1
|
Súnico V, Higuera JJ, Amil-Ruiz F, Arjona-Girona I, López-Herrera CJ, Muñoz-Blanco J, Maldonado-Alconada AM, Caballero JL. FaNPR3 Members of the NPR1-like Gene Family Negatively Modulate Strawberry Fruit Resistance against Colletotrichum acutatum. PLANTS (BASEL, SWITZERLAND) 2024; 13:2261. [PMID: 39204697 PMCID: PMC11360474 DOI: 10.3390/plants13162261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Strawberry fruit is highly appreciated worldwide for its organoleptic and healthy properties. However, this plant is attacked by many pathogenic fungi, which significantly affect fruit production and quality at pre- and post-harvest stages, making chemical applications the most effective but undesirable strategy to control diseases that has been found so far. Alternatively, genetic manipulation, employing plant key genes involved in defense, such as members of the NPR-like gene family, has been successful in many crops to improve resistance. The identification and use of the endogenous counterpart genes in the plant of interest (as it is the case of strawberry) is desirable as it would increase the favorable outcome and requires prior knowledge of their defense-related function. Using RNAi technology in strawberry, transient silencing of Fragaria ananassa NPR3 members in fruit significantly reduced tissue damage after Colletotrichum acutatum infection, whereas the ectopic expression of either FaNPR3.1 or FaNPR3.2 did not have an apparent effect. Furthermore, the ectopic expression of FaNPR3.2 in Arabidopsis thaliana double-mutant npr3npr4 reverted the disease resistance phenotype to Pseudomonas syringe to wild-type levels. Therefore, the results revealed that members of the strawberry FaNPR3 clade negatively regulate the defense response to pathogens, as do their Arabidopsis AtNPR3/AtNPR4 orthologs. Also, evidence was found showing that FaNPR3 members act in strawberry (F. ananassa) as positive regulators of WRKY genes, FaWRKY19 and FaWRKY24; additionally, in Arabidopsis, FaNPR3.2 negatively regulates its orthologous genes AtNPR3/AtNPR4. We report for the first time the functional characterization of FaNPR3 members in F. ananassa, which provides a relevant molecular basis for the improvement of resistance in this species through new breeding technologies.
Collapse
Affiliation(s)
- Victoria Súnico
- Biotechnology and Plant Pharmacognosy (BIO-278), Department of Biochemistry and Molecular Biology, Campus de Rabanales, Severo Ochoa building-C6, University of Córdoba, UCO-CeiA3, 14071 Córdoba, Spain; (V.S.); (J.J.H.); (J.M.-B.)
| | - José Javier Higuera
- Biotechnology and Plant Pharmacognosy (BIO-278), Department of Biochemistry and Molecular Biology, Campus de Rabanales, Severo Ochoa building-C6, University of Córdoba, UCO-CeiA3, 14071 Córdoba, Spain; (V.S.); (J.J.H.); (J.M.-B.)
| | - Francisco Amil-Ruiz
- Bioinformatics Unit, Central Research Support Service (SCAI), University of Córdoba, 14071 Córdoba, Spain;
| | - Isabel Arjona-Girona
- Department of Crop Protection, Institute for Sustainable Agriculture (CSIC), Alameda del Obispo s/n, 14004 Córdoba, Spain; (I.A.-G.); (C.J.L.-H.)
| | - Carlos J. López-Herrera
- Department of Crop Protection, Institute for Sustainable Agriculture (CSIC), Alameda del Obispo s/n, 14004 Córdoba, Spain; (I.A.-G.); (C.J.L.-H.)
| | - Juan Muñoz-Blanco
- Biotechnology and Plant Pharmacognosy (BIO-278), Department of Biochemistry and Molecular Biology, Campus de Rabanales, Severo Ochoa building-C6, University of Córdoba, UCO-CeiA3, 14071 Córdoba, Spain; (V.S.); (J.J.H.); (J.M.-B.)
| | - Ana María Maldonado-Alconada
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Córdoba, Spain
| | - José L. Caballero
- Biotechnology and Plant Pharmacognosy (BIO-278), Department of Biochemistry and Molecular Biology, Campus de Rabanales, Severo Ochoa building-C6, University of Córdoba, UCO-CeiA3, 14071 Córdoba, Spain; (V.S.); (J.J.H.); (J.M.-B.)
| |
Collapse
|
2
|
Sánchez-Gómez C, Posé D, Martín-Pizarro C. Insights into transcription factors controlling strawberry fruit development and ripening. FRONTIERS IN PLANT SCIENCE 2022; 13:1022369. [PMID: 36299782 PMCID: PMC9589285 DOI: 10.3389/fpls.2022.1022369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Fruit ripening is a highly regulated and complex process involving a series of physiological and biochemical changes aiming to maximize fruit organoleptic traits to attract herbivores, maximizing therefore seed dispersal. Furthermore, this process is of key importance for fruit quality and therefore consumer acceptance. In fleshy fruits, ripening involves an alteration in color, in the content of sugars, organic acids and secondary metabolites, such as volatile compounds, which influence flavor and aroma, and the remodeling of cell walls, resulting in the softening of the fruit. The mechanisms underlying these processes rely on the action of phytohormones, transcription factors and epigenetic modifications. Strawberry fruit is considered a model of non-climacteric species, as its ripening is mainly controlled by abscisic acid. Besides the role of phytohormones in the regulation of strawberry fruit ripening, a number of transcription factors have been identified as important regulators of these processes to date. In this review, we present a comprehensive overview of the current knowledge on the role of transcription factors in the regulation of strawberry fruit ripening, as well as in compiling candidate regulators that might play an important role but that have not been functionally studied to date.
