1
|
Wang X, Zhang X, Zhang J, Yang H, Liu Z, Peng D, Han L. Illustrate the metabolic regulatory mechanism of Taohong Siwu decoction in ischemic stroke by mass spectrometry imaging. Anal Bioanal Chem 2024:10.1007/s00216-024-05591-4. [PMID: 39467910 DOI: 10.1007/s00216-024-05591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
Metabolic dysregulation in the ischemic region has been increasingly recognized as a contributing factor to ischemic stroke pathogenesis. Taohong Siwu decoction (THSWD), a traditional Chinese medicine preparation used to enhance blood circulation, is frequently employed in treating ischemic stroke. However, the metabolic regulatory mechanism underlying the therapeutic effects of THSWD in ischemic stroke remains largely unexplored. In this study, we employed desorption electrospray ionization mass spectrometry imaging (DESI-MSI) to investigate the metabolic changes in the brain tissue of ischemic stroke rat model. Our investigation revealed that 30 metabolites exhibited significant dysregulation in the ischemic brain regions, specifically the cortex and striatum, following ischemic injury. Following the treatment of THSWD, almost all the dysregulated metabolites got different degrees of callback. Further pathway analysis indicated that THSWD might exert its therapeutic effects by restoring energy metabolism, improving neurotransmitter metabolism, recovering polyamine metabolism, and so on. DESI-MSI offers a favorable methodology for investigating the alterations in the spatial distribution and level within the ischemic brain region following treatment with THSWD in ischemic stroke. These findings provide a novel perspective on the underlying mechanisms of the efficacy of THSWD in ischemic stroke treatment.
Collapse
Affiliation(s)
- Xiaoqun Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China
| | - Xueting Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Jiayu Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Hanxue Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Zhuqing Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, Anhui, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, Anhui, China.
| | - Lan Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, Anhui, China.
| |
Collapse
|
2
|
Liao Y, Gao Y, Chen Q, Pan M, Tsunoda M, Liu F, Zhang Y, Hu W, Li LS, Yang H, Song Y. Enantioselective toxicity effect and mechanisms of bifenthrin enantiomers on normal human hepatocytes. Food Chem Toxicol 2024; 192:114952. [PMID: 39182637 DOI: 10.1016/j.fct.2024.114952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
In recent decades, the toxicity of chiral pesticides to non-target organisms has attracted increasing attention. Cellular metabolic disorders are essential sensitive molecular initiating event for toxicological effects. BF is a typical chiral pesticide, and the liver is the main organ for BF accumulation. This study aimed to investigate the potential molecular mechanism of BF enantiomers' different toxic effects on L02 by a non-targeted metabolomic approach. Results revealed that the BF enantiomers exhibited different metabolic responses. In total, 51 and 36 differential metabolites were perturbed by 1S-cis-BF and 1R-cis-BF at the value of variable importance, respectively. When L02 were exposed to 1R-cis-BF, the significantly disturbed metabolic pathways were nicotinate and nicotinamide metabolism and pyrimidine metabolism. By comparison, more significantly perturbed metabolic pathways were received when the L02 were exposed to 1S-cis-BF, including glycine, serine and threonine metabolism, nicotinate and nicotinamide metabolism, arginine and proline metabolism, cysteine and methionine metabolism, glycerolipid metabolism, histidine metabolism, pyrimidine metabolism, amino sugar and nucleotide sugar metabolism and arginine biosynthesis. The results offer a new perspective in understanding the role of selective cytotoxicity of BF enantiomers, and help to evaluate the risk to human health at the enantiomeric level.
