1
|
Suo Y, Qian X, Xiong Z, Liu X, Wang C, Mu B, Wu X, Lu W, Cui M, Liu J, Chen Y, Zheng M, Lu X. Enhancing the Predictive Power of Machine Learning Models through a Chemical Space Complementary DEL Screening Strategy. J Med Chem 2024; 67:18969-18980. [PMID: 39441849 DOI: 10.1021/acs.jmedchem.4c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
DNA-encoded library (DEL) technology is an effective method for small molecule drug discovery, enabling high-throughput screening against target proteins. While DEL screening produces extensive data, it can reveal complex patterns not easily recognized by human analysis. Lead compounds from DEL screens often have higher molecular weights, posing challenges for drug development. This study refines traditional DELs by integrating alternative techniques like photocross-linking screening to enhance chemical diversity. Combining these methods improved predictive performance for small molecule identification models. Using this approach, we predicted active small molecules for BRD4 and p300, achieving hit rates of 26.7 and 35.7%. Notably, the identified compounds exhibit smaller molecular weights and better modification potential compared to traditional DEL molecules. This research demonstrates the synergy between DEL and AI technologies, enhancing drug discovery.
Collapse
Affiliation(s)
- Yanrui Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xu Qian
- DEL Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Zhaoping Xiong
- Technology Development Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Xiaohong Liu
- Technology Development Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Chao Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Baiyang Mu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- Shandong Second Medical University, Weifang 261053, China
| | - Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Meiying Cui
- DEL Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Jiaxiang Liu
- DEL Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Yujie Chen
- DEL Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Mingyue Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
2
|
Peterson AA, Liu DR. Small-molecule discovery through DNA-encoded libraries. Nat Rev Drug Discov 2023; 22:699-722. [PMID: 37328653 PMCID: PMC10924799 DOI: 10.1038/s41573-023-00713-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 06/18/2023]
Abstract
The development of bioactive small molecules as probes or drug candidates requires discovery platforms that enable access to chemical diversity and can quickly reveal new ligands for a target of interest. Within the past 15 years, DNA-encoded library (DEL) technology has matured into a widely used platform for small-molecule discovery, yielding a wide variety of bioactive ligands for many therapeutically relevant targets. DELs offer many advantages compared with traditional screening methods, including efficiency of screening, easily multiplexed targets and library selections, minimized resources needed to evaluate an entire DEL and large library sizes. This Review provides accounts of recently described small molecules discovered from DELs, including their initial identification, optimization and validation of biological properties including suitability for clinical applications.
Collapse
Affiliation(s)
- Alexander A Peterson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
3
|
Abstract
The Human Genome Project ultimately aimed to translate DNA sequence into drugs. With the draft in hand, the Molecular Libraries Program set out to prosecute all genome-encoded proteins for drug discovery with automated high-throughput screening (HTS). This ambitious vision remains unfulfilled, even while innovations in sequencing technology have fully democratized access to genome-scale sequencing. Why? While the central dogma of biology allows us to chart the entirety of cellular metabolism through sequencing, there is no direct coding for chemistry. The rules of base pairing that relate DNA gene to RNA transcript and amino acid sequence do not exist for relating small-molecule structure with macromolecular binding partners and subsequently cellular function. Obtaining such relationships genome-wide is unapproachable via state-of-the-art HTS, akin to attempting genome-wide association studies using turn-of-the-millennium Sanger DNA sequencing.Our laboratory has been engaged in a multipronged technology development campaign to revolutionize molecular screening through miniaturization in pursuit of genome-scale drug discovery capabilities. The compound library was ripe for miniaturization: it clearly needed to become a consumable. We employed DNA-encoded library (DEL) synthesis principles in the development of solid-phase DELs prepared on microscopic beads, each harboring 100 fmol of a single library member and a DNA tag whose sequence describes the structure of the library member. Loading these DEL beads into 100 pL microfluidic droplets followed by online photocleavage, incubation, fluorescence-activated droplet sorting, and DNA sequencing of the sorted DEL beads reveals the chemical structures of bioactive compounds. This scalable library synthesis and screening platform has proven useful in several proof-of-concept projects involving current clinical targets.Moving forward, we face the problem of druggability and proteome-scale assay development. Developing biochemical or cellular assays for all genome-encoded targets is not scalable and likely impossible as most proteins have ill-defined or unknown activity and may not function outside of their native contexts. These are the dark undruggable expanses, and charting them will require advanced synthesis and analytical technologies that can generalize probe discovery, irrespective of mature protein function, to fulfill the Genome Project's vision of proteome-wide control of cellular pharmacology.
