the prevention and treatment of many diseases. The Solanaceae family is widely used in the treatment of various diseases, including cancer, due to its bioactive ingredient content. The purpose of this literature review is to highlight the antitumour activity of Solanaceae extracts-single isolated compounds and nanoparticles with extracts-and their synergistic effect with chemotherapeutic agents in various in vitro and in vivo cancer models. In addition, the biological properties of many plants of the Solanaceae family have not yet been investigated, which represents a challenge and an opportunity for future anticancer therapy.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| | - Patricia Rijo
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisbon, Portugal;
- iMed.ULisboa—Research Institute for Medicines, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Karol Górski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Janusz Piekarski
- Department of Surgical Oncology, Chair of Oncology, Medical University in Lodz, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, 93-513 Lodz, Poland;
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland
| |
Collapse
|
7
|
Ramakrishna Pillai J, Wali AF, Menezes GA, Rehman MU, Wani TA, Arafah A, Zargar S, Mir TM. Chemical Composition Analysis, Cytotoxic, Antimicrobial and Antioxidant Activities of Physalis angulata L.: A Comparative Study of Leaves and Fruit. Molecules 2022; 27:1480. [PMID: 35268579 PMCID: PMC8911865 DOI: 10.3390/molecules27051480] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Physalis angulata L. belongs to the family Solanaceae and is distributed throughout the tropical and subtropical regions. Physalis angulata leaf and fruit extracts were assessed for in vitro anticancer, antioxidant activity, and total phenolic and flavonoid content. The GC-MS technique investigated the chemical composition and structure of bioactive chemicals reported in extracts. The anticancer activity results revealed a decrease in the percentage of anticancer cells' viability in a concentration- and time-dependent way. We also noticed morphological alterations in the cells, which we believe are related to Physalis angulata extracts. Under light microscopy, we observed that as the concentration of ethanolic extract (fruit and leaves) treated HeLa cells increased, the number of cells began to decrease.
Collapse
Affiliation(s)
- Jayachithra Ramakrishna Pillai
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Adil Farooq Wali
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Godfred Antony Menezes
- Department of Microbiology, RAKCOMS, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.U.R.); (A.A.)
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.U.R.); (A.A.)
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Tahir Maqbool Mir
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Mississippi, MS 38677, USA;
| |
Collapse
|
8
|
Recent Advances in the Chemistry and Therapeutic Evaluation of Naturally Occurring and Synthetic Withanolides. Molecules 2022; 27:molecules27030886. [PMID: 35164150 PMCID: PMC8840339 DOI: 10.3390/molecules27030886] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 11/18/2022] Open
Abstract
Natural products are a major source of biologically active compounds that make promising lead molecules for developing efficacious drug-like molecules. Natural withanolides are found in many flora and fauna, including plants, algae, and corals, that traditionally have shown multiple health benefits and are known for their anti-cancer, anti-inflammatory, anti-bacterial, anti-leishmaniasis, and many other medicinal properties. Structures of these withanolides possess a few reactive sites that can be exploited to design and synthesize more potent and safe analogs. In this review, we discuss the literature evidence related to the medicinal implications, particularly anticancer properties of natural withanolides and their synthetic analogs, and provide perspectives on the translational potential of these promising compounds.
Collapse
|
9
|
Abstract
Covering: March 2010 to December 2020. Previous review: Nat. Prod. Rep., 2011, 28, 705This review summarizes the latest progress and perspectives on the structural classification, biological activities and mechanisms, metabolism and pharmacokinetic investigations, biosynthesis, chemical synthesis and structural modifications, as well as future research directions of the promising natural withanolides. The literature from March 2010 to December 2020 is reviewed, and 287 references are cited.
Collapse
Affiliation(s)
- Gui-Yang Xia
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China. .,Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shi-Jie Cao
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| | - Li-Xia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Feng Qiu
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
10
|
Palupi KD, Ilyas M, Agusta A. Endophytic fungi inhabiting Physalis angulata L. plant: diversity, antioxidant, and antibacterial activities of their ethyl acetate extracts. J Basic Clin Physiol Pharmacol 2021; 32:823-829. [PMID: 34214306 DOI: 10.1515/jbcpp-2020-0479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/08/2021] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Endophytic fungi are an essential source of biologically active compounds. They have the ability to synthesize secondary metabolites which are the same or have a high degree of similarity to their host plants. In this study, we aimed to explore the biodiversity and the bioactivities of active metabolites produced by 14 endophytic fungi isolated from the medicinal plant Physalis angulata L. (PA). METHODS Fourteen endophytic fungi were isolated from the flowers, stems, leaves, and fruit husks of PA. The endophytic fungi were cultured and incubated in the PDB medium at room temperature. After three weeks, the cultures were extracted using ethyl acetate and dried using a rotary evaporator. The antioxidant activity was evaluated against DPPH while antibacterial activity was evaluated against Escherichia coli and Staphylococcus aureus using microdilution technique. TLC analysis was also done to profile the active compounds within the extract. RESULTS Hyphomycetes fungus isolated from the flower of PA exhibited a moderate antioxidant activity with an antioxidant index value of 0.59 (IC50 = 52.43 μg/mL). Six isolates have strong antibacterial activity against E. coli and S. aureus with minimum inhibitory concentration (MIC) value ranging from 8-64 μg/mL. These endophytic fungi are one Hyphomycetes fungus isolated from the flower, one Fusarium sp. isolated from the stem, and four Colletotrichum sp. isolated from leaf and fruit husk of PA. CONCLUSIONS Endophytic fungi isolated from PA are potential novel sources of active metabolites especially for antibacterial compounds.
