1
|
Controllable Construction of Amino-Functionalized Dynamic Covalent Porous Polymers for High-Efficiency CO 2 Capture from Flue Gas. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185853. [PMID: 36144589 PMCID: PMC9502662 DOI: 10.3390/molecules27185853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022]
Abstract
The design of high-efficiency CO2 adsorbents with low cost, high capacity, and easy desorption is of high significance for reducing carbon emissions, which yet remains a great challenge. This work proposes a facile construction strategy of amino-functional dynamic covalent materials for effective CO2 capture from flue gas. Upon the dynamic imine assembly of N-site rich motif and aldehyde-based spacers, nanospheres and hollow nanotubes with spongy pores were constructed spontaneously at room temperature. A commercial amino-functional molecule tetraethylenepentamine could be facilely introduced into the dynamic covalent materials by virtue of the dynamic nature of imine assembly, thus inducing a high CO2 capacity (1.27 mmol·g-1) from simulated flue gas at 75 °C. This dynamic imine assembly strategy endowed the dynamic covalent materials with facile preparation, low cost, excellent CO2 capacity, and outstanding cyclic stability, providing a mild and controllable approach for the development of competitive CO2 adsorbents.
Collapse
|
2
|
Synthesis, crystal structure and theoretical calculation of di-n-butyltin (IV) carboxylate based on m-nitrobenzaldehyde oxime acetic acid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Yan Z, Cui B, Zhao T, Luo Y, Zhang H, Xie J, Li N, Bu N, Yuan Y, Xia L. A Carbazole-Functionalized Porous Aromatic Framework for Enhancing Volatile Iodine Capture via Lewis Electron Pairing. Molecules 2021; 26:5263. [PMID: 34500694 PMCID: PMC8434361 DOI: 10.3390/molecules26175263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 11/27/2022] Open
Abstract
Nitrogen-rich porous networks with additional polarity and basicity may serve as effective adsorbents for the Lewis electron pairing of iodine molecules. Herein a carbazole-functionalized porous aromatic framework (PAF) was synthesized through a Sonogashira-Hagihara cross-coupling polymerization of 1,3,5-triethynylbenzene and 2,7-dibromocarbazole building monomers. The resulting solid with a high nitrogen content incorporated the Lewis electron pairing effect into a π-conjugated nano-cavity, leading to an ultrahigh binding capability for iodine molecules. The iodine uptake per specific surface area was ~8 mg m-2 which achieved the highest level among all reported I2 adsorbents, surpassing that of the pure biphenyl-based PAF sample by ca. 30 times. Our study illustrated a new possibility for introducing electron-rich building units into the design and synthesis of porous adsorbents for effective capture and removal of volatile iodine from nuclear waste and leakage.
Collapse
Affiliation(s)
- Zhuojun Yan
- College of Chemistry, Liaoning University, Shenyang 110036, China; (Z.Y.); (B.C.); (H.Z.); (J.X.); (N.L.)
| | - Bo Cui
- College of Chemistry, Liaoning University, Shenyang 110036, China; (Z.Y.); (B.C.); (H.Z.); (J.X.); (N.L.)
| | - Ting Zhao
- School of Environmental Science, Liaoning University, Shenyang 110036, China; (T.Z.); (Y.L.)
| | - Yifu Luo
- School of Environmental Science, Liaoning University, Shenyang 110036, China; (T.Z.); (Y.L.)
| | - Hongcui Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, China; (Z.Y.); (B.C.); (H.Z.); (J.X.); (N.L.)
| | - Jialin Xie
- College of Chemistry, Liaoning University, Shenyang 110036, China; (Z.Y.); (B.C.); (H.Z.); (J.X.); (N.L.)
| | - Na Li
- College of Chemistry, Liaoning University, Shenyang 110036, China; (Z.Y.); (B.C.); (H.Z.); (J.X.); (N.L.)
| | - Naishun Bu
- School of Environmental Science, Liaoning University, Shenyang 110036, China; (T.Z.); (Y.L.)
| | - Ye Yuan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang 110036, China; (Z.Y.); (B.C.); (H.Z.); (J.X.); (N.L.)