Collapse
|
4
|
Reznichenko O, Leclercq D, Franco Pinto J, Mouawad L, Gabelica V, Granzhan A. Optimization of G-Quadruplex Ligands through a SAR Study Combining Parallel Synthesis and Screening of Cationic Bis(acylhydrazones). Chemistry 2023; 29:e202202427. [PMID: 36286608 PMCID: PMC10099395 DOI: 10.1002/chem.202202427] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 11/06/2022]
Abstract
G-quadruplexes (G4s), secondary structures adopted by guanine-rich DNA and RNA sequences, are implicated in numerous biological processes and have been suggested as potential drug targets. Accordingly, there is an increasing interest in developing high-throughput methods that allow the generation of congeneric series of G4-targeting molecules ("ligands") and investigating their interactions with the targets. We have developed an operationally simple method of parallel synthesis to generate "ready-to-screen" libraries of cationic acylhydrazones, a motif that we have previously identified as a promising scaffold for potent, biologically active G4 ligands. Combined with well-established screening techniques, such as fluorescence melting, this method enables the rapid synthesis and screening of combinatorial libraries of potential G4 ligands. Following this protocol, we synthesized a combinatorial library of 90 bis(acylhydrazones) and screened it against five different nucleic acid structures. This way, we were able to analyze the structure-activity relationships within this series of G4 ligands, and identified three novel promising ligands whose interactions with G4-DNAs of different topologies were studied in detail by a combination of several biophysical techniques, including native mass spectrometry, and molecular modeling.
Collapse
Affiliation(s)
- Oksana Reznichenko
- CMBC, CNRS UMR9187Inserm U1196, Institut CuriePSL Research University91405OrsayFrance
- CMBC, CNRS UMR9187Inserm U1196Université Paris Saclay91405OrsayFrance
| | - Denis Leclercq
- CMBC, CNRS UMR9187Inserm U1196, Institut CuriePSL Research University91405OrsayFrance
- CMBC, CNRS UMR9187Inserm U1196Université Paris Saclay91405OrsayFrance
| | - Jaime Franco Pinto
- CMBC, CNRS UMR9187Inserm U1196, Institut CuriePSL Research University91405OrsayFrance
- CMBC, CNRS UMR9187Inserm U1196Université Paris Saclay91405OrsayFrance
| | - Liliane Mouawad
- CMBC, CNRS UMR9187Inserm U1196, Institut CuriePSL Research University91405OrsayFrance
- CMBC, CNRS UMR9187Inserm U1196Université Paris Saclay91405OrsayFrance
| | - Valérie Gabelica
- Univ. BordeauxCNRS, INSERM, ARNAUMR 5320, U1212, IECB33600PessacFrance
| | - Anton Granzhan
- CMBC, CNRS UMR9187Inserm U1196, Institut CuriePSL Research University91405OrsayFrance
- CMBC, CNRS UMR9187Inserm U1196Université Paris Saclay91405OrsayFrance
| |
Collapse
|
5
|
Gibaut QMR, Akahori Y, Bush JA, Taghavi A, Tanaka T, Aikawa H, Ryan LS, Paegel BM, Disney MD. Study of an RNA-Focused DNA-Encoded Library Informs Design of a Degrader of a r(CUG) Repeat Expansion. J Am Chem Soc 2022; 144:21972-21979. [PMID: 36399603 PMCID: PMC9878440 DOI: 10.1021/jacs.2c08883] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A solid-phase DNA-encoded library (DEL) was studied for binding the RNA repeat expansion r(CUG)exp, the causative agent of the most common form of adult-onset muscular dystrophy, myotonic dystrophy type 1 (DM1). A variety of uncharged and novel RNA binders were identified to selectively bind r(CUG)exp by using a two-color flow cytometry screen. The cellular activity of one binder was augmented by attaching it with a module that directly cleaves r(CUG)exp. In DM1 patient-derived muscle cells, the compound specifically bound r(CUG)exp and allele-specifically eliminated r(CUG)exp, improving disease-associated defects. The approaches herein can be used to identify and optimize ligands and bind RNA that can be further augmented for functionality including degradation.
