1
|
Yan T, Zhang N, Liu F, Wang H, Zhang J, Jin X, Jiang S. PCK2 induces gefitinib resistance by suppresses ferroptosis in non-small cell lung cancer. Biochem Biophys Res Commun 2024; 723:150200. [PMID: 38850814 DOI: 10.1016/j.bbrc.2024.150200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVES This study aimed to explore the involvement of phosphoenolpyruvate carboxykinase 2 (PCK2) in gefitinib-resistant non-small cell lung cancer (NSCLC) cells and assess its feasibility as a therapeutic target against gefitinib resistance. METHODS Gefitinib-resistant cell lines, PC9GR and HCC827GR, were generated through progressive exposure of parental cells to escalating concentrations of gefitinib. Transcriptomic analysis encompassed the treatment of PC9 and PC9GR cells with gefitinib or vehicle, followed by RNA extraction, sequencing, and subsequent bioinformatic analysis. Cell viability was determined via CCK-8 assay, while clonogenic assays assessed colony formation. Apoptosis was detected utilizing the Annexin V-FITC/7AAD kit. Iron ion concentrations were quantified using FerroOrange. mRNA analysis was conducted through quantitative RT-PCR. Western blotting was employed for protein analysis. H&E and immunohistochemical staining were performed on tumor tissue sections. RESULTS The results revealed that depletion or inhibition of PCK2 significantly enhanced gefitinib's efficacy in inducing cell growth arrest, apoptosis, and ferroptosis in resistant NSCLC. Moreover, PCK2 knockdown led to the downregulation of key ferroptosis-related proteins, GPX4 and SLC7A11, while upregulating ASCL4. Conversely, overexpression of PCK2 in gefitinib-sensitive cells rendered resistance to gefitinib. In vivo experiments using a gefitinib-resistant xenograft model demonstrated that PCK2 silencing not only reduced tumor growth but also considerably increased the anti-tumor effect of gefitinib. CONCLUSIONS In conclusion, our study presents compelling evidence indicating that PCK2 plays a pivotal role in gefitinib resistance in NSCLC. The modulation of ferroptosis-related proteins and the involvement of Akt activation further elucidate the mechanisms underlying this resistance. Consequently, PCK2 emerges as a promising therapeutic target for overcoming gefitinib resistance in NSCLC, offering a new avenue for the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Tinghao Yan
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ni Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fen Liu
- Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | | | - Jiaqi Zhang
- Jining No.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Xiaohan Jin
- Jining No.1 People's Hospital, Shandong First Medical University, Jining, China; Center for Post-Doctoral Studies, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Shulong Jiang
- Cheeloo College of Medicine, Shandong University, Jinan, China; Jining No.1 People's Hospital, Shandong First Medical University, Jining, China.
| |
Collapse
|
2
|
Du S, Chen X, Ren R, Li L, Zhang B, Wang Q, Meng Y, Qiu Z, Wang G, Zheng G, Hu J. Integration of network pharmacology, lipidomics, and transcriptomics analysis to reveal the mechanisms underlying the amelioration of AKT-induced nonalcoholic fatty liver disease by total flavonoids in vine tea. Food Funct 2024; 15:5158-5174. [PMID: 38630029 DOI: 10.1039/d4fo00586d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the main reason for chronic liver diseases and malignancies. Currently, there is a lack of approved drugs for the prevention or treatment of NAFLD. Vine tea (Ampelopsis grossedentata) has been used as a traditional Chinese beverage for centuries. Vine tea carries out several biological activities including the regulation of plasma lipids and blood glucose, hepato-protective function, and anti-tumor activity and contains the highest content of flavonoids. However, the underlying mechanisms of total flavonoids from vine tea (TF) in the attenuation of NAFLD remain unclear. Therefore, we investigated the interventions and mechanisms of TF in mice with NAFLD using an integrated analysis of network pharmacology, lipidomics, and transcriptomics. Staining and biochemical tests revealed a significant increase in AKT-overexpression-induced (abbreviated as AKT-induced) NAFLD in mice. Lipid accumulation in hepatic intracellular vacuoles was alleviated after TF treatment. In addition, TF reduced the hepatic and serum triglyceride levels in mice with AKT-induced NAFLD. Lipidomics results showed 32 differential lipids in the liver, mainly including triglycerides (TG), diglycerides (DG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE). Transcriptomic analysis revealed that 314 differentially expressed genes were commonly upregulated in the AKT group and downregulated in the TF group. The differential regulation of lipids by the genes Pparg, Scd1, Chpt1, Dgkz, and Pla2g12b was further revealed by network enrichment analysis and confirmed by RT-qPCR. Furthermore, we used immunohistochemistry (IHC) to detect changes in the protein levels of the key proteins PPARγ and SCD1. In summary, TF can improve hepatic steatosis by targeting the PPAR signaling pathway, thereby reducing de novo fatty acid synthesis and modulating the glycerophospholipid metabolism.