- Yingkou Institute of Technology, Yingkou 115014, China
| |
Collapse
|
4
|
A Process for Carbon Dioxide Capture Using Schiff Bases Containing a Trimethoprim Unit. Processes (Basel) 2021. [DOI: 10.3390/pr9040707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Environmental problems associated with the growing levels of carbon dioxide in the atmosphere due to the burning of fossil fuels to satisfy the high demand for energy are a pressing concern. Therefore, the design of new materials for carbon dioxide storage has received increasing research attention. In this work, we report the synthesis of three new Schiff bases containing a trimethoprim unit and the investigation of their application as adsorbents for carbon dioxide capture. The reaction of trimethoprim and aromatic aldehydes in acid medium gave the corresponding Schiff bases in 83%–87% yields. The Schiff bases exhibited surface areas ranging from 4.15 to 20.33 m2/g, pore volumes of 0.0036–0.0086 cm3/g, and average pore diameters of 6.64–1.4 nm. An excellent carbon dioxide uptake (27–46 wt%) was achieved at high temperature and pressure (313 K and 40 bar, respectively) using the Schiff bases. The 3-hydroxyphenyl-substituted Schiff base, which exhibited a meta-arrangement, provided the highest carbon dioxide uptake (46 wt%) due to its higher surface area, pore volume, and pore diameter compared with the other two derivatives with a para-arrangement.
Collapse
|
5
|
Synthesis and use of new porous metal complexes containing a fusidate moiety as gas storage media. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0692-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
New Porous Silicon-Containing Organic Polymers: Synthesis and Carbon Dioxide Uptake. Processes (Basel) 2020. [DOI: 10.3390/pr8111488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The design and synthesis of new multifunctional organic porous polymers has attracted significant attention over the years due to their favorable properties, which make them suitable for carbon dioxide storage. In this study, 2-, 3-, and 4-hydroxybenzaldehyde reacted with phenyltrichlorosilane in the presence of a base, affording the corresponding organosilicons 1–3, which further reacted with benzidine in the presence of glacial acetic acid, yielding the organic polymers 4–6. The synthesized polymers exhibited microporous structures with a surface area of 8.174–18.012 m2 g−1, while their pore volume and total average pore diameter ranged from 0.015–0.035 cm3 g−1 and 1.947–1.952 nm, respectively. In addition, among the synthesized organic polymers, the one with the meta-arrangement structure 5 showed the highest carbon dioxide adsorption capacity at 323 K and 40 bar due to its relatively high surface area and pore volume.
Collapse
|
7
|
Synthesis and use of carvedilol metal complexes as carbon dioxide storage media. APPLIED PETROCHEMICAL RESEARCH 2020. [DOI: 10.1007/s13203-020-00255-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Abstract
The consequences of increased fossil fuel consumption on the environment presents a challenge. Carbon dioxide capture is a useful technique to reduce global warming. Therefore, three carvedilol metal (nickel, cobalt, and copper) complexes were synthesized as potential carbon dioxide storage media. The structural and textural properties of metal carvedilol complexes have been established using various techniques. The metal complexes have mesoporous structures in which pore size was approximately 3 nm. Particle size ranged from 51.0 to 393.9 nm with a relatively small surface area (6.126–9.073 m2/g). The carvedilol metal complexes have either type-III or IV nitrogen adsorption–desorption isotherm. The complexes showed reasonable capacity towards carbon dioxide uptake (up to 18.21 cm3/g) under the optimized condition (40 bar and 323 K).
Graphical Abstract
Collapse
|
8
|
Mahmood ZN, Yousif E, Alias M, El-Hiti GA, Ahmed DS. Synthesis, characterization, properties, and use of new fusidate organotin complexes as additives to inhibit poly(vinyl chloride) photodegradation. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02245-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Valsartan metal complexes as capture and reversible storage media for methane. APPLIED PETROCHEMICAL RESEARCH 2020. [DOI: 10.1007/s13203-020-00247-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AbstractThree valsartan metal (tin, nickel, and magnesium) complexes were examined as capture and storage media for methane under high temperature (323 K) and pressure (50 bar) conditions. The surface morphology of the complexes were examined using Field emission scanning electron microscopy and displayed porous structures comprising particles of different shapes and sizes. The narrow pore-size distribution of metal complexes makes them suitable materials for methane capture. The methane adsorption–desorption isotherms of the metal complexes were reversible. The tin(IV) and nickel(II) complexes exhibited type-III physisorption isotherms, while the magnesium(II) complex displayed a type-IV physisorption isotherm. Both types of isotherms are typical for mesoporous materials. The magnesium(II) complex was more efficient compared with the tin(IV) and nickel(II) complexes. It exhibited a remarkable methane uptake capacity of 71.68 cm3/g under optimized conditions.