Collapse
Affiliation(s)
- Yiyi Liao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China; Hainan Cancer Hospital, Haikou, 570312, Hainan, China
| | - Yuhang Gao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China; 63650 Military Hospital of PLA, Luoyang, 471000, Henan, China
| | - Qigeng Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Mingyu Pan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Makoto Tsunoda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Fuping Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Yingxia Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Wenting Hu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Lu-Shuang Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China.
| | - Haimei Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China.
| | - Yanting Song
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
3
|
Yang YY, Deng RR, Xiang DX. Naodesheng Pills Ameliorate Cerebral Ischemia Reperfusion-Induced Ferroptosis via Inhibition of the ERK1/2 Signaling Pathway. Drug Des Devel Ther 2024; 18:1499-1514. [PMID: 38716368 PMCID: PMC11074533 DOI: 10.2147/dddt.s443479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/23/2024] [Indexed: 06/05/2024] Open
Abstract
Background Ferroptosis plays a crucial role in the occurrence and development of cerebral ischemia-reperfusion (I/R) injury and is regulated by mitogen-activated protein kinase 1/2 (ERK1/2). In China, Naodesheng Pills (NDSP) are prescribed to prevent and treat cerebrosclerosis and stroke. However, the protective effects and mechanism of action of NDSP against cerebral I/R-induced ferroptosis remain unclear. We investigated whether NDSP exerts its protective effects against I/R injury by regulating ferroptosis and aimed to elucidate the underlying mechanisms. Methods The efficacy of NDSP was evaluated using a Sprague-Dawley rat model of middle cerebral artery occlusion and an in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) model. Brain injury was assessed using 2,3,5-triphenyltetrazolium chloride (TTC), hematoxylin and eosin staining, Nissl staining, and neurological scoring. Western blotting was performed to determine the expression levels of glutathione peroxidase 4 (GPX4), divalent metal-ion transporter-1 (DMT1), solute carrier family 7 member 11 (SLC7A11), and transferrin receptor 1 (TFR1). Iron levels, oxidative stress, and mitochondrial morphology were also evaluated. Network pharmacology was used to assess the associated mechanisms. Results NDSP (1.08 g/kg) significantly improved cerebral infarct area, cerebral water content, neurological scores, and cerebral tissue damage. Furthermore, NDSP inhibited I/R- and OGD/R-induced ferroptosis, as evidenced by the increased protein expression of GPX4 and SLC7A11, suppression of TFR1 and DMT1, and an overall reduction in oxidative stress and Fe2+ levels. The protective effects of NDSP in vitro were abolished by the GPX4 inhibitor RSL3. Network pharmacology analysis revealed that ERK1/2 was the core target gene and that NDSP reduced the amount of phosphorylated ERK1/2. Conclusion NDSP exerts its protective effects against I/R by inhibiting cerebral I/R-induced ferroptosis, and this mechanism is associated with the regulation of ferroptosis via the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Yong-Yu Yang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Provincial Engineering Research Central of Translational Medical and Innovative Drug, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| | - Rong-Rong Deng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| | - Da-Xiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Provincial Engineering Research Central of Translational Medical and Innovative Drug, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
4
|
Yadav S, Kumar A, Singh S, Ahmad S, Singh G, Khan AR, Chaurasia RN, Kumar D. NMR based Serum metabolomics revealed metabolic signatures associated with oxidative stress and mitochondrial damage in brain stroke. Metab Brain Dis 2024; 39:283-294. [PMID: 38095788 DOI: 10.1007/s11011-023-01331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/22/2023] [Indexed: 02/02/2024]
Abstract
Brain stroke (BS, also known as a cerebrovascular accident), represents a serious global health crisis. It has been a leading cause of permanent disability and unfortunately, frequent fatalities due to lack of timely medical intervention. While progress has been made in prevention and management, the complexities and consequences of stroke continue to pose significant challenges, especially, its impact on patient's quality of life and independence. During stroke, there is a substantial decrease in oxygen supply to the brain leading to alteration of cellular metabolic pathways, including those involved in mitochondrial-damage, leading to mitochondrial-dysfunction. The present proof-of-the-concept metabolomics study has been performed to gain insights into the metabolic pathways altered following a brain stroke and discover new potential targets for timely interventions to mitigate the effects of cellular and mitochondrial damage in BS. The serum metabolic profiles of 108 BS-patients were measured using 800 MHz NMR spectroscopy and compared with 60 age and sex matched normal control (NC) subjects. Compared to NC, the serum levels of glutamate, TCA-cycle intermediates (such as citrate, succinate, etc.), and membrane metabolites (betaine, choline, etc.) were found to be decreased BS patients, whereas those of methionine, mannose, mannitol, phenylalanine, urea, creatine and organic acids (such as 3-hydroxybutyrate and acetone) were found to be elevated in BS patients. These metabolic changes hinted towards hypoxia mediated mitochondrial dysfunction in BS-patients. Further, the area under receiver operating characteristic curve (ROC) values for five metabolic features (methionine, mannitol, phenylalanine, mannose and urea) found to be more than 0.9 suggesting their high sensitivity and specificity for differentiating BS from NC subjects.
