1
|
Shakiba M, Rassouli FB. Joining up the scattered anticancer knowledge on auraptene and umbelliprenin: a meta-analysis. Sci Rep 2024; 14:11770. [PMID: 38783034 PMCID: PMC11116445 DOI: 10.1038/s41598-024-62747-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Auraptene (AUR) and umbelliprenin (UMB) are naturally occurring prenylated coumarins that have demonstrated promising anticancer effects across various human cancer cell lines. This meta-analysis aimed to systematically assess, compare, and quantify the anticancer efficacy of AUR and UMB by synthesizing evidence from in vitro studies. A comprehensive literature search identified 27 eligible studies investigating AUR or UMB against cancer cells. Mixed-effects models revealed significant negative associations between coumarin dose and viability for AUR (est. = - 2.27) and UMB (est. = - 3.990), underscoring their dose-dependent cytotoxicity. Meta-regression indicated slightly higher potency for UMB over AUR, potentially due to increased lipophilicity imparted by additional isoprenyl units. Machine learning approaches identified coumarin dose and cancer type as the most influential determinants of toxicity, while treatment duration and the specific coumarin displayed weaker effects. Moderate (AUR) to substantial (UMB) between-study heterogeneity was detected, although the findings proved robust. In summary, this meta-analysis establishes AUR and UMB as promising natural anticancer candidates with clear dose-toxicity relationships across diverse malignancies. The structural insights and quantifications of anticancer efficacy can inform forthcoming efforts assessing therapeutic potential in pre-clinical models and human trials.
Collapse
Affiliation(s)
- Mohammadhosein Shakiba
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh B Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, P.O. Box: 9177948974, Mashhad, Iran.
| |
Collapse
|
2
|
Yisimayili Z, Chao Z. A review on phytochemicals, metabolic profiles and pharmacokinetics studies of the different parts (juice, seeds, peel, flowers, leaves and bark) of pomegranate (Punica granatum L.). Food Chem 2022; 395:133600. [DOI: 10.1016/j.foodchem.2022.133600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/04/2022]
|
3
|
Fiorito S, Epifano F, Marchetti L, Palumbo L, Orhan IE, Sharifi-Rad M, Genovese S. Oxyprenylated Secondary Metabolites as Modulators of Lipid and Sugar Metabolism. Curr Top Med Chem 2021; 22:189-198. [PMID: 34315370 DOI: 10.2174/1568026621666210727163038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/03/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022]
Abstract
O-Prenylcoumarins (3,3-dimethylallyl, geranyl-, farnesyl- and related biosynthetic derivatives) represent a class of rarely occurring natural compounds. The most part of these secondary metabolites have been obtained from plant species belonging to the Rutaceae, Apiaceae, andFabaceae families, and from fungi, and bacteria. In the last two decades prenyloxycoumarinshave been found to possess a great potential in terms of pharmacological activities. The aim of this comprehensive review is to make a survey of the in so far reported literature citations about these valuable phytochemicals and structurally related compounds about their modulatory properties of lipid and sugar metabolism. Literature data have been acquired from the main Internet database. Several oxyprenylated secondary metabolites have been surveyed. Among these prenyloxycoumarins represented the main group exerting displayed valuable effects as modulators of lipid and sugar metabolism. The title phytochemicals have been found in common edible and fruits vegetables already known to have beneficial effects to this concern, thus enforcing the nutraceutical role of these food plants. All compounds outlined in the present review article have a great potential for the next future for the prevention and management of acute and chronic metabolic disorders.
Collapse
Affiliation(s)
- Serena Fiorito
- Department of Pharmacy, University "Gabriele d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| | - Francesco Epifano
- Department of Pharmacy, University "Gabriele d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| | - Lorenzo Marchetti
- Department of Pharmacy, University "Gabriele d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| | - Lucia Palumbo
- Department of Pharmacy, University "Gabriele d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University,Ankara, Turkey
| | - Majid Sharifi-Rad
- Department of Range and Watershed Management, Faculty of Water and Soil, University of Zabol, Zabol 98613-35856, Iran
| | - Salvatore Genovese
- Department of Pharmacy, University "Gabriele d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| |
Collapse
|
4
|
Fourati M, Smaoui S, Hlima HB, Elhadef K, Braïek OB, Ennouri K, Mtibaa AC, Mellouli L. Bioactive Compounds and Pharmacological Potential of Pomegranate (Punica granatum) Seeds - A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:477-486. [PMID: 33040298 DOI: 10.1007/s11130-020-00863-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
The use of complementary medicine has recently increased in an attempt to find effective alternative therapies that reduce the adverse effects of drugs. Pomegranate (Punica granatum L.) by-products, such as seeds, is a rich source of phytochemicals with a high antioxidant activity, thus possessing health benefits. For the identification and quantification of the pomegranate seeds chemical compounds, particular attention has been drawn to the latest developments in the HPLC coupling with electrospray ionization (ESI) MS/MS detection. In fact, a wide range of phytochemicals including phenolic acid, anthocyanins, flavonoids, hydrolysable tannins and other polyphenols were characterized. Furthermore, an exhaustive review of the scientific literature on pomegranate seeds on biomedicine and pharmacotherapy was carried out. Indeed, both in vitro and in vivo studies have demonstrated how pomegranate seeds possess antioxidant, anti- cardiovascular diseases, anti-osteoporosis, antidiabetic, anti-inflammatory and anticancer activities. The present review describes a recent tendency in research focusing on the chemical and biomedical features of the pomegranate seeds to value them as natural additives or active compounds for first-order diseases.