Collapse
Affiliation(s)
- Quentin M. R. Gibaut
- Department of Chemistry, UF Scripps Biomedical Research and The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Yoshihiro Akahori
- Department of Chemistry, UF Scripps Biomedical Research and The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Jessica A. Bush
- Department of Chemistry, UF Scripps Biomedical Research and The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Amirhossein Taghavi
- Department of Chemistry, UF Scripps Biomedical Research and The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Toru Tanaka
- Department of Chemistry, UF Scripps Biomedical Research and The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Haruo Aikawa
- Department of Chemistry, UF Scripps Biomedical Research and The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Lucas S. Ryan
- Department of Chemistry, UF Scripps Biomedical Research and The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Brian M. Paegel
- Department of Chemistry, UF Scripps Biomedical Research and The Scripps Research Institute, Jupiter, Florida 33458, United States; Department of Chemistry and Pharmaceutical Sciences, University of California, Irvine, California 92617, United States
| | - Matthew D. Disney
- Department of Chemistry, UF Scripps Biomedical Research and The Scripps Research Institute, Jupiter, Florida 33458, United States
| |
Collapse
|
6
|
Childs-Disney JL, Yang X, Gibaut QMR, Tong Y, Batey RT, Disney MD. Targeting RNA structures with small molecules. Nat Rev Drug Discov 2022; 21:736-762. [PMID: 35941229 PMCID: PMC9360655 DOI: 10.1038/s41573-022-00521-4] [Citation(s) in RCA: 209] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 01/07/2023]
Abstract
RNA adopts 3D structures that confer varied functional roles in human biology and dysfunction in disease. Approaches to therapeutically target RNA structures with small molecules are being actively pursued, aided by key advances in the field including the development of computational tools that predict evolutionarily conserved RNA structures, as well as strategies that expand mode of action and facilitate interactions with cellular machinery. Existing RNA-targeted small molecules use a range of mechanisms including directing splicing - by acting as molecular glues with cellular proteins (such as branaplam and the FDA-approved risdiplam), inhibition of translation of undruggable proteins and deactivation of functional structures in noncoding RNAs. Here, we describe strategies to identify, validate and optimize small molecules that target the functional transcriptome, laying out a roadmap to advance these agents into the next decade.
Collapse
Affiliation(s)
| | - Xueyi Yang
- Department of Chemistry, Scripps Research, Jupiter, FL, USA
| | | | - Yuquan Tong
- Department of Chemistry, Scripps Research, Jupiter, FL, USA
| | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, CO, USA.
| | | |
Collapse
|
7
|
Sun Z, Zhang J, Zhang H, Cao H, Xiao L, Yang K, Hu YJ. DNA Compatible Oxidization and Amidation of Terminal Alkynes. Bioconjug Chem 2022; 33:1585-1594. [PMID: 36001094 DOI: 10.1021/acs.bioconjchem.2c00340] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Through a modified Kinugasa reaction, a novel method of amidation on terminal oligo alkyne conjugates by copper-promoted oxidation with nitrones has been developed. Unprotected bifunctional carboxylic acid-amine reagents can be transformed directly to the respective amide products under these edited Kinugasa reaction conditions. 3-Cycle DNA-encoded libraries (DELs) can be built in three steps of chemical conversion.