Collapse
Affiliation(s)
- Siyu Du
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
- Hubei Shizhen Laboratory, Wuhan, People's Republic of China
| | - Xin Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
- Hubei Shizhen Laboratory, Wuhan, People's Republic of China
| | - Rumeng Ren
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Li Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Baohui Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
- Hubei Shizhen Laboratory, Wuhan, People's Republic of China
| | - Qi Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
- Hubei Shizhen Laboratory, Wuhan, People's Republic of China
| | - Yan Meng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
- Hubei Shizhen Laboratory, Wuhan, People's Republic of China
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
- Hubei Shizhen Laboratory, Wuhan, People's Republic of China
| | - Guihong Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
| | - Guohua Zheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
- Hubei Shizhen Laboratory, Wuhan, People's Republic of China
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
- Hubei Shizhen Laboratory, Wuhan, People's Republic of China
| |
Collapse
|
3
|
Yang Y, Qiu W, Xiao J, Sun J, Ren X, Jiang L. Dihydromyricetin ameliorates hepatic steatosis and insulin resistance via AMPK/PGC-1α and PPARα-mediated autophagy pathway. J Transl Med 2024; 22:309. [PMID: 38532480 PMCID: PMC10964712 DOI: 10.1186/s12967-024-05060-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Dihydromyricetin (DHM), a flavonoid compound of natural origin, has been identified in high concentrations in ampelopsis grossedentata and has a broad spectrum of biological and pharmacological functions, particularly in regulating glucose and lipid metabolism. The objective of this research was to examine how DHM affected nonalcoholic fatty liver disease (NAFLD) and its underlying mechanisms involved in the progression of NAFLD in a rat model subjected to a high-fat diet (HFD). Additionally, the study examines the underlying mechanisms in a cellular model of steatohepatitis using palmitic acid (PA)-treated HepG2 cells, with a focus on the potential correlation between autophagy and hepatic insulin resistance (IR) in the progress of NAFLD. METHODS SD rats were exposed to a HFD for a period of eight weeks, followed by a treatment with DHM (at doses of 50, 100, and 200 mg·kg-1·d-1) for additional six weeks. The HepG2 cells received a 0.5 mM PA treatment for 24 h, either alone or in conjunction with DHM (10 µM). The histopathological alterations were assessed by the use of Hematoxylin-eosin (H&E) staining. The quantification of glycogen content and lipid buildup in the liver was conducted by the use of PAS and Oil Red O staining techniques. Serum lipid and liver enzyme levels were also measured. Autophagic vesicle and autolysosome morphology was studied using electron microscopy. RT-qPCR and/or western blotting techniques were used to measure IR- and autophagy-related factors levels. RESULTS The administration of DHM demonstrated efficacy in ameliorating hepatic steatosis, as seen in both in vivo and in vitro experimental models. Moreover, DHM administration significantly increased GLUT2 expression, decreased G6Pase and PEPCK expression, and improved IR in the hepatic tissue of rats fed a HFD and in cells exhibiting steatosis. DHM treatment elevated Beclin 1, ATG 5, and LC3-II levels in hepatic steatosis models, correlating with autolysosome formation. The expression of AMPK levels and its downstream target PGC-1α, and PPARα were decreased in HFD-fed rats and PA-treated hepatocytes, which were reversed through DHM treatment. AMPK/ PGC-1α and PPARα knockdown reduced the impact of DHM on hepatic autophagy, IR and accumulation of hepatic lipid. CONCLUSIONS Our findings revealed that AMPK/ PGC-1α, PPARα-dependent autophagy pathways in the pathophysiology of IR and hepatic steatosis has been shown, suggesting that DHM might potentially serve as a promising treatment option for addressing this disease.
Collapse
Affiliation(s)
- Yan Yang
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, China
| | - Wen Qiu
- Department of Pharmacology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiyuan Xiao
- Department of Pharmacology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jie Sun
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, China
| | - Xuan Ren
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, China
| | - Luxia Jiang
- Department of Cardiac Surgery ICU, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
4
|
Wang H, Pan F, Liu J, Zhang J, Fuli Zhang, Wang Y. Huayuwendan decoction ameliorates inflammation via IL-17/NF-κB signaling pathway in diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117328. [PMID: 37865275 DOI: 10.1016/j.jep.2023.117328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/30/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huayuwendan decoction (HYWD) is a broad used traditional Chinese medicine and therapeutic effects against type 2 diabetes mellitus (T2DM). The mechanism of HYWD on the treatment of T2DM is still unclear. AIM OF THE STUDY For this reason, this study was performed to uncover the effects and mechanism of action of HYWD on T2DM. MATERIALS AND METHODS Male Wistar rats were chosen to set up the T2DM model. This study was randomly divided into six groups: CON (control), MOD (model), HYWDL (Huayuwendan decoction Low Dose), HYWDM (Huayuwendan decoction Middle Dose), HYWDH (Huayuwendan decoction High Dose), and MET (Metformin). Body weight gains were estimated. Using H&E staining, pathological alterations was explored. The serums of fasting plasma glucose (FPG), 2-h postprandial plasma glucose (2 h PG) were detected by Roche blood glucose meter. LDL-C and HDL-C were analyzed by automatic biochemical analyzer. Network pharmacology analyzed the active ingredients, drug targets, and key pathways of HYWD in T2DM treatment. The islet function