Collapse
Affiliation(s)
- Sachin Yadav
- Department of Chemistry, Integral University, Lucknow, 226026, India
| | - Abhai Kumar
- Department of Botany, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India.
| | - Smita Singh
- Department of Zoology, Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India
| | - Shahnawaz Ahmad
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Gurvinder Singh
- Centre of Biomedical Research (CBMR), SGPGIMS Campus, Lucknow, 226014, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Lucknow, 226026, India
| | - Rameshwar Nath Chaurasia
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Dinesh Kumar
- Centre of Biomedical Research (CBMR), SGPGIMS Campus, Lucknow, 226014, Uttar Pradesh, India.
| |
Collapse
|
5
|
Li W, Shao C, Li C, Zhou H, Yu L, Yang J, Wan H, He Y. Metabolomics: A useful tool for ischemic stroke research. J Pharm Anal 2023; 13:968-983. [PMID: 37842657 PMCID: PMC10568109 DOI: 10.1016/j.jpha.2023.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/14/2023] [Accepted: 05/29/2023] [Indexed: 10/17/2023] Open
Abstract
Ischemic stroke (IS) is a multifactorial and heterogeneous disease. Despite years of studies, effective strategies for the diagnosis, management and treatment of stroke are still lacking in clinical practice. Metabolomics is a growing field in systems biology. It is starting to show promise in the identification of biomarkers and in the use of pharmacometabolomics to help patients with certain disorders choose their course of treatment. The development of metabolomics has enabled further and more biological applications. Particularly, metabolomics is increasingly being used to diagnose diseases, discover new drug targets, elucidate mechanisms, and monitor therapeutic outcomes and its potential effect on precision medicine. In this review, we reviewed some recent advances in the study of metabolomics as well as how metabolomics might be used to identify novel biomarkers and understand the mechanisms of IS. Then, the use of metabolomics approaches to investigate the molecular processes and active ingredients of Chinese herbal formulations with anti-IS capabilities is summarized. We finally summarized recent developments in single cell metabolomics for exploring the metabolic profiles of single cells. Although the field is relatively young, the development of single cell metabolomics promises to provide a powerful tool for unraveling the pathogenesis of IS.
Collapse
Affiliation(s)
- Wentao Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chongyu Shao
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chang Li
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Huifen Zhou
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Li Yu
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiehong Yang
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Haitong Wan
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
6
|
Zhang R, Meng J, Wang X, Pu L, Zhao T, Huang Y, Han L. Metabolomics of ischemic stroke: insights into risk prediction and mechanisms. Metab Brain Dis 2022; 37:2163-2180. [PMID: 35612695 DOI: 10.1007/s11011-022-01011-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Ischemic stroke (IS) is the most prevalent type of stroke. The early diagnosis and prognosis of IS are crucial for successful therapy and early intervention. Metabolomics, a tool in systems biology based on several innovative technologies, can be used to identify disease biomarkers and unveil underlying pathophysiological processes. Accordingly, in recent years, an increasing number of studies have identified metabolites from cerebral ischemia patients and animal models that could improve the diagnosis of IS and prediction of its outcome. In this paper, metabolomic research is comprehensively reviewed with a focus on describing the metabolic changes and related pathways associated with IS. Most clinical studies use biofluids (e.g., blood or plasma) because their collection is minimally invasive and they are ideal for analyzing changes in metabolites in patients of IS. We review the application of animal models in metabolomic analyses aimed at investigating potential mechanisms of IS and developing novel therapeutic approaches. In addition, this review presents the strengths and limitations of current metabolomic studies on IS, providing a reference for future related studies.