Collapse
Affiliation(s)
- Mariam Fourati
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, Sfax, Tunisia
| | - Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, Sfax, Tunisia.
| | - Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Khaoula Elhadef
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, Sfax, Tunisia
| | - Olfa Ben Braïek
- Laboratory of Transmissible Diseases and Biologically Active Substances (LR99ES27), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Karim Ennouri
- Laboratory of Amelioration and Protection of Olive Genetic Resources, Olive Tree Institute, Sfax University, Sfax, Tunisia
| | - Ahlem Chakchouk Mtibaa
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, Sfax, Tunisia
| | - Lotfi Mellouli
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, Sfax, Tunisia
| |
Collapse
|
5
|
Genovese S, Epifano F, Preziuso F, Stefanucci A, Scotti L, Bucciarelli T, di Profio P, Canale V, Fiorito S. A novel and efficient subcritical butane extraction method and UHPLC analysis of oxyprenylated phenylpropanoids from grapefruits peels. J Pharm Biomed Anal 2020; 184:113185. [PMID: 32113120 DOI: 10.1016/j.jpba.2020.113185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 02/05/2023]
Abstract
Biologically active prenyoxyphenylpropanoids are well known to be biosynthesized by Citrus species, for which they have been found most abundantly in fruit peels. Although several extraction methodologies have been described, the development of novel and alternative extraction processes is a field of research of current interest. In this preliminary communication, we studied the performance of the subcritical butane promoted extraction of selected oxyprenylated phenylpropanoids from grapefruit peels under a counter-current mode using a handmade extraction apparatus coupled to UHPLC analysis. The application of such a method yielded 7-isopentenyloxycoumarin, auraptene, and boropinic acid in quantities higher than those recorded for other extraction methodologies like the ultrasound- and microwave-assisted macerations (0.234, 1.035, and 0.211 mg/g of dry extract respectively). The use of subcritical butane as the extraction solvent for oxyprenylated phenylpropanoids is reported herein for the first time and can be easily adopted for several other food matrices.
Collapse
Affiliation(s)
- Salvatore Genovese
- Dipartimento di Farmacia, Università "G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| | - Francesco Epifano
- Dipartimento di Farmacia, Università "G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy.
| | - Francesca Preziuso
- Dipartimento di Farmacia, Università "G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| | - Azzurra Stefanucci
- Dipartimento di Farmacia, Università "G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| | - Luca Scotti
- Dipartimento di Scienze Orali, Mediche e Biotecnologiche, Università "G. d'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| | - Tonino Bucciarelli
- Dipartimento di Scienze Orali, Mediche e Biotecnologiche, Università "G. d'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| | - Pietro di Profio
- Dipartimento di Farmacia, Università "G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| | - Valentino Canale
- Dipartimento di Farmacia, Università "G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| | - Serena Fiorito
- Dipartimento di Farmacia, Università "G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| |
Collapse
|
6
|
Umbelliprenin as a novel component of the phytochemical pool from Artemisia spp. J Pharm Biomed Anal 2020; 184:113205. [PMID: 32113116 DOI: 10.1016/j.jpba.2020.113205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 02/08/2023]
Abstract
Plants belonging to Artemisia spp. are known to biosynthesize a wide panel of 3,3-dimethylallyl- and sesquiterpenyl- substituted coumarins. In this short communication we applied a novel extraction methodology based on the use of subcritical butane under a counter-current mode to further characterize the presence of selected biologically active oxyprenylated phenylpropanoids, namely coumarins and ferulic acid derivatives, in extracts deriving from aerial parts of Artemisia vulgaris L. (commonly known as "common mugwort") (Asteraceae). In the mean time, we assessed the efficiency of the above mentioned extractive methodology with other routes like maceration and ultrasounds and microwaves-based methods using absolute EtOH as the solvents. UHPLC analysis coupled to UV/Vis detection revealed that, among the 5 pure chemical standard assayed, only umbelliprenin (7-farnesyloxycoumarin) was recorded, while boropinic acid, 4'-geranyloxyferulic acid, 7-isopentenyloxycoumarin, and auraptene were not detected. The best extractive yield (0.18 %) was obtained after extaction with subcritical butane. The presence of umbelliprenin in Artemisia plant species has been reported herein for the first time. This coumarin may represent the biosynthetic precursors of sesquiterpenyloxycoumarins with more complex structures typically found in this genus.