and inflammation related factors were determined by ELISA. NF-κB signaling pathway or IL-17 signaling pathway related proteins were analyzed by Western blotting. IL-17RA were determined by immunohistochemistry analyze. RESULTS HYWD inhibited weight gain in T2DM rats. Histopathological results showed that HYWD inhibits liver injury. HYWD suppressed LDL-C and enhanced HDL-C in serum of T2DM rats. HYWD reduce FPG and 2 h PG, inhibit Fins, GSP and IRI, but enhance IAI in serum of T2DM rats. In addition, the network pharmacology results identified 292 chemical compounds in HYWD. 279 candidate targets were recognized, including IL-17A, IL-1β, NFкB, stats, mmp3, and cxcl2. The pathways revealed that the possible target of HYWD related with the regulation of IL-17 signaling pathway and NF-κB pathway. Then in vivo study, HYWD reduced the levels of IL-6, TNF-α, IL-17 and IL-1β in serum and inhibit the protein expression involved in IL-17/NF-κB signaling pathway. CONCLUSIONS The study demonstrates that HYWD may improve T2DM by repressing with the IL-17/NF-κB signaling pathway, which offer encouraging support for using alternative medicine of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Hongyang Wang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China; Heilongjiang Univ Tradit Chinese Med, Harbin, Heilongjiang, 150000, China
| | - Fuzhen Pan
- Heilongjiang Univ Tradit Chinese Med, Harbin, Heilongjiang, 150000, China
| | - Jie Liu
- Heilongjiang Univ Tradit Chinese Med, Harbin, Heilongjiang, 150000, China
| | - Juncheng Zhang
- Heilongjiang Univ Tradit Chinese Med, Harbin, Heilongjiang, 150000, China
| | - Fuli Zhang
- Heilongjiang Univ Tradit Chinese Med, Harbin, Heilongjiang, 150000, China
| | - Yu Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563006, China; Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China.
| |
Collapse
|
5
|
Wu RR, Li X, Cao YH, Peng X, Liu GF, Liu ZK, Yang Z, Liu ZY, Wu Y. China Medicinal Plants of the Ampelopsis grossedentata-A Review of Their Botanical Characteristics, Use, Phytochemistry, Active Pharmacological Components, and Toxicology. Molecules 2023; 28:7145. [PMID: 37894624 PMCID: PMC10609530 DOI: 10.3390/molecules28207145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Ampelopsis grossedentata (AG) is mainly distributed in Chinese provinces and areas south of the Yangtze River Basin. It is mostly concentrated or scattered in mountainous bushes or woods with high humidity. Approximately 57 chemical components of AG have been identified, including flavonoids, phenols, steroids and terpenoids, volatile components, and other chemical components. In vitro studies have shown that the flavone of AG has therapeutic properties such as anti-bacteria, anti-inflammation, anti-oxidation, enhancing immunity, regulating glucose and lipid metabolism, being hepatoprotective, and being anti-tumor with no toxicity. Through searching and combing the related literature, this paper comprehensively and systematically summarizes the research progress of AG, including morphology, traditional and modern uses, chemical composition and structure, and pharmacological and toxicological effects, with a view to providing references for AG-related research.
Collapse
Affiliation(s)
- Rong-Rong Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (R.-R.W.); (Y.-H.C.); (X.P.); (Z.-K.L.)
| | - Xiang Li
- Hunan Canzoho Biological Technology Co., Ltd., Liuyang 410329, China; (X.L.); (G.-F.L.)
| | - Yu-Hang Cao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (R.-R.W.); (Y.-H.C.); (X.P.); (Z.-K.L.)
| | - Xiong Peng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (R.-R.W.); (Y.-H.C.); (X.P.); (Z.-K.L.)
| | - Gao-Feng Liu
- Hunan Canzoho Biological Technology Co., Ltd., Liuyang 410329, China; (X.L.); (G.-F.L.)
| | - Zi-Kui Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (R.-R.W.); (Y.-H.C.); (X.P.); (Z.-K.L.)
| | - Zi Yang
- Academician Workstation, Changsha Medical University, Changsha 410219, China;
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (R.-R.W.); (Y.-H.C.); (X.P.); (Z.-K.L.)
| | - Yong Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (R.-R.W.); (Y.-H.C.); (X.P.); (Z.-K.L.)
| |
Collapse
|
6
|
Li Y, Kong MW, Jiang N, Ye C, Yao XW, Zou XJ, Hu HM, Liu HT. Vine tea extract ameliorated acute liver injury by inhibiting hepatic autophagy and reversing abnormal bile acid metabolism. Heliyon 2023; 9:e20145. [PMID: 37809393 PMCID: PMC10559920 DOI: 10.1016/j.heliyon.2023.e20145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Gut microbiota disturbance, autophagy dysregulation, and accumulation of hepatic bile acids (BAs) are essential features of liver injury. Therefore, regulating autophagy and BA metabolism are potential strategies for treating liver diseases. Vine tea has been seen beyond a pleasant tea in food science. Our previous study found that vine tea extract (VTE) intervention alleviated acute liver injury (ALI) by restoring gut microbiota dysbiosis. In this study, we aim to investigate the effect of VTE on carbon tetrachloride (CCl4)-induced hepatic autophagy and BA metabolism disorder in mice. The results showed that VTE effectively suppressed CCl4-induced liver fibrosis and hepatic autophagy. LC-MS/MS assay suggested that VTE affected fecal BA production by reducing the fecal BA levels and improving cholestasis in ALI mice. Besides, VTE inhibited BA synthesis, promoted BA transport in the liver, and enhanced BA reabsorption in the ileum through the farnesoid X receptor (FXR)-related signaling pathway. The hepatic expressions of Fxr and Abca1 were elevated by VTE. Finally, the depletion of gut microbiota in ALI mice had a negative impact on abnormal autophagy and BA metabolism. It was also noted that the administration of VTE did not provide any additional improvement in this regard. Overall, VTE ameliorated ALI by reversing hepatic autophagy and abnormal BA metabolism, and the beneficial effects of VTE on liver injury depended on the existence of gut microbiota.