Collapse
Affiliation(s)
- Ruijie Zhang
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China
| | - Jiajia Meng
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China
- Xihu District Center for Disease Control and Prevention, Hangzhou, 310013, Zhejiang, China
| | - Xiaojie Wang
- Department of Neurology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, Guangdong, China
| | - Liyuan Pu
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China
| | - Tian Zhao
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China
| | - Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, 315010, Zhejiang, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315010, Zhejiang, China.
- Medical Research Center, Ningbo First Hospital, Ningbo, 315010, Zhejiang, China.
| | - Liyuan Han
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China.
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
7
|
Lu C, Liu C, Mei D, Yu M, Bai J, Bao X, Wang M, Fu K, Yi X, Ge W, Shen J, Peng Y, Xu W. Comprehensive metabolomic characterization of atrial fibrillation. Front Cardiovasc Med 2022; 9:911845. [PMID: 36003904 PMCID: PMC9393302 DOI: 10.3389/fcvm.2022.911845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundUsing human humoral metabolomic profiling, we can discover the diagnostic biomarkers and pathogenesis of disease. The specific characterization of atrial fibrillation (AF) subtypes with metabolomics may facilitate effective and targeted treatment, especially in early stages.ObjectivesBy investigating disturbed metabolic pathways, we could evaluate the diagnostic value of biomarkers based on metabolomics for different types of AF.MethodsA cohort of 363 patients was enrolled and divided into a discovery and validation set. Patients underwent an electrocardiogram (ECG) for suspected AF. Groups were divided as follows: healthy individuals (Control), suspected AF (Sus-AF), first diagnosed AF (Fir-AF), paroxysmal AF (Par-AF), persistent AF (Per-AF), and AF causing a cardiogenic ischemic stroke (Car-AF). Serum metabolomic profiles were determined by gas chromatography–mass spectrometry (GC-MS) and liquid chromatography–quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Metabolomic variables were analyzed with clinical information to identify relevant diagnostic biomarkers.ResultsThe metabolic disorders were characterized by 16 cross-comparisons. We focused on comparing all of the types of AF (All-AFs) plus Car-AF vs. Control, All-AFs vs. Car-AF, Par-AF vs. Control, and Par-AF vs. Per-AF. Then, 117 and 94 metabolites were identified by GC/MS and LC-QTOF-MS, respectively. The essential altered metabolic pathways during AF progression included D-glutamine and D-glutamate metabolism, glycerophospholipid metabolism, etc. For differential diagnosis, the area under the curve (AUC) of specific metabolomic biomarkers ranged from 0.8237 to 0.9890 during the discovery phase, and the predictive values in the validation cohort were 78.8–90.2%.ConclusionsSerum metabolomics is a powerful way to identify metabolic disturbances. Differences in small–molecule metabolites may serve as biomarkers for AF onset, progression, and differential diagnosis.