Collapse
Affiliation(s)
| | - David Posé
- *Correspondence: David Posé, ; Carmen Martín-Pizarro,
| | | |
Collapse
|
3
|
Forni C, Rossi M, Borromeo I, Feriotto G, Platamone G, Tabolacci C, Mischiati C, Beninati S. Flavonoids: A Myth or a Reality for Cancer Therapy? Molecules 2021; 26:molecules26123583. [PMID: 34208196 PMCID: PMC8230897 DOI: 10.3390/molecules26123583] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022] Open
Abstract
Nutraceuticals are biologically active molecules present in foods; they can have beneficial effects on health, but they are not available in large enough quantities to perform this function. Plant metabolites, such as polyphenols, are widely diffused in the plant kingdom, where they play fundamental roles in plant development and interactions with the environment. Among these, flavonoids are of particular interest as they have significant effects on human health. In vitro and/or in vivo studies described flavonoids as essential nutrients for preventing several diseases. They display broad and promising bioactivities to fight cancer, inflammation, bacterial infections, as well as to reduce the severity of neurodegenerative and cardiovascular diseases or diabetes. Therefore, it is not surprising that interest in flavonoids has sharply increased in recent years. More than 23,000 scientific publications on flavonoids have described the potential anticancer activity of these natural molecules in the last decade. Studies, in vitro and in vivo, show that flavonoids exhibit anticancer properties, and many epidemiological studies confirm that dietary intake of flavonoids leads to a reduced risk of cancer. This review provides a glimpse of the mechanisms of action of flavonoids on cancer cells.
Collapse
Affiliation(s)
- Cinzia Forni
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (M.R.); (G.P.); (S.B.)
- Correspondence:
| | - Massimiliano Rossi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (M.R.); (G.P.); (S.B.)
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Ilaria Borromeo
- Department of Physics, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy;
| | - Giordana Feriotto
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Giovambattista Platamone
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (M.R.); (G.P.); (S.B.)
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Carlo Mischiati
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Simone Beninati
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (M.R.); (G.P.); (S.B.)
| |
Collapse
|
4
|
Hwang H, Kim YJ, Shin Y. Assessment of Physicochemical Quality, Antioxidant Content and Activity, and Inhibition of Cholinesterase between Unripe and Ripe Blueberry Fruit. Foods 2020; 9:foods9060690. [PMID: 32466569 PMCID: PMC7353561 DOI: 10.3390/foods9060690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
Five Korean blueberries (''Nelson'', ''Duke '', ''Bluejay '', ''Toro'', and ''Elliot '') were harvested at two maturity stages (unripe and ripe) to evaluate fruit quality and antioxidant activities. The Hunter L, a, and b color of ripe blueberries was lower than that of unripe fruit. Soluble solid concentration (SSC) and pH increased, and titratable acidity (TA) and firmness decreased as the blueberries matured. The ripe blueberry fruits showed a higher SSC/TA ratio than the unripe fruits. Although total anthocyanin, flavonoids, phenolics content, and antioxidant activity were higher in ripe blueberries than in unripe fruit, the unripe fruit had higher acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition activities than ripe fruit in all cultivars. Total antioxidant activity was highly correlated with total flavonoids and phenolics. The relationships between the total antioxidant activity and the AChE or BChE inhibitory activity are negative. There were several physicochemical quality and antioxidant activity differences in blueberries, depending on the cultivar and the maturity at harvest. Unripe fruits also contain potential health-promoting bioactive compounds as functional food ingredients.
Collapse
Affiliation(s)
- Hyesung Hwang
- Department of Environmental Horticulture, Dankook University, Cheonan, Chungnam 31116, Korea;
| | - Young-Jun Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Korea
- Correspondence: (Y.-J.K.); (Y.S.); Tel.: +82-41-550-3562 (Y.S.)
| | - Youngjae Shin
- Department of Food Engineering, Dankook University, Cheonan, Chungnam 31116, Korea
- Correspondence: (Y.-J.K.); (Y.S.); Tel.: +82-41-550-3562 (Y.S.)
| |
Collapse
|
5
|
Fragaria Genus: Chemical Composition and Biological Activities. Molecules 2020; 25:molecules25030498. [PMID: 31979351 PMCID: PMC7037259 DOI: 10.3390/molecules25030498] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 12/19/2022] Open
Abstract
The strawberries represent in our days one of the main fresh fruits consumed globally, inevitably leading to large amounts of by-products and wastes. Usually appreciated because of their specific flavor, the strawberries also possess biological properties, including antioxidant, antimicrobial, or anti-inflammatory effects. In spite of the wide spread of the Fragaria genus, few species represent the subject of the last decade scientific research. The main components identified in the Fragaria species are presented, as well as several biological properties, as emerging from the scientific papers published in the last decade.
Collapse
|
6
|
Cianciosi D, Simal-Gándara J, Forbes-Hernández TY. The importance of berries in the human diet. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2019. [DOI: 10.3233/mnm-190366] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy
| | - Jesús Simal-Gándara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Science, University of Vigo, Ourense Campus, Ourense, Spain
| | - Tamara Y. Forbes-Hernández
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Ourense, Spain
| |
Collapse
|