Collapse
|
10
|
Synthesis and Use of Valsartan Metal Complexes as Media for Carbon Dioxide Storage. MATERIALS 2020; 13:ma13051183. [PMID: 32155793 PMCID: PMC7085107 DOI: 10.3390/ma13051183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/23/2022]
Abstract
To address global warming through carbon dioxide storage, three valsartan metal complexes were synthesized in excellent yields (87–92%) through a reaction of the appropriate metal chloride (tin chloride, nickel chloride hexahydrate, or magnesium chloride hexahydrate) and excess valsartan (two mole equivalents) in boiling methanol for 3 h. The structures of the metal complexes were established based on the data obtained from ultraviolet-visible, Fourier transform infrared, and proton nuclear magnetic resonance spectra, as well as from elemental analysis, energy-dispersive X-ray spectra, and magnetic susceptibility. The agglomeration and shape of the particles were determined using field emission scanning electron microscopy analysis. The surface area (16.63–22.75 m2/g) of the metal complexes was measured using the Brunauer-Emmett-Teller method, whereas the Barrett-Joyner-Halenda method was used to determine the particle pore size (0.011–0.108 cm3/g), total average pore volume (6.50–12.46 nm), and pore diameter (6.50–12.47 nm), for the metal complexes. The carbon dioxide uptake of the synthesized complexes, at 323 K and 4 MPa (40 bar), ranged from 24.11 to 34.51 cm2/g, and the nickel complex was found to be the most effective sorbent for carbon dioxide storage.
Collapse
|
11
|
Porous Aromatic Melamine Schiff Bases as Highly Efficient Media for Carbon Dioxide Storage. Processes (Basel) 2019. [DOI: 10.3390/pr8010017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High energy demand has led to excessive fuel consumption and high-concentration CO2 production. CO2 release causes serious environmental problems such as the rise in the Earth’s temperature, leading to global warming. Thus, chemical industries are under severe pressure to provide a solution to the problems associated with fuel consumption and to reduce CO2 emission at the source. To this effect, herein, four highly porous aromatic Schiff bases derived from melamine were investigated as potential media for CO2 capture. Since these Schiff bases are highly aromatic, porous, and have a high content of heteroatoms (nitrogen and oxygen), they can serve as CO2 storage media. The surface morphology of the Schiff bases was investigated through field emission scanning electron microscopy, and their physical properties were determined by gas adsorption experiments. The Schiff bases had a pore volume of 0.005–0.036 cm3/g, an average pore diameter of 1.69–3.363 nm, and a small Brunauer–Emmett–Teller surface area (5.2–11.6 m2/g). The Schiff bases showed remarkable CO2 uptake (up to 2.33 mmol/g; 10.0 wt%) at 323 K and 40 bars. The Schiff base containing the 4-nitrophenyl substituent was the most efficient medium for CO2 adsorption and, therefore, can be used as a gas sorbent.
Collapse
|
12
|
Synthesis of Novel Heteroatom-Doped Porous-Organic Polymers as Environmentally Efficient Media for Carbon Dioxide Storage. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9204314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The high carbon dioxide emission levels due to the increased consumption of fossil fuels has led to various environmental problems. Efficient strategies for the capture and storage of greenhouse gases, such as carbon dioxide are crucial in reducing their concentrations in the environment. Considering this, herein, three novel heteroatom-doped porous-organic polymers (POPs) containing phosphate units were synthesized in high yields from the coupling reactions of phosphate esters and 1,4-diaminobenzene (three mole equivalents) in boiling ethanol using a simple, efficient, and general procedure. The structures and physicochemical properties of the synthesized POPs were established using various techniques. Field emission scanning electron microscopy (FESEM) images showed that the surface morphologies of the synthesized POPs were similar to coral reefs. They had grooved networks, long range periodic macropores, amorphous surfaces, and a high surface area (SBET = 82.71–213.54 m2/g). Most importantly, they had considerable carbon dioxide storage capacity, particularly at high pressure. The carbon dioxide uptake at 323 K and 40 bar for one of the POPs was as high as 1.42 mmol/g (6.00 wt %). The high carbon dioxide uptake capacities of these materials were primarily governed by their geometries. The POP containing a meta-phosphate unit leads to the highest CO2 uptake since such geometry provides a highly distorted and extended surface area network compared to other POPs.
Collapse
|
13
|
Hadi AG, Jawad K, El-Hiti GA, Alotaibi MH, Ahmed AA, Ahmed DS, Yousif E. Photostabilization of Poly(vinyl chloride) by Organotin(IV) Compounds against Photodegradation. Molecules 2019; 24:molecules24193557. [PMID: 31581427 PMCID: PMC6804033 DOI: 10.3390/molecules24193557] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/22/2019] [Accepted: 09/30/2019] [Indexed: 11/18/2022] Open
Abstract
Poly(vinyl chloride) (PVC), a polymer widely used in common household and industrial materials, undergoes photodegradation upon ultraviolet irradiation, leading to undesirable physicochemical properties and a reduced lifetime. In this study, four telmisartan organotin(IV) compounds were tested as photostabilizers against photodegradation. PVC films (40-µm thickness) containing these compounds (0.5 wt%) were irradiated with ultraviolet light at room temperature for up to 300 h. Changes in various polymeric parameters, including the growth of hydroxyl, carbonyl, and alkene functional groups, weight loss, reduction in molecular weight, and appearance of surface irregularities, were investigated to test the efficiency of the photostabilizers. The changes were more noticeable in the blank PVC film than in the films containing the telmisartan organotin(IV) compounds. These results reflect that these compounds effectively inhibit the photodegradation of PVC, possibly by acting as hydrogen chloride and radical scavengers, peroxide decomposers, and primary photostabilizers. The synthesized organotin(IV) complexes could be used as PVC additives to enhance photostability.