Collapse
|
8
|
Jia J, Zhang H, Liang X, Dai Y, Liu L, Tan K, Ma R, Luo J, Ding Y, Ke C. Application of Metabolomics to the Discovery of Biomarkers for Ischemic Stroke in the Murine Model: a Comparison with the Clinical Results. Mol Neurobiol 2021; 58:6415-6426. [PMID: 34532786 DOI: 10.1007/s12035-021-02535-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022]
Abstract
Ischemic stroke (IS) is a major cause of mortality and disability worldwide. However, the pathogenesis of IS remains unknown, and methods for early prediction and diagnosis of IS are lacking. Metabolomics can be applied to biomarker discovery and mechanism exploration of IS by exploring metabolic alterations. In this review, 62 IS metabolomics studies in the murine model published from January 2006 to December 2020 in the PubMed and Web of Science databases were systematically reviewed. Twenty metabolites (e.g., lysine, phenylalanine, methionine, tryptophan, leucine, lactate, serine, N-acetyl-aspartic acid, and glutathione) were reported consistently in more than two-third murine studies. The disturbance of metabolic pathways, such as arginine biosynthesis; alanine, aspartate and glutamate metabolism; aminoacyl-tRNA biosynthesis; and citrate cycle, may be implicated in the development of IS by influencing the biological processes such as energy failure, oxidative stress, apoptosis, and glutamate toxicity. The transient middle cerebral artery occlusion model and permanent middle cerebral artery occlusion model exhibit both common and distinct metabolic patterns. Furthermore, five metabolites (proline, serine, LysoPC (16:0), uric acid, glutamate) in the blood sample and 7 metabolic pathways (e.g., alanine, aspartate, and glutamate metabolism) are shared in animal and clinical studies. The potential biomarkers and related pathways of IS in the murine model may facilitate the biomarker discovery for early diagnosis of IS and the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Jinjing Jia
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Hangyao Zhang
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Xiaoyi Liang
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Yuning Dai
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Lihe Liu
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Kaiwen Tan
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Ruohan Ma
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Jiahuan Luo
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Yi Ding
- Department of Preventive Medicine, College of Clinical Medicine, Suzhou Vocational Health College, Suzhou, 215009, People's Republic of China
| | - Chaofu Ke
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
9
|
Wang H, Hou X, Li B, Yang Y, Li Q, Si Y. Study on Active Components of Cuscuta chinensis Promoting Neural Stem Cells Proliferation: Bioassay-Guided Fractionation. Molecules 2021; 26:molecules26216634. [PMID: 34771043 PMCID: PMC8586919 DOI: 10.3390/molecules26216634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/20/2022] Open
Abstract
Neural stem cells (NSCs) exist in the central nervous system of adult animals and capable of self-replication. NSCs have two basic functions, namely the proliferation ability and the potential for multi-directional differentiation. In this study, based on the bioassay-guided fractionation, we aim to screen active components in Cuscuta chinensis to promote the proliferation of NSCs. CCK-8 assays were used as an active detection method to track the active components. On the basis of isolating active fraction and monomer compounds, the structures of these were identified by LC-MS and (1H, 13C) NMR. Moreover, active components were verified by pharmacodynamics and network pharmacology. The system solvent extraction method combined with the traditional isolation method were used to ensure that the fraction TSZE-EA-G6 of Cuscuta chinensis exhibited the highest activity. Seven chemical components were identified from the TSZE-EA-G6 fraction by UPLC-QE-Orbitrap-MS technology, which were 4-O-p-coumarinic acid, chlorogenic acid, 5-O-p-coumarinic acid, hyperoside, astragalin, isochlorogenic acid C, and quercetin-3-O-galactose-7-O-glucoside. Using different chromatographic techniques, five compounds were isolated in TSZE-EA-G6 and identified as kaempferol, kaempferol-3-O-glucoside (astragalin), quercetin-3-O-galactoside (hyperoside), chlorogenic acid, and sucrose. The activity study of these five compounds showed that the proliferation rate of kaempferol had the highest effects; at a certain concentration (25 μg/mL, 3.12 μg/mL), the proliferation rate could reach 87.44% and 59.59%, respectively. Furthermore, research results using network pharmacology techniques verified that kaempferol had an activity of promoting NSCs proliferation and the activity of flavonoid aglycones might be greater than that of flavonoid glycosides. In conclusion, this research shows that kaempferol is the active component in Cuscuta chinensis to promote the proliferation of NSCs.