Collapse
Affiliation(s)
- Ying Li
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Ming-Wang Kong
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Nan Jiang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, PR China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, PR China
| | - Chen Ye
- Wuhan Customs Technology Center, Qintai Avenue 588, Wuhan 430050, PR China
| | - Xiao-Wei Yao
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Xiao-Juan Zou
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Hai-Ming Hu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Hong-Tao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| |
Collapse
|
7
|
Shen Q, Zhong YT, Liu XX, Hu JN, Qi SM, Li K, Wang Z, Zhu HY, Li XD, Wang YP, Li W. Platycodin D ameliorates hyperglycaemia and liver metabolic disturbance in HFD/STZ-induced type 2 diabetic mice. Food Funct 2023; 14:74-86. [PMID: 36504256 DOI: 10.1039/d2fo03308a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
In this work, we investigated the ameliorative effects of platycodin D (PD), a major active chemical ingredient isolated from the roots of Platycodon grandiflorum (PG), on high-fat diet (HFD)/streptozotocin (STZ)-induced type 2 diabetes (T2D) mice. PD treatment (2.5 and 5.0 mg kg-1) improved HFD-induced body weight gain. PD administration also decreased the fasting blood glucose (FBG) level and improved glucose and insulin tolerance levels. These data collectively showed that PD could maintain glucose homeostasis. In addition, the diabetic mice with PD treatment also showed fewer pathological changes in liver tissues and improved hepatic functional indexes with respect to the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and recovery of abnormal liver function caused by T2D. Except for these, PD decreased the decomposition of hepatic glycogen. The results from western blot analysis showed that PD treatment might regulate the hepatic gluconeogenesis pathway with the increased phosphorylation/expression of AMPK and decreased expressions of PCK1 and G6Pase. In the aspect of lipid metabolism, PD decreased the whole-body lipid levels, including total cholesterol (TC), triglycerides (TG), and high-density lipoprotein (HDL), and reduced the hepatic fat accumulation induced by T2D through the AMPK/ACC/CPT-1 fatty acid anabolism pathway. In addition, the results of molecular docking showed that PD may have a potential direct effect on AMPK and other key glycolipid metabolism proteins. To summarize, PD modulation of hepatic glycolipid metabolism abnormalities is promising for T2D therapy in the future.
Collapse
Affiliation(s)
- Qiong Shen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China. .,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Yu-Te Zhong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Xiang-Xiang Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China. .,Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Si-Min Qi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Ke Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Hong-Yan Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Xin-Dian Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Ying-Ping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China. .,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China. .,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| |
Collapse
|
8
|
Molecular mechanism and therapeutic significance of dihydromyricetin in nonalcoholic fatty liver disease. Eur J Pharmacol 2022; 935:175325. [DOI: 10.1016/j.ejphar.2022.175325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
|
9
|
Wang P, Ma XM, Geng K, Jiang ZZ, Yan PY, Xu Y. Effects of Camellia tea and herbal tea on cardiometabolic risk in patients with type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2022; 36:4051-4062. [PMID: 36197117 DOI: 10.1002/ptr.7572] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/07/2022]
Abstract
Evidence for the anti-diabetic actions of camellia and herbal tea in diabetic patients has not been summarized. Several data sources were searched for randomized trials assessing the effect of different teas on cardiometabolic risk factors in T2D subjects. Two independent reviewers extracted relevant data and assessed the risk of bias. Results were summarized using mean differences (MDs) based on a random model. Sixteen studies (19 trials, N = 832) fulfilled the eligibility criteria. Mean differences were measured for body weight, body mass index, fasting blood glucose, glycosylated hemoglobin, a homeostatic model for insulin resistance, high and low-density lipoproteins, triglycerides, and systolic and diastolic blood pressure. No effects on total cholesterol and waist circumference were observed when either camellia or herbal tea was consumed. Tea produced moderate regulatory effects on adipose, glycemic control, lipid profiles, and blood pressure. In terms of efficacy, camellia and herbal teas yield different benefits in regulating metabolism. This discovery has some implications for clinical research and drug development. However, more high-quality trials are needed to improve the certainty of our estimates.