Collapse
Affiliation(s)
- Zhaomei Sun
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China
| | - Jie Zhang
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China
| | - Huanqing Zhang
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China
| | - Hongli Cao
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China
| | - Lingqian Xiao
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China
| | - Kexin Yang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Yun Jin Hu
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China
| |
Collapse
|
8
|
Evaluation of the interactions between oligonucleotides and small molecules by partial filling-nonequilibrium affinity capillary electrophoresis. ANAL SCI 2022; 38:851-859. [PMID: 35314967 DOI: 10.1007/s44211-022-00101-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 11/01/2022]
Abstract
Recently, high-throughput analysis with minimal reagent consumption has been desired to assess interactions between drug candidates and disease-related oligonucleotides. To realize an ideal assay for drug screening, a rapid assay based on affinity capillary electrophoresis was generated to reduce the consumption of samples/reagents by a partial-filling technique under nonequilibrium conditions. In the proposed method, the first sample, oligonucleotide as a ligand, and second sample zones were injected into a capillary with spacers of background solution between the samples and oligonucleotide zones. After applying voltages, only the second sample zone passed through the partially filled oligonucleotide zone, resulting in variations in the peak parameters owing to this interaction. The electropherograms obtained were analyzed using equilibrium, reaction kinetics, and moment theories. In the interaction analyses between small molecules and DNA aptamers, only the small molecules binding to the aptamer showed significant changes in their peak heights and shapes. The estimated kinetic parameters were in good agreement with the reported values, indicating the applicability of the proposed method for drug screening. When interactions between drug candidates and disease-related RNAs were analyzed, one of the candidates showed remarkable variation in the peak parameters upon the addition of potassium ions. Consequently, the proposed method could be one of the ideal assays for drug screening.
Collapse
|
9
|
DNA-encoded library versus RNA-encoded library selection enables design of an oncogenic noncoding RNA inhibitor. Proc Natl Acad Sci U S A 2022; 119:2114971119. [PMID: 35110406 PMCID: PMC8833215 DOI: 10.1073/pnas.2114971119] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 12/31/2022] Open
Abstract
Drug discovery generally investigates one target at a time, in sharp contrast to living organisms, which mold ligands and targets by evolution of highly complex molecular interaction networks. We recapitulate this modality of discovery by encoding drug structures in DNA, allowing the entire DNA-encoded library to interact with thousands of RNA fold targets, and then decoding both drug and target by sequencing. This information serves as a filter to identify human RNAs aberrantly produced in cancer that are also binding partners of the discovered ligand, leading to a precision medicine candidate that selectively ablates an oncogenic noncoding RNA, reversing a disease-associated phenotype in cells. Nature evolves molecular interaction networks through persistent perturbation and selection, in stark contrast to drug discovery, which evaluates candidates one at a time by screening. Here, nature’s highly parallel ligand-target search paradigm is recapitulated in a screen of a DNA-encoded library (DEL; 73,728 ligands) against a library of RNA structures (4,096 targets). In total, the screen evaluated ∼300 million interactions and identified numerous bona fide ligand–RNA three-dimensional fold target pairs. One of the discovered ligands bound a 5′GAG/3′CCC internal loop that is present in primary microRNA-27a (pri-miR-27a), the oncogenic precursor of microRNA-27a. The DEL-derived pri-miR-27a ligand was cell active, potently and selectively inhibiting pri-miR-27a processing to reprogram gene expression and halt an otherwise invasive phenotype in triple-negative breast cancer cells. By exploiting evolutionary principles at the earliest stages of drug discovery, it is possible to identify high-affinity and selective target–ligand interactions and predict engagements in cells that short circuit disease pathways in preclinical disease models.
Collapse
|
10
|
Huang Y, Li Y, Li X. Strategies for developing DNA-encoded libraries beyond binding assays. Nat Chem 2022; 14:129-140. [PMID: 35121833 DOI: 10.1038/s41557-021-00877-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/01/2021] [Indexed: 01/01/2023]
Abstract
DNA-encoded chemical libraries (DELs) have emerged as a powerful technology in drug discovery. The wide adoption of DELs in the pharmaceutical industry and the rapid advancements of DEL-compatible chemistry have further fuelled its development and applications. In general, a DEL has been considered as a massive binding assay to identify physical binders for individual protein targets. However, recent innovations demonstrate the capability of DELs to operate in the complex milieu of biological systems. In this Perspective, we discuss the recent progress in using DNA-encoded chemical libraries to interrogate complex biological targets and their potential to identify structures that elicit function or possess other useful properties. Future breakthroughs in these aspects are expected to catapult DEL to become a momentous technology platform not only for drug discovery but also to explore fundamental biology.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China.