Collapse
|
7
|
Khomenko TM, Zakharenko AL, Chepanova AA, Ilina ES, Zakharova OD, Kaledin VI, Nikolin VP, Popova NA, Korchagina DV, Reynisson J, Chand R, Ayine-Tora DM, Patel J, Leung IKH, Volcho KP, Salakhutdinov NF, Lavrik OI. Promising New Inhibitors of Tyrosyl-DNA Phosphodiesterase I (Tdp 1) Combining 4-Arylcoumarin and Monoterpenoid Moieties as Components of Complex Antitumor Therapy. Int J Mol Sci 2019; 21:ijms21010126. [PMID: 31878088 PMCID: PMC6982354 DOI: 10.3390/ijms21010126] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is an important DNA repair enzyme in humans, and a current and promising inhibition target for the development of new chemosensitizing agents due to its ability to remove DNA damage caused by topoisomerase 1 (Top1) poisons such as topotecan and irinotecan. Herein, we report our work on the synthesis and characterization of new Tdp1 inhibitors that combine the arylcoumarin (neoflavonoid) and monoterpenoid moieties. Our results showed that they are potent Tdp1 inhibitors with IC50 values in the submicromolar range. In vivo experiments with mice revealed that compound 3ba (IC50 0.62 µM) induced a significant increase in the antitumor effect of topotecan on the Krebs-2 ascites tumor model. Our results further strengthen the argument that Tdp1 is a druggable target with the potential to be developed into a clinically-potent adjunct therapy in conjunction with Top1 poisons.
Collapse
Affiliation(s)
- Tatyana M. Khomenko
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9 acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
| | - Alexandra L. Zakharenko
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, 8, acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (A.L.Z.); (A.A.C.); (E.S.I.); (O.D.Z.); (O.I.L.)
| | - Arina A. Chepanova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, 8, acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (A.L.Z.); (A.A.C.); (E.S.I.); (O.D.Z.); (O.I.L.)
| | - Ekaterina S. Ilina
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, 8, acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (A.L.Z.); (A.A.C.); (E.S.I.); (O.D.Z.); (O.I.L.)
| | - Olga D. Zakharova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, 8, acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (A.L.Z.); (A.A.C.); (E.S.I.); (O.D.Z.); (O.I.L.)
| | - Vasily I. Kaledin
- Institute of Cytology and Genetics, 10, acad. Lavrentjev Ave., 630090 Novosibirsk, Russian; (V.I.K.); (V.P.N.); (N.A.P.)
| | - Valeriy P. Nikolin
- Institute of Cytology and Genetics, 10, acad. Lavrentjev Ave., 630090 Novosibirsk, Russian; (V.I.K.); (V.P.N.); (N.A.P.)
| | - Nelly A. Popova
- Institute of Cytology and Genetics, 10, acad. Lavrentjev Ave., 630090 Novosibirsk, Russian; (V.I.K.); (V.P.N.); (N.A.P.)
- Novosibirsk State University, V. Zelman Institute for Medicine and Psychology and Department of Natural Sciences, 2, Pirogova str., 630090 Novosibirsk, Russia
| | - Dina V. Korchagina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9 acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Staffordshire ST5 5BG, UK;
| | - Raina Chand
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, 1142 Auckland, New Zealand; (R.C.); (D.M.A.-T.); (J.P.); (I.K.H.L.)
| | - Daniel M. Ayine-Tora
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, 1142 Auckland, New Zealand; (R.C.); (D.M.A.-T.); (J.P.); (I.K.H.L.)
| | - Jinal Patel
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, 1142 Auckland, New Zealand; (R.C.); (D.M.A.-T.); (J.P.); (I.K.H.L.)
| | - Ivanhoe K. H. Leung
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, 1142 Auckland, New Zealand; (R.C.); (D.M.A.-T.); (J.P.); (I.K.H.L.)
| | - Konstantin P. Volcho
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9 acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
- Novosibirsk State University, V. Zelman Institute for Medicine and Psychology and Department of Natural Sciences, 2, Pirogova str., 630090 Novosibirsk, Russia
- Correspondence:
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9 acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
- Novosibirsk State University, V. Zelman Institute for Medicine and Psychology and Department of Natural Sciences, 2, Pirogova str., 630090 Novosibirsk, Russia
| | - Olga I. Lavrik
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, 8, acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (A.L.Z.); (A.A.C.); (E.S.I.); (O.D.Z.); (O.I.L.)
- Novosibirsk State University, V. Zelman Institute for Medicine and Psychology and Department of Natural Sciences, 2, Pirogova str., 630090 Novosibirsk, Russia
- Department of Physical and Chemical Biology and Biotechnology, Altai State University, 61, Lenina Ave., 656049 Barnaul, Russia
| |
Collapse
|