Collapse
Affiliation(s)
- Peng Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China
| | - Xiu Mei Ma
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China.,Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Kang Geng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Department of Plastic and Burn Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Zong Zhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Pei Yu Yan
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China
| | - Yong Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China.,Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
10
|
Pro-Apoptotic Effect of Zeolitic Imidazolate Framework-8 (ZIF-8)-Loaded Dihydromyricetin on HepG2 Cells. Molecules 2022; 27:molecules27175484. [PMID: 36080252 PMCID: PMC9458003 DOI: 10.3390/molecules27175484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Dihydromyricetin (DHM) has garnered attention due to its promising antitumor activity, but its low bioavailability restricts its clinical application. Thus, developing nano-drug delivery systems could enhance its antitumor activity. We prepared DHM@ZIF-8 nanoparticles using the zeolite imidazole framework-8 (ZIF-8) as a carrier loaded with dihydromyricetin. A series of characterizations were performed, including morphology, particle size, zeta potential, X-single crystal diffraction, ultraviolet spectroscopy, infrared spectroscopy, and Brunauer–Emmett–Teller (BET). The in vitro release characteristics of DHM@ZIF-8 under pH = 5.0 and pH = 7.4 were studied using membrane dialysis. The antitumor activity and pro-apoptotic mechanism of DHM@ZIF-8 were investigated through CCK-8 assay, reactive oxygen species (ROS), Annexin V/PI double-staining, transmission electron microscopy, and Western blot. The results depicted that DHM@ZIF-8 possessed a regular morphology with a particle size of 211.07 ± 9.65 nm (PDI: 0.19 ± 0.06) and a Zeta potential of −28.77 ± 0.67 mV. The 24 h drug releasing rate in PBS solution at pH = 7.4 was 32.08% and at pH = 5.0 was 85.52% in a simulated tumor micro acid environment. DHM@ZIF-8 could significantly enhance the killing effect on HepG2 cells compared to the prodrug. It can effectively remove ROS from the tumor cells, promote apoptosis, and significantly affect the expression of apoptosis-related proteins within tumor cells.
Collapse
|
11
|
Leng Q, Zhou J, Li C, Xu Y, Liu L, Zhu Y, Yang Y, Zhang H, Li X. Dihydromyricetin ameliorates diet-induced obesity and promotes browning of white adipose tissue by upregulating IRF4/PGC-1α. Nutr Metab (Lond) 2022; 19:38. [PMID: 35690863 PMCID: PMC9188085 DOI: 10.1186/s12986-022-00672-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Promoting the browning of white adipose tissue (WAT) is a promising approach for the treatment of obesity and related comorbidities because it increases energy expenditure. In this study, we investigated whether Dihydromyricetin (DHM), a flavonoid component, could ameliorate diet-induced obesity through promoting the browning of WAT. METHODS Male C57BL/6 J mice were received a high-fat diet (HFD) to induce obesity and subsequently were treated with DHM (100 mg/kg/day) or vehicle for 4 weeks. The effects of DHM on weight reduction and metabolic phenotype improvement were observed in the mice. The expression of genes and protein involved in browning of WAT were assessed in inguinal WAT (iWAT) of the mice. Then, the effect of DHM on the inducing browning program was verified in adipocytes differentiated from stromal vascular fraction (SVF) cells of mouse iWAT. Finally, the mechanism by which DHM improves the browning of WAT was explored using RNA-seq and luciferase reporter assay. RESULTS We find that DHM reduces body weight, decreases WAT mass, improves glucose and lipid metabolic disorders, and ameliorates hepatic steatosis in diet-induced obese (DIO) mice. Further studies show that DHM induces WAT browning, which is manifested by increased expression of uncoupling protein 1 (UCP1) and peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and enhanced mitochondrial activity in iWAT and primary adipocytes. In addition, we also find that DHM enhances interferon regulatory factor 4 (IRF4) expression, which is a key transcriptional regulator of PGC-1α. CONCLUSION Our findings identify that DHM prevents obesity by inducing the browning of WAT through the upregulation of IRF4/PGC-1α, which may have potential therapeutic implications for the treatment of obesity.