Collapse
Affiliation(s)
- Kartika Dyah Palupi
- Research Center for Chemistry, Indonesian Institute of Sciences, Kawasan PUSPIPTEK, Tangerang Selatan, Banten, Indonesia
| | - Muhammad Ilyas
- Research Center for Biology, Indonesian Institute of Sciences, Cibinong, Jawa Barat, Indonesia
| | - Andria Agusta
- Research Center for Chemistry, Indonesian Institute of Sciences, Kawasan PUSPIPTEK, Tangerang Selatan, Banten, Indonesia
| |
Collapse
|
11
|
Kamal MA, Al-Zahrani MH, Khan SH, Khan MH, Al-Subhi HA, Kuerban A, Aslam M, Al-Abbasi FA, Anwar F. Tubulin Proteins in Cancer Resistance: A Review. Curr Drug Metab 2020; 21:178-185. [DOI: 10.2174/1389200221666200226123638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022]
Abstract
Cancer cells are altered with cell cycle genes or they are mutated, leading to a high rate of proliferation
compared to normal cells. Alteration in these genes leads to mitosis dysregulation and becomes the basis of tumor
progression and resistance to many drugs. The drugs which act on the cell cycle fail to arrest the process, making
cancer cell non-responsive to apoptosis or cell death. Vinca alkaloids and taxanes fall in this category and are
referred to as antimitotic agents. Microtubule proteins play an important role in mitosis during cell division as a
target site for vinca alkaloids and taxanes. These proteins are dynamic in nature and are composed of α-β-tubulin
heterodimers. β-tubulin specially βΙΙΙ isotype is generally altered in expression within cancerous cells. Initially,
these drugs were very effective in the treatment of cancer but failed to show their desired action after initial
chemotherapy. The present review highlights some of the important targets and their mechanism of resistance
offered by cancer cells with new promising drugs from natural sources that can lead to the development of a new
approach to chemotherapy.
Collapse
Affiliation(s)
- Mohammad Amjad Kamal
- Metabolomics and Enzymology Unit, Fundamental and Applied Biology Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maryam Hassan Al-Zahrani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salman Hasan Khan
- Department of Orthodontics, and Dentofacial Orthopaedics, TMU Dental College, Moradabad, Uttar Pradesh, India
| | - Mateen Hasan Khan
- Department of Pharmacology, Shri Venkateshwara University, Gajraula, Amroha, Uttar Pradesh, India
| | - Hani Awad Al-Subhi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abudukadeer Kuerban
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Aslam
- Department of Statistics, Faculy of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad Ahmed Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
12
|
Tan J, Liu Y, Cheng Y, Sun Y, Pan J, Guan W, Li X, Huang J, Jiang P, Guo S, Kuang H, Yang B. New withanolides with anti-inflammatory activity from the leaves of Datura metel L. Bioorg Chem 2020; 95:103541. [DOI: 10.1016/j.bioorg.2019.103541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/02/2019] [Accepted: 12/21/2019] [Indexed: 12/24/2022]
|
13
|
Huang M, He JX, Hu HX, Zhang K, Wang XN, Zhao BB, Lou HX, Ren DM, Shen T. Withanolides from the genus Physalis: a review on their phytochemical and pharmacological aspects. J Pharm Pharmacol 2019; 72:649-669. [DOI: 10.1111/jphp.13209] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/16/2019] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
Withanolides are a group of modified C28 ergostane-type steroids with a C-22, C-26 δ-lactone side chain or a C-23, C-26 γ-lactone side chain. They enjoy a limited distribution in the plant kingdom and predominantly occur in several genera of Solanaceae. Of which, the genus Physalis is an important resource for this type of natural molecules. The present review aims to comprehensively illustrate the structural characteristics and classification of withanolides, and particularly focus on the progression on phytochemical and pharmacological aspects of withanolides from Physalis ranging from January 2015 to June 2019.
Key findings
Approximately 351 natural withanolides with novel and unique structures have so far been identified from genus Physalis, mainly isolated from the species of P. angulata and P. peruviana. Withanolides demonstrated diverse biological activity, such as anticancer, anti-inflammatory, antimicrobial, immunoregulatory, trypanocidal and leishmanicidal activity. Their observed pharmacological functions supported the uses of Physalis species in traditional or folk medicines.
Summary
Due to their unique structure skeleton and potent bioactivities, withanolides are regarded to be promising drug candidates, particularly for developing anticancer and anti-inflammatory agents. Further investigations for discovering novel withanolides of genus Physalis, exploiting their pharmacological values and evaluating their potency as therapeutic agents are significant work.
Collapse
Affiliation(s)
- Min Huang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ji-Xiang He
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui-Xin Hu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Kan Zhang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Bao-Bing Zhao
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hong-Xiang Lou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Dong-Mei Ren
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|