Collapse
Affiliation(s)
- Hanze Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Xiaomeng Hou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (X.H.); (B.L.); (Y.Y.)
| | - Bingqi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (X.H.); (B.L.); (Y.Y.)
| | - Yang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (X.H.); (B.L.); (Y.Y.)
| | - Qiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (X.H.); (B.L.); (Y.Y.)
- Correspondence: (Q.L.); (Y.S.)
| | - Yinchu Si
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
- Correspondence: (Q.L.); (Y.S.)
| |
Collapse
|
10
|
Zhang B, Zhao J, Guo P, Wang Z, Xu L, Liu A, Du G. Effects of Naodesheng tablets on amyloid beta-induced dysfunction: A traditional Chinese herbal formula with novel therapeutic potential in Alzheimer's disease revealed by systems pharmacology. Biomed Pharmacother 2021; 141:111916. [PMID: 34328103 DOI: 10.1016/j.biopha.2021.111916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 12/15/2022] Open
Abstract
Naodesheng (NDS) tablets have been widely used to treat ischemic stroke clinically. NDS relieves neurological function impairment and improve learning and memory in rats with focal cerebral ischemia, suggesting that NDS has potential for Alzheimer's disease (AD) treatment. However, there are no studies about its effective material basis and possible mechanisms. In this study, a systems pharmacology method was applied to reveal the potential molecular mechanism of NDS in the treatment of AD. First, we obtained 360 NDS candidate constituents through ADMET filter analysis. Then, 115 AD-related targets were uncovered by pharmacophore model prediction via mapping the predicted targets against AD-related proteins. In addition, compound-target and target-function networks were established to suggest potential synergistic effects among the candidate constituents. Furthermore, potential targets regulated by NDS were integrated into AD-related pathways to demonstrate the therapeutic mechanism of NDS in AD treatment. Subsequently, a validation experiment proved the therapeutic effect of NDS on cognitive dysfunction in rats with intracerebroventricular injection of Aβ. We found that administration of NDS tablets regulates β-amyloid metabolism, improves synaptic plasticity, inhibits neuroinflammation and improves learning and memory function. In conclusion, this is the first study to provide a comprehensive systems pharmacology approach to elucidate the potential therapeutic mechanism of NDS tablets for AD treatment. We suggest that the protective effects of NDS in neurodegenerative conditions could be partly attributed to its role in improving synaptic plasticity and inhibiting neuroinflammation via NF-κB signaling pathway inhibition and cAMP/PKA/CREB signaling pathway activation.