Collapse
Affiliation(s)
- Qingyang Leng
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhua Zhou
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chang Li
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanhong Xu
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Liu
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Zhu
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Yang
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hongli Zhang
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaohua Li
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
12
|
Li Y, Hu H, Yang H, Lin A, Xia H, Cheng X, Kong M, Liu H. Vine Tea (
Ampelopsis grossedentata
) extract attenuates CCl
4
‐induced liver injury by restoring gut microbiota dysbiosis in mice. Mol Nutr Food Res 2022; 66:e2100892. [PMID: 35188709 DOI: 10.1002/mnfr.202100892] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/29/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Ying Li
- College of Basic Medical Sciences Hubei University of Chinese Medicine Huangjiahu West Road 16 Wuhan 430065 PR China
| | - Haiming Hu
- College of Basic Medical Sciences Hubei University of Chinese Medicine Huangjiahu West Road 16 Wuhan 430065 PR China
| | - Huabing Yang
- College of Basic Medical Sciences Hubei University of Chinese Medicine Huangjiahu West Road 16 Wuhan 430065 PR China
| | - Aizhen Lin
- Hubei Provincial Hospital of Traditional Chinese Medicine Wuhan 430061 P.R. China
- Hubei Province Academy of Traditional Chinese Medicine Wuhan 430074 P.R. China
| | - Hui Xia
- College of Basic Medical Sciences Hubei University of Chinese Medicine Huangjiahu West Road 16 Wuhan 430065 PR China
| | - Xue Cheng
- College of Basic Medical Sciences Hubei University of Chinese Medicine Huangjiahu West Road 16 Wuhan 430065 PR China
| | - Mingwang Kong
- College of Basic Medical Sciences Hubei University of Chinese Medicine Huangjiahu West Road 16 Wuhan 430065 PR China
| | - Hongtao Liu
- College of Basic Medical Sciences Hubei University of Chinese Medicine Huangjiahu West Road 16 Wuhan 430065 PR China
| |
Collapse
|
13
|
Chen J, Wang X, Xia T, Bi Y, Liu B, Fu J, Zhu R. Molecular mechanisms and therapeutic implications of dihydromyricetin in liver disease. Biomed Pharmacother 2021; 142:111927. [PMID: 34339914 DOI: 10.1016/j.biopha.2021.111927] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Recent studies demonstrated that dihydromyricetin (DHM) has prominent therapeutic effects on liver injury and liver cancer. By summarizing the current preclinical in vitro and in vivo studies, the present review examines the preventive and therapeutic effects of DHM on liver disorders as well as its potential mechanisms. Briefly, in both chemical- and alcohol-induced liver injury models, DHM ameliorates hepatocyte necrosis and steatosis while promoting liver regeneration. In addition, DHM can alleviate nonalcoholic fatty liver disease (NAFLD) via regulating lipid/glucose metabolism, probably due to its anti-inflammatory or sirtuins-dependent mechanisms. Furthermore, DHM treatment inhibits cell proliferation, induces apoptosis and autophagy and regulates redox balance in liver cancer cells, thus exhibiting remarkable anti-cancer effects. The pharmacological mechanisms of DHM may be associated with its anti-inflammatory, anti-oxidative and apoptosis-regulatory benefits. With the accumulating interests in utilizing natural products to target common diseases, our work aims to improve the understanding of DHM acting as a novel drug candidate for liver diseases and to accelerate its translation from bench to bedside.
Collapse
Affiliation(s)
- Jingnan Chen
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, China; Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, China
| | - Xitong Wang
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, China; Laboratory of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, China
| | - Tian Xia
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, China; Laboratory of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, China
| | - Yanhua Bi
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, China
| | - Bin Liu
- Laboratory of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, China.
| | - Junfen Fu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, China; Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, China.
| | - Runzhi Zhu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, China; Laboratory of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, China; Cancer Center, Zhejiang University, China.
| |
Collapse
|
14
|
Chen YJ, Song HY, Zhang ZW, Chen Q, Tang ZP, Gu M. Extracts of Vine Tea Improve Diet-Induced Non-Alcoholic Steatohepatitis Through AMPK-LXRα Signaling. Front Pharmacol 2021; 12:711763. [PMID: 34393793 PMCID: PMC8361841 DOI: 10.3389/fphar.2021.711763] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
Chinese vine tea can improve glucose and lipid metabolic disorders. However, its protective effects in non-alcoholic steatohepatitis (NASH) and its underlying molecular mechanisms remain unclear. Liver X receptor α (LXRα) inhibition and adenosine monophosphate-(AMP)-activated protein kinase (AMPK) activation can enhance control of NASH. AMPK activators have also been shown to inactivate LXRα. Here, the anti-NASH effects of vine tea extract (VTE) dosed at 1 g.100 g-1 diet were investigated using NASH mice challenged with a methionine and choline-deficient l-amino acid diet (MCDD) and a high-fat diet (HFD). Pharmacological mechanisms of VTE were explored using TUNEL staining, AMPK inhibition, Western blot, reporter assays, qRT-PCR analyses, and immunofluorescence. VTE treatment improved fatty liver in HFD-induced mice, while it alleviated the progression of NASH including protecting against liver lipid accumulation, steatosis, endoplasmic reticulum stress, apoptosis, inflammation, and functional injury in MCDD-fed mice. VTE reduced the action of hepatic lipogenic genes, F4/80, pro-inflammatory cytokines, CHOP, and cleaved Caspase-3 expression, while promoting expression of fatty acid oxidation genes CPT1α, ß. VTE also enhanced AMPK and blocked LXRα signaling in mouse livers. In vitro results indicated that VTE increased AMPK phosphorylation and reduced LXRα activity in HepG2 cells. Conversely, the antagonistic effect of VTE on LXRα was decreased through AMPK inhibition. Our data suggests that VTE may improve diet-induced NASH, which involves the pharmacological modulation of the AMPK-LXRα signaling pathway.