Collapse
Affiliation(s)
- Angham G Hadi
- Department of Chemistry, College of Science, Babylon University, Babil 51002, Iraq.
| | - Khudheyer Jawad
- Department of Chemistry, College of Science, Babylon University, Babil 51002, Iraq.
| | - Gamal A El-Hiti
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia.
| | - Mohammad Hayal Alotaibi
- National Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia.
| | - Ahmed A Ahmed
- Polymer Research Unit, College of Science, Al-Mustansiriyah University, Baghdad 10052, Iraq.
| | - Dina S Ahmed
- Department of Medical Instrumentation Engineering, Al-Mansour University College, Baghdad 64021, Iraq.
| | - Emad Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq.
| |
Collapse
|
14
|
SEM morphological analysis of irradiated polystyrene film doped by a Schiff base containing a 1,2,4-triazole ring system. APPLIED PETROCHEMICAL RESEARCH 2019. [DOI: 10.1007/s13203-019-00235-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Abstract
A Schiff base containing the 1,2,4-triazole moiety was synthesized and added to polystyrene at low concentration for a homogenous blend. The polystyrene film was irradiated with ultraviolet light and the surface morphology was analyzed. Micrographs of the polystyrene/Schiff base blend after irradiation indicated the fabrication of a terrestrial crack-like material. This was ascribed to the presence of the Schiff base, relatively long irradiation time, and photostability induced by the base. After irradiation, the blank polystyrene film formed a cotton-like fibrous material.
Collapse
|
15
|
Hadi AG, Yousif E, El-Hiti GA, Ahmed DS, Jawad K, Alotaibi MH, Hashim H. Long-Term Effect of Ultraviolet Irradiation on Poly(vinyl chloride) Films Containing Naproxen Diorganotin(IV) Complexes. Molecules 2019; 24:molecules24132396. [PMID: 31261834 PMCID: PMC6650850 DOI: 10.3390/molecules24132396] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 11/16/2022] Open
Abstract
As poly(vinyl chloride) (PVC) photodegrades with long-term exposure to ultraviolet radiation, it is desirable to develop methods that enhance the photostability of PVC. In this study, new aromatic-rich diorganotin(IV) complexes were tested as photostabilizers in PVC films. The diorganotin(IV) complexes were synthesized in 79-86% yields by reacting excess naproxen with tin(IV) chlorides. PVC films containing 0.5 wt % diorganotin(IV) complexes were irradiated with ultraviolet light for up to 300 h, and changes within the films were monitored using the weight loss and the formation of specific functional groups (hydroxyl, carbonyl, and polyene). In addition, changes in the surface morphologies of the films were investigated. The diorganotin(IV) complexes enhanced the photostability of PVC, as the weight loss and surface roughness were much lower in the films with additives than in the blank film. Notably, the dimethyltin(IV) complex was the most efficient photostabilizer. The polymeric film containing this complex exhibited a morphology of regularly distributed hexagonal pores, with a honeycomb-like structure-possibly due to cross-linking and interactions between the additive and the polymeric chains. Various mechanisms, including direct absorption of ultraviolet irradiation, radical or hydrogen chloride scavenging, and polymer chain coordination, could explain how the diorganotin(IV) complexes stabilize PVC against photodegradation.
Collapse
Affiliation(s)
- Angham G Hadi
- Department of Chemistry, College of Science, Babylon University, Babil 51002, Iraq
| | - Emad Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq.
| | - Gamal A El-Hiti
- Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia.
| | - Dina S Ahmed
- Department of Medical Instrumentation Engineering, Al-Mansour University College, Baghdad 64021, Iraq
| | - Khudheyer Jawad
- Department of Chemistry, College of Science, Babylon University, Babil 51002, Iraq
| | - Mohammad Hayal Alotaibi
- National Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia.
| | - Hassan Hashim
- Department of Physics, College of Science, Al-Nahrain University, Baghdad 64021, Iraq
| |
Collapse
|