Collapse
Affiliation(s)
- Baoyue Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengfei Guo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lvjie Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ailin Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
11
|
Chumachenko MS, Waseem TV, Fedorovich SV. Metabolomics and metabolites in ischemic stroke. Rev Neurosci 2021; 33:181-205. [PMID: 34213842 DOI: 10.1515/revneuro-2021-0048] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/09/2021] [Indexed: 12/27/2022]
Abstract
Stroke is a major reason for disability and the second highest cause of death in the world. When a patient is admitted to a hospital, it is necessary to identify the type of stroke, and the likelihood for development of a recurrent stroke, vascular dementia, and depression. These factors could be determined using different biomarkers. Metabolomics is a very promising strategy for identification of biomarkers. The advantage of metabolomics, in contrast to other analytical techniques, resides in providing low molecular weight metabolite profiles, rather than individual molecule profiles. Technically, this approach is based on mass spectrometry and nuclear magnetic resonance. Furthermore, variations in metabolite concentrations during brain ischemia could alter the principal neuronal functions. Different markers associated with ischemic stroke in the brain have been identified including those contributing to risk, acute onset, and severity of this pathology. In the brain, experimental studies using the ischemia/reperfusion model (IRI) have shown an impaired energy and amino acid metabolism and confirmed their principal roles. Literature data provide a good basis for identifying markers of ischemic stroke and hemorrhagic stroke and understanding metabolic mechanisms of these diseases. This opens an avenue for the successful use of identified markers along with metabolomics technologies to develop fast and reliable diagnostic tools for ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Maria S Chumachenko
- Department of Biochemistry, Faculty of Biology, Belarusian State University, Kurchatova St., 10, Minsk220030, Belarus
| | | | - Sergei V Fedorovich
- Department of Biochemistry, Faculty of Biology, Belarusian State University, Kurchatova St., 10, Minsk220030, Belarus
| |
Collapse
|
12
|
Liu X, Ruan Z, Shao XC, Feng HX, Wu L, Wang W, Wang HM, Mu HY, Zhang RJ, Zhao WM, Zhang HY, Zhang NX. Protective Effects of 28-O-Caffeoyl Betulin (B-CA) on the Cerebral Cortex of Ischemic Rats Revealed by a NMR-Based Metabolomics Analysis. Neurochem Res 2021; 46:686-698. [PMID: 33389470 DOI: 10.1007/s11064-020-03202-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
28-O-caffeoyl betulin (B-CA) has been demonstrated to reduce the cerebral infarct volume caused by transient middle cerebral artery occlusion (MCAO) injury. B-CA is a novel derivative of naturally occurring caffeoyl triterpene with little information associated with its pharmacological target(s). To date no data is available regarding the effect of B-CA on brain metabolism. In the present study, a 1H-NMR-based metabolomics approach was applied to investigate the therapeutic effects of B-CA on brain metabolism following MCAO in rats. Global metabolic profiles of the cortex in acute period (9 h after focal ischemia onset) after MCAO were compared between the groups (sham; MCAO + vehicle; MCAO + B-CA). MCAO induced several changes in the ipsilateral cortex of ischemic rats, which consequently led to the neuronal damage featured with the downregulation of NAA, including energy metabolism dysfunctions, oxidative stress, and neurotransmitter metabolism. Treatment with B-CA showed statistically significant rescue effects on the ischemic cortex of MCAO rats. Specifically, treatment with B-CA ameliorated the energy metabolism dysfunctions (back-regulating the levels of succinate, lactate, BCAAs, and carnitine), oxidative stress (upregulating the level of glutathione), and neurotransmitter metabolism disturbances (back-regulating the levels of γ-aminobutyric acid and acetylcholine) associated with the progression of ischemic stroke. With the administration of B-CA, the levels of three phospholipid related metabolites (O-phosphocholine, O-phosphoethanolamine, sn-glycero-3-phosphocholine) and NAA improved significantly. Overall, our findings suggest that treatment with B-CA may provide neuroprotection by augmenting the metabolic changes observed in the cortex following MCAO in rats.