Collapse
Affiliation(s)
- Yu-Jun Chen
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai-Yan Song
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zi-Wei Zhang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Chen
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi-Peng Tang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming Gu
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Xiong Y, Zhu GH, Zhang YN, Hu Q, Wang HN, Yu HN, Qin XY, Guan XQ, Xiang YW, Tang H, Ge GB. Flavonoids in Ampelopsis grossedentata as covalent inhibitors of SARS-CoV-2 3CL pro: Inhibition potentials, covalent binding sites and inhibitory mechanisms. Int J Biol Macromol 2021; 187:976-987. [PMID: 34333006 PMCID: PMC8322037 DOI: 10.1016/j.ijbiomac.2021.07.167] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 10/25/2022]
Abstract
Coronavirus 3C-like protease (3CLpro) is a crucial target for treating coronavirus diseases including COVID-19. Our preliminary screening showed that Ampelopsis grossedentata extract (AGE) displayed potent SARS-CoV-2-3CLpro inhibitory activity, but the key constituents with SARS-CoV-2-3CLpro inhibitory effect and their mechanisms were unrevealed. Herein, a practical strategy via integrating bioactivity-guided fractionation and purification, mass spectrometry-based peptide profiling and time-dependent biochemical assay, was applied to identify the crucial constituents in AGE and to uncover their inhibitory mechanisms. The results demonstrated that the flavonoid-rich fractions (10-17.5 min) displayed strong SARS-CoV-2-3CLpro inhibitory activities, while the constituents in these fractions were isolated and their SARS-CoV-2-3CLpro inhibitory activities were investigated. Among all isolated flavonoids, dihydromyricetin, isodihydromyricetin and myricetin strongly inhibited SARS-CoV-2 3CLpro in a time-dependent manner. Further investigations demonstrated that myricetin could covalently bind on SARS-CoV-2 3CLpro at Cys300 and Cys44, while dihydromyricetin and isodihydromyricetin covalently bound at Cys300. Covalent docking coupling with molecular dynamics simulations showed the detailed interactions between the orthoquinone form of myricetin and two covalent binding sites (surrounding Cys300 and Cys44) of SARS-CoV-2 3CLpro. Collectively, the flavonoids in AGE strongly and time-dependently inhibit SARS-CoV-2 3CLpro, while the newly identified SARS-CoV-2 3CLpro inhibitors in AGE offer promising lead compounds for developing novel antiviral agents.
Collapse
Affiliation(s)
- Yuan Xiong
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Pharmacy School of Shihezi University, Xinjiang, China
| | - Guang-Hao Zhu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya-Ni Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Hu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao-Nan Wang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao-Nan Yu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Ya Qin
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Pharmacy School of Shihezi University, Xinjiang, China
| | - Xiao-Qing Guan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Wei Xiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hui Tang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Pharmacy School of Shihezi University, Xinjiang, China.
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
16
|
Fu J, Zhang LL, Li W, Zhang Y, Zhang Y, Liu F, Zou L. Application of metabolomics for revealing the interventional effects of functional foods on metabolic diseases. Food Chem 2021; 367:130697. [PMID: 34365248 DOI: 10.1016/j.foodchem.2021.130697] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022]
Abstract
Metabolomics is an important branch of systems biology, which can detect changes in the body's metabolism before and after the intervention of functional foods, identify effective metabolites, and predict the interventional effects and the mechanism. This review summarizes the latest research outcomes regarding interventional effects of functional foods on metabolic diseases via metabolomics analysis. Since metabolomics approaches are powerful strategies for revealing the changes in bioactive compounds of functional foods during processing and storage, we also discussed the effects of these parameters on functional food metabolites using metabolomics approaches. To date, a number of endogenous metabolites related to the metabolic diseases after functional foods intervention have been discovered. Unfortunately, the mechanisms of metabolic disease-related molecules are still unclear and require further studies. The combination of metabolomics with other omics technologies could further promote its ability to fully understand the precise biological processes of functional food intervention on metabolic diseases.
Collapse
Affiliation(s)
- Jia Fu
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Wei Li
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Yan Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Yamei Zhang
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, China
| | - Fang Liu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, China.
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
17
|
Roghani-Shahraki H, Karimian M, Valipour S, Behjati M, Arefnezhad R, Mousavi A. Herbal therapy as a promising approach for regulation on lipid profiles: A review of molecular aspects. J Cell Physiol 2021; 236:5533-5546. [PMID: 33469926 DOI: 10.1002/jcp.30282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 01/18/2023]
Abstract
Impaired lipid profile is defined as abnormal plasma levels of low-density lipoprotein, triglycerides, and total cholesterol. This disease state is associated with the development and progression of various disorders, such as diabetes mellitus, cardiovascular diseases, and acute myocardial infarction. Globally, all of these disorders are related to a significant rate of death. Therefore, finding a suitable approach for the prevention and treatment of lipid profile-related disorders is in the spotlight. Recently, herbal therapy has been considered a promising therapeutic approach for the treatment of hyperlipidemia or its related disorders due to its safety and efficacy. Hereby, we address the potential benefits of some of these herbal compounds on different aspects of lipid profile and its abnormalities with a special focus on their underlying mechanisms. Using herbal products, such as teas and mushrooms, or their derivatives, Rosmarinus officinalis Linn, Curcuma longa, Green tea, Lippia triphylla, Lippia citriodora, Plantago asiatica L, Vine tea, and Grifola frondosa have been proved to exert several therapeutic impacts on lipid profile and its related disorders, and we would provide a brief review on them in this literature.