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China. .,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China.
| |
Collapse
|
11
|
Chen Q, Li Y, Lin C, Chen L, Luo H, Xia S, Liu C, Cheng X, Liu C, Li J, Dou D. OUP accepted manuscript. Nucleic Acids Res 2022; 50:e67. [PMID: 35288754 PMCID: PMC9262588 DOI: 10.1093/nar/gkac173] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/02/2022] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
DNA-encoded library (DEL) technology is a powerful tool for small molecule identification in drug discovery, yet the reported DEL selection strategies were applied primarily on protein targets in either purified form or in cellular context. To expand the application of this technology, we employed DEL selection on an RNA target HIV-1 TAR (trans-acting responsive region), but found that the majority of signals were resulted from false positive DNA–RNA binding. We thus developed an optimized selection strategy utilizing RNA patches and competitive elution to minimize unwanted DNA binding, followed by k-mer analysis and motif search to differentiate false positive signal. This optimized strategy resulted in a very clean background in a DEL selection against Escherichia coli FMN Riboswitch, and the enriched compounds were determined with double digit nanomolar binding affinity, as well as similar potency in functional FMN competition assay. These results demonstrated the feasibility of small molecule identification against RNA targets using DEL selection. The developed experimental and computational strategy provided a promising opportunity for RNA ligand screening and expanded the application of DEL selection to a much wider context in drug discovery.
Collapse
Affiliation(s)
| | | | | | - Liu Chen
- HitGen Inc., Shuangliu District, Chengdu, China
| | - Hao Luo
- HitGen Inc., Shuangliu District, Chengdu, China
| | - Shuai Xia
- HitGen Inc., Shuangliu District, Chengdu, China
| | - Chuan Liu
- HitGen Inc., Shuangliu District, Chengdu, China
| | | | | | - Jin Li
- HitGen Inc., Shuangliu District, Chengdu, China
| | - Dengfeng Dou
- To whom correspondence should be addressed. Tel: +86 28 85197385 8700;
| |
Collapse
|
12
|
Sunkari YK, Siripuram VK, Nguyen TL, Flajolet M. High-power screening (HPS) empowered by DNA-encoded libraries. Trends Pharmacol Sci 2021; 43:4-15. [PMID: 34782164 DOI: 10.1016/j.tips.2021.10.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/29/2021] [Accepted: 10/14/2021] [Indexed: 01/19/2023]
Abstract
The world is totally dependent on medications. As science progresses, new, better, and cheaper drugs are needed more than ever. The pharmaceutical industry has been predominantly dependent on high-throughput screening (HTS) for the past three decades. Considering that the discovery rate has been relatively constant, can one hope for a much-needed sudden trend uptick? DNA-encoded libraries (DELs) and similar technologies, that have several orders of magnitude more screening power than HTS, and that we propose to group together under the umbrella term of high-power screening (HPS), are very well positioned to do exactly that. HPS also offers novel screening options such as parallel screening, ex vivo and in vivo screening, as well as a new path to druggable alternatives such as proteolysis targeting chimeras (PROTACs). Altogether, HPS unlocks novel powerful drug discovery avenues.
Collapse
Affiliation(s)
- Yashoda Krishna Sunkari
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Vijay Kumar Siripuram
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Thu-Lan Nguyen
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
13
|
Castan IFSF, Graham JS, Salvini CLA, Stanway-Gordon HA, Waring MJ. On the design of lead-like DNA-encoded chemical libraries. Bioorg Med Chem 2021; 43:116273. [PMID: 34147943 DOI: 10.1016/j.bmc.2021.116273] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 01/11/2023]
Abstract
DNA-encoded libraries (DELs) are becoming an established technology for finding ligands for protein targets. We have abstracted and analysed libraries from the literature to assess the synthesis strategy, selections of reactions and monomers and their propensity to reveal hits. DELs have led to hit compounds across a range of diverse protein classes. The range of reactions and monomers utilised has been relatively limited and the hits are often higher in molecular weight than might be considered ideal. Considerations for future library designs with reference to chemical diversity and lead-like properties are discussed.
Collapse
Affiliation(s)
- Isaline F S F Castan
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Jessica S Graham
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Catherine L A Salvini
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Harriet A Stanway-Gordon
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Michael J Waring
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
14
|
Abstract
Click chemistry, proposed nearly 20 years ago, promised access to novel chemical space by empowering combinatorial library synthesis with a "few good reactions". These click reactions fulfilled key criteria (broad scope, quantitative yield, abundant starting material, mild reaction conditions, and high chemoselectivity), keeping the focus on molecules that would be easy to make, yet structurally diverse. This philosophy bears a striking resemblance to DNA-encoded library (DEL) technology, the now-dominant combinatorial chemistry paradigm. This review highlights the similarities between click and DEL reaction design and deployment in combinatorial library settings, providing a framework for the design of new DEL synthesis technologies to enable next-generation drug discovery.
Collapse
Affiliation(s)
- Patrick R Fitzgerald
- Skaggs Doctoral Program in the Chemical and Biological Sciences, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Brian M Paegel
- Departments of Pharmaceutical Sciences, Chemistry, & Biomedical Engineering, University of California, Irvine, 101 Theory Suite 100, Irvine, California 92617, United States
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
15
|
Vezina-Dawod S, Angelbello AJ, Choudhary S, Wang KW, Yildirim I, Disney MD. Massively Parallel Optimization of the Linker Domain in Small Molecule Dimers Targeting a Toxic r(CUG) Repeat Expansion. ACS Med Chem Lett 2021; 12:907-914. [PMID: 34141068 PMCID: PMC8201483 DOI: 10.1021/acsmedchemlett.1c00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
RNA contributes to disease pathobiology and is an important therapeutic target. The downstream biology of disease-causing RNAs can be short-circuited with small molecules that recognize structured regions. The discovery and optimization of small molecules interacting with RNA is, however, challenging. Herein, we demonstrate a massively parallel one-bead-one-compound methodology, employed to optimize the linker region of a dimeric compound that binds the toxic r(CUG) repeat expansion [r(CUG)exp] causative of myotonic dystrophy type 1 (DM1). Indeed, affinity selection on a 331,776-member library allowed the discovery of a compound with enhanced potency both in vitro (10-fold) and in DM1-patient-derived myotubes (5-fold). Molecular dynamics simulations revealed additional interactions between the optimized linker and the RNA, resulting in ca. 10 kcal/mol lower binding free energy. The compound was conjugated to a cleavage module, which directly cleaved the transcript harboring the r(CUG)exp and alleviated disease-associated defects.
Collapse
Affiliation(s)
- Simon Vezina-Dawod
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Alicia J. Angelbello
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Shruti Choudhary
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Kye Won Wang
- Department
of Chemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - Ilyas Yildirim
- Department
of Chemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - Matthew D. Disney
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
16
|
Conole D, H Hunter J, J Waring M. The maturation of DNA encoded libraries: opportunities for new users. Future Med Chem 2021; 13:173-191. [PMID: 33275046 DOI: 10.4155/fmc-2020-0285] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA-encoded combinatorial libraries (DECLs) represent an exciting new technology for high-throughput screening, significantly increasing its capacity and cost-effectiveness. Historically, DECLs have been the domain of specialized academic groups and industry; however, there has recently been a shift toward more drug discovery academic centers and institutes adopting this technology. Key to this development has been the simplification, characterization and standardization of various DECL subprotocols, such as library design, affinity screening and data analysis of hits. This review examines the feasibility of implementing DECL screening technology as a first-time user, particularly in academia, exploring the some important considerations for this, and outlines some applications of the technology that academia could contribute to the field.
Collapse
Affiliation(s)
- Daniel Conole
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London, W12 0BZ, UK
| | - James H Hunter
- Cancer Research UK Drug Discovery Unit, Newcastle University Centre for Cancer, Chemistry, School of Natural & Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Michael J Waring
- Cancer Research UK Drug Discovery Unit, Newcastle University Centre for Cancer, Chemistry, School of Natural & Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
17
|
Götte K, Chines S, Brunschweiger A. Reaction development for DNA-encoded library technology: From evolution to revolution? Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151889] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Madsen D, Azevedo C, Micco I, Petersen LK, Hansen NJV. An overview of DNA-encoded libraries: A versatile tool for drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2020; 59:181-249. [PMID: 32362328 DOI: 10.1016/bs.pmch.2020.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA-encoded libraries (DELs) are collections of small molecules covalently attached to amplifiable DNA tags carrying unique information about the structure of each library member. A combinatorial approach is used to construct the libraries with iterative DNA encoding steps, facilitating tracking of the synthetic history of the attached compounds by DNA sequencing. Various screening protocols have been developed which allow protein target binders to be selected out of pools containing up to billions of different small molecules. The versatile methodology has allowed identification of numerous biologically active compounds and is now increasingly being adopted as a tool for lead discovery campaigns and identification of chemical probes. A great focus in recent years has been on developing DNA compatible chemistries that expand the structural diversity of the small molecule library members in DELs. This chapter provides an overview of the challenges and accomplishments in DEL technology, reviewing the technological aspects of producing and screening DELs with a perspective on opportunities, limitations, and future directions.
Collapse
|
19
|
Hackler AL, FitzGerald FG, Dang VQ, Satz AL, Paegel BM. Off-DNA DNA-Encoded Library Affinity Screening. ACS COMBINATORIAL SCIENCE 2020; 22:25-34. [PMID: 31829554 DOI: 10.1021/acscombsci.9b00153] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DNA-encoded library (DEL) technology is emerging as a key element of the small molecule discovery toolbox. Conventional DEL screens (i.e., on-DNA screening) interrogate large combinatorial libraries via affinity selection of DNA-tagged library members that are ligands of a purified and immobilized protein target. In these selections, the DNA tags can materially and undesirably influence target binding and, therefore, the experiment outcome. Here, we use a solid-phase DEL and droplet-based microfluidic screening to separate the DEL member from its DNA tag (i.e., off-DNA screening), for subsequent in-droplet laser-induced fluorescence polarization (FP) detection of target binding, obviating DNA tag interference. Using the receptor tyrosine kinase (RTK) discoidin domain receptor 1 (DDR1) as a proof-of-concept target in a droplet-scale competition-binding assay, we screened a 67 100-member solid-phase DEL of drug-like small molecules for competitive ligands of DDR1 and identified several known RTK inhibitor pharmacophores, including azaindole- and quinazolinone-containing monomers. Off-DNA DEL affinity screening with FP detection is potentially amenable to a wide array of target classes, including nucleic acid binding proteins, proteins that are difficult to overexpress and purify, or targets with no known activity assay.
Collapse
Affiliation(s)
| | | | | | - Alexander L. Satz
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel Hoffman-La Roche Ltd, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | | |
Collapse
|
20
|
Kodadek T, Paciaroni NG, Balzarini M, Dickson P. Beyond protein binding: recent advances in screening DNA-encoded libraries. Chem Commun (Camb) 2019; 55:13330-13341. [PMID: 31633708 PMCID: PMC6939232 DOI: 10.1039/c9cc06256d] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
DNA-encoded library (DEL) screening has emerged as an important method for early stage drug and probe molecule discovery. The vast majority of screens using DELs have been relatively simple binding assays. The library is incubated with a target molecule, which is almost always a protein, and the DNAs that remain associated with the target after thorough washing are amplified and deep sequenced to reveal the chemical structures of the ligands they encode. Recently however, a number of different screening formats have been introduced that demand more than simple binding. These include a format that demands hits exhibit high selectivity for target vs. off-targets, a protocol to screen for enzyme inhibitors and another to identify organocatalysts in a DEL. These and other novel assay formats are reviewed in this article. We also consider some of the most significant remaining challenges in DEL assay development.
Collapse
Affiliation(s)
- Thomas Kodadek
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Nicholas G Paciaroni
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Madeline Balzarini
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Paige Dickson
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|