Collapse
Affiliation(s)
- Xia Liu
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhi Ruan
- CAS Key Laboratory of Receptor Research, Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xing-Cheng Shao
- Department of Natural Product Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong-Xuan Feng
- CAS Key Laboratory of Receptor Research, Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lei Wu
- CAS Key Laboratory of Receptor Research, Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wei Wang
- CAS Key Laboratory of Receptor Research, Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Min Wang
- Department of Natural Product Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Yan Mu
- Department of Natural Product Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ru-Jun Zhang
- Department of Natural Product Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wei-Min Zhao
- Department of Natural Product Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Hai-Yan Zhang
- CAS Key Laboratory of Receptor Research, Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Nai-Xia Zhang
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
13
|
Sun T, Wang P, Deng T, Tao X, Li B, Xu Y. Effect of Panax notoginseng Saponins on Focal Cerebral Ischemia-Reperfusion in Rat Models: A Meta-Analysis. Front Pharmacol 2021; 11:572304. [PMID: 33643030 PMCID: PMC7908036 DOI: 10.3389/fphar.2020.572304] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
With the increase of the aging population, the high mortality and disability rates caused by ischemic stroke are some of the major problems facing the world, and they dramatically burden the society. Panax notoginseng (Burk) F. H. Chen, a traditional Chinese medicine, is commonly used for promoting blood circulation and removing blood stasis, and its main bioactive components are Panax notoginseng saponins (PNS). Therefore, we performed a meta-analysis on focal cerebral ischemia-reperfusion animal models established with middle cerebral artery occlusion (MCAO) surgery to evaluate the therapeutic effect of PNS. We systematically searched the reports of PNS in MCAO animal experiments in seven databases. We assessed the study quality using two literature quality evaluation criteria; evaluated the efficacy of PNS treatment based on the outcomes of the neurological deficit score (NDS), cerebral infarct volume (CIV), and biochemical indicators via a random/fixed-effects model; and performed a subgroup analysis utilizing ischemia duration, drug dosage, intervention time, and administration duration. We also compared the efficacy of PNS with positive control drugs or combination treatment. As a result, we selected 14 eligible studies from the 3,581 searched publications based on the predefined exclusion-inclusion criteria. PNS were significantly associated with reduced NDS, reduced CIV, and inhibited release of the inflammatory factors IL-1β and TNF-α in the focal MCAO rat models. The PNS combination therapy outperformed the PNS alone. In addition, ischemia time, drug dosage, intervention time, and administration duration in the rat models all had significant effects on the efficacy of PNS. Although more high-quality studies are needed to further determine the clinical efficacy and guiding parameters of PNS, our results also confirmed that PNS significantly relieves the focal cerebral ischemia-reperfusion in rat models. In the animal trials, it was suggested that an early intervention had significant efficacy with PNS alone or PNS combination treatment at a dosage lower than 25 mg/kg or 100–150 mg/kg for 4 days or longer. These findings further guide the therapeutic strategy for clinical cerebral ischemic stroke.
Collapse
Affiliation(s)
- Tao Sun
- Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Wang
- Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Deng
- Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xingbao Tao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Liu H, Yang J, Yang W, Hu S, Wu Y, Zhao B, Hu H, Du S. Focus on Notoginsenoside R1 in Metabolism and Prevention Against Human Diseases. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:551-565. [PMID: 32103897 PMCID: PMC7012233 DOI: 10.2147/dddt.s240511] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
Notoginsenoside (NG)-R1 is one of the main bioactive compounds from Panax notoginseng (PN) root, which is well known in the prescription for mediating the micro-circulatory hemostasis in human. In this article, we mainly discuss NG-R1 in metabolism and the biological activities, including cardiovascular protection, neuro-protection, anti-diabetes, liver protection, gastrointestinal protection, lung protection, bone metabolism regulation, renal protection, and anti-cancer. The metabolites produced by deglycosylation of NG-R1 exhibit higher permeability and bioavailability. It has been extensively verified that NG-R1 may ameliorate ischemia-reperfusion (IR)-induced injury in cardiovascular and neuronal systems mainly by upregulating the activity of estrogen receptor α-dependent phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) and nuclear factor erythroid-2-related factor 2 (NRF2) pathways and downregulating nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. However, no specific targets for NG-R1 have been identified. Expectedly, NG-R1 has been used as a main bioactive compound in many Traditional Chinese Medicines clinically, such as Xuesaitong, Naodesheng, XueShuanTong, ShenMai, and QSYQ. These suggest that NG-R1 exhibits a significant potency in drug development.
Collapse
Affiliation(s)
- Hai Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China.,College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, People's Republic of China
| | - Jianqiong Yang
- Department of Clinical Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, People's Republic of China
| | - Wanqing Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shaonan Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yali Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Bo Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Haiyan Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|