Collapse
Affiliation(s)
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Saboora Valipour
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohaddeseh Behjati
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Arefnezhad
- Halal Research Center of IRI, FDA, Tehran, Iran.,Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Mousavi
- Department of Basic Sciences, School of Veterinary Medicine, Semnan University, Iran
| |
Collapse
|
18
|
Zhu Y, Wancewicz B, Schaid M, Tiambeng TN, Wenger K, Jin Y, Heyman H, Thompson CJ, Barsch A, Cox ED, Davis DB, Brasier AR, Kimple ME, Ge Y. Ultrahigh-Resolution Mass Spectrometry-Based Platform for Plasma Metabolomics Applied to Type 2 Diabetes Research. J Proteome Res 2020; 20:463-473. [PMID: 33054244 DOI: 10.1021/acs.jproteome.0c00510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Metabolomics-the endpoint of the omics cascade-is increasingly recognized as a preferred method for understanding the ultimate responses of biological systems to stress. Flow injection electrospray (FIE) mass spectrometry (MS) has advantages for untargeted metabolic fingerprinting due to its simplicity and capability for high-throughput screening but requires a high-resolution mass spectrometer to resolve metabolite features. In this study, we developed and validated a high-throughput and highly reproducible metabolomics platform integrating FIE with ultrahigh-resolution Fourier transform ion cyclotron resonance (FTICR) MS for analysis of both polar and nonpolar metabolite features from plasma samples. FIE-FTICR MS enables high-throughput detection of hundreds of metabolite features in a single mass spectrum without a front-end separation step. Using plasma samples from genetically identical obese mice with or without type 2 diabetes (T2D), we validated the intra and intersample reproducibility of our method and its robustness for simultaneously detecting alterations in both polar and nonpolar metabolite features. Only 5 min is needed to acquire an ultra-high resolution mass spectrum in either a positive or negative ionization mode. Approximately 1000 metabolic features were reproducibly detected and annotated in each mouse plasma group. For significantly altered and highly abundant metabolite features, targeted tandem MS (MS/MS) analyses can be applied to confirm their identity. With this integrated platform, we successfully detected over 300 statistically significant metabolic features in T2D mouse plasma as compared to controls and identified new T2D biomarker candidates. This FIE-FTICR MS-based method is of high throughput and highly reproducible with great promise for metabolomics studies toward a better understanding and diagnosis of human diseases.
Collapse
Affiliation(s)
- Yanlong Zhu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Benjamin Wancewicz
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Michael Schaid
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Timothy N Tiambeng
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kent Wenger
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Yutong Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Heino Heyman
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | | | | | - Elizabeth D Cox
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin 53792, United States
| | - Dawn B Davis
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Allan R Brasier
- Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Michelle E Kimple
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
19
|
Rodríguez C, Puente-Moncada N, Reiter RJ, Sánchez-Sánchez AM, Herrera F, Rodríguez-Blanco J, Duarte-Olivenza C, Turos-Cabal M, Antolín I, Martín V. Regulation of cancer cell glucose metabolism is determinant for cancer cell fate after melatonin administration. J Cell Physiol 2020; 236:27-40. [PMID: 32725819 DOI: 10.1002/jcp.29886] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 12/30/2022]
Abstract
Several oncogenic pathways plus local microenvironmental conditions, such as hypoxia, converge on the regulation of cancer cells metabolism. The major metabolic alteration consists of a shift from oxidative phosphorylation as the major glucose consumer to aerobic glycolysis, although most of cancer cells utilize both pathways to a greater or lesser extent. Aerobic glycolysis, together with the directly related metabolic pathways such as the tricarboxylic acid cycle, the pentose phosphate pathway, or gluconeogenesis are currently considered as therapeutic targets in cancer research. Melatonin has been reported to present numerous antitumor effects, which result in a reduced cell growth. This is achieved with both low and high concentrations with no relevant side effects. Indeed, high concentrations of this indolamine reduce proliferation of cancer types resistant to low concentrations and induce cell death in some types of tumors. Previous work suggest that regulation of glucose metabolism and other related pathways play an important role in the antitumoral effects of high concentration of melatonin. In the present review, we analyze recent work on the regulation by such concentrations of this indolamine on aerobic glycolysis, gluconeogenesis, the tricarboxylic acid cycle and the pentose phosphate pathways of cancer cells.
Collapse
Affiliation(s)
- Carmen Rodríguez
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,University Institute of Oncology of the Principality of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - Noelia Puente-Moncada
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,University Institute of Oncology of the Principality of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas
| | - Ana M Sánchez-Sánchez
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,University Institute of Oncology of the Principality of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - Federico Herrera
- Cell Structure and Dynamics Laboratory, Institute of Chemical and Biological Technology (ITQB-NOVA), Estação Agronómica Nacional, Oeiras, Portugal
| | - Jezabel Rodríguez-Blanco
- Molecular Oncology Program, Department of Surgery, The DeWitt Daughtry Family, Miller School of Medicine, University of Miami, Miami, Florida.,Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Cristina Duarte-Olivenza
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,University Institute of Oncology of the Principality of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - María Turos-Cabal
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,University Institute of Oncology of the Principality of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - Isaac Antolín
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,University Institute of Oncology of the Principality of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - Vanesa Martín
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,University Institute of Oncology of the Principality of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), University of Oviedo, Oviedo, Spain
| |